

ORZU

1

SEQUIN: Results on QoS

Afrodite Sevasti

Greek Research and Technology Network (GRNET)

Research Academic Computer Technology Institute (CTI), Greece

Project info

SEQUIN - SErvice QUality across Independently managed Networks (IST-1999-20841)

Duration 18 months (Nov 2000...Apr 2002)

Partners: DANTE, DFN, GARR, GRNET, PSNC, RENATER, SWITCH, UKERNA

Project Web site: http://www.dante.net/sequin

Overview

SEQUIN has defined and implemented an end-to-end approach to Quality of Service (QoS), operating across multiple management domains based on IP protocol and independent of link layer technology

The project has specified the implementation architecture for the Premium IP service, which aims at offering the equivalent of an end-to-end virtual leased line service at the IP layer across multiple domains.

The architecture is targeted at the GANT (The pan-European Gigabit Research Network) and is applicable to each connected National Research and Education Network (NREN) across Europe and local DiffServ domains

QoS parameters

From users requirements and technical considerations :

- One-way delay (OWD)
- IP packet delay variation (IPDV)
- Available bandwidth
- One-way packet loss (OWPL)

The set is common to IETF and ITU-T

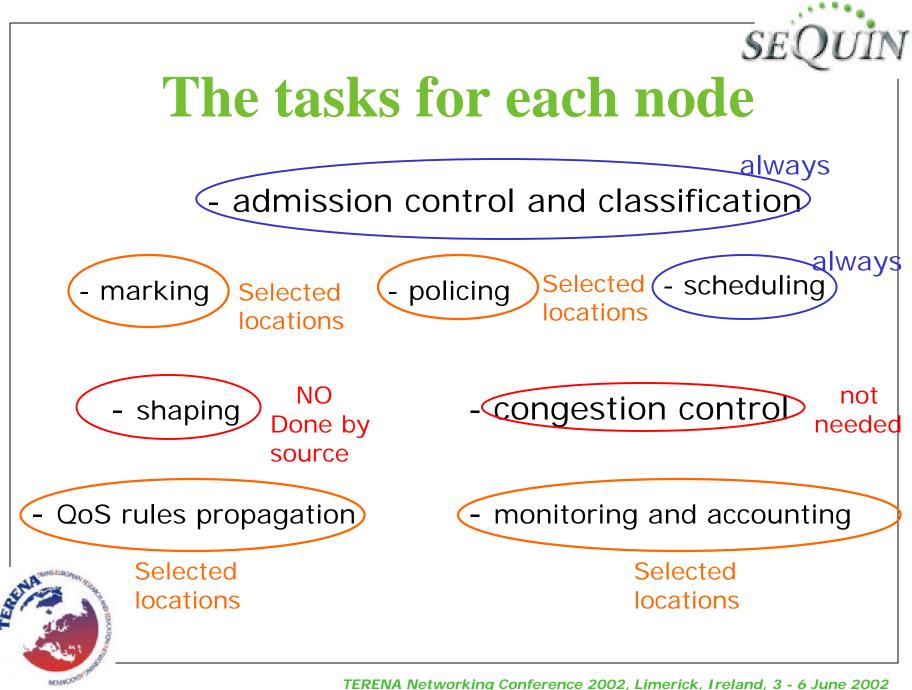
Naming and definitions are chosen to be comply to RFC 2330 (Framework for IP Performance metrics) and follow the ongoing IPPM IETF working group work.

QoS user requirements (from user s questionnaire)

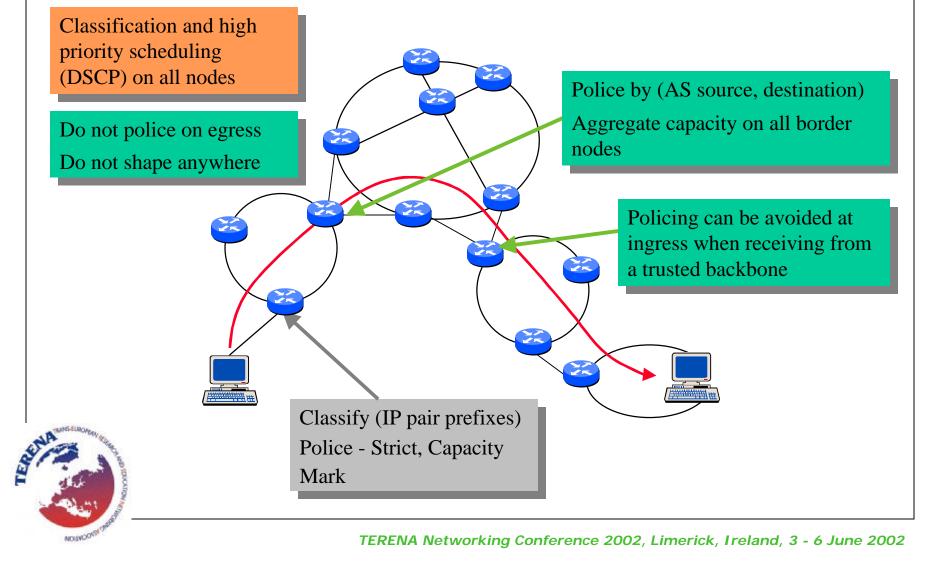
QoS service	One-way-delay	ipd∨	packet loss	bandwidth
Best effort	wide	wide	medium	wide
Very good (<i>Premium I</i> P)	medium	very small	very small	according to SLA
Prioritised Bandwidth (<i>IP+</i>)	medium	medium	medium	according to SLA
Guaranteed bandwidth	medium	medium	very small	single value

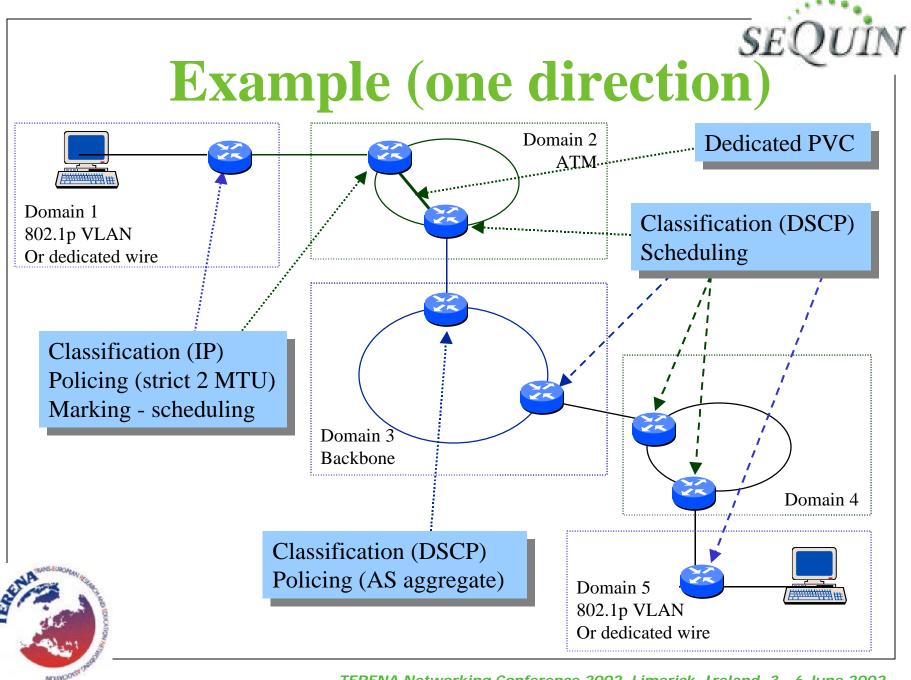
		One-way-delay	IPDV	Packet loss	bandwidth
	Best effort	Unspecified	Unspecified	< 5%	Unspecified
	Premium IP	distance delay + 50 ms	< 25 ms	negligible	according to SLA
CARER .	IP+	distance delay +100 ms	<25-50 ms	<2%	according to SLA

ACUMON A

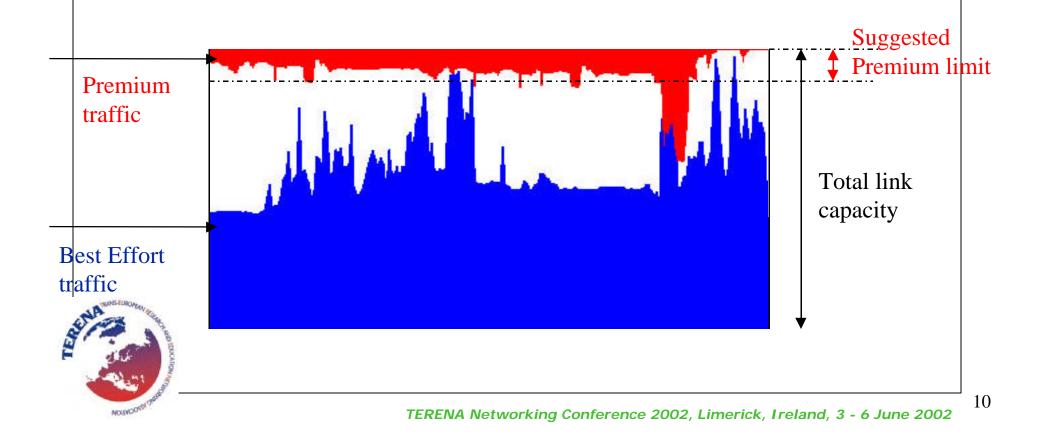


Premium IP


- Differentiated Services RFC2475 and EF PHB
- Overprovisioning
- Limited percentage of link capacity devoted to Premium IP (to 5%)
- Static provisioning-minimal number of actions per node
- IETF IPPM QoS parameters measurement framework
- Modular approach
- A model that can be implemented in short time using available tools
- Based on IP, for various transport protocols A chain of Premium IP compatible PDBs



Premium IP specification



⁹

TERENA Networking Conference 2002, Limerick, Ireland, 3 - 6 June 2002

Premium IP vs. Best Effort

Use the highest priority queueing mechanism (PQ or WRR). Limit total Premium capacity when assigning service to users at about 5% of each core link.

11

Proof of Concept

Initial implementation of the testing methodology by implementing a Proof of Concept test -bed involving user groups

Goals:

access to a controlled environment composed of a variety of hardware and underlying technology

functionality verification of each component required to implement Premium IP

The set of tests performed included:

laboratory tests for basic router functionality

wide area tests for network calibration (understand the performance users can expect & the interaction between different network technologies)

tests involving users to verify the QoS provisioning processes

H.323 users tests

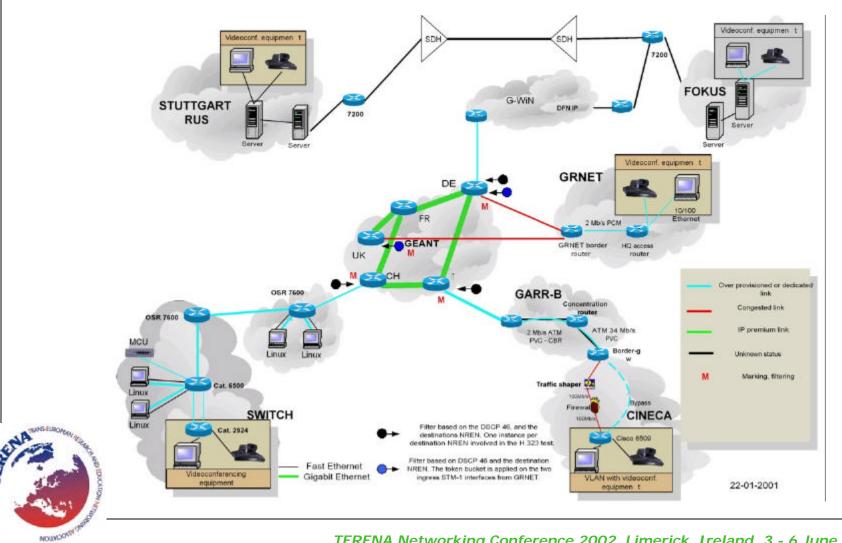
H.323 users from TF-STREAM Task Force

TF-STREAM, http://www.terena.info/task-forces/tf-stream/

Tests

Core network (GANT): 10Gbit/s & 2.5 Gbit/s POS and Juniper routers.

4 high (2.5 Gbit/s POS) and lower (2x155Mbit/s ATM access) speed national networks connecting six testing locations


Traffic tests with measurement tools with/without Premium IP enabled

Objective and subjective quality assessments of H.323 videoconferencing

H.323 tests topology

TERENA Networking Conference 2002, Limerick, Ireland, 3 - 6 June 2002

Test scenarios

End-to-end setup, between each pair of the participants

Videoconference initiated users assessment of audio and video quality

ICMP Ping tool was used to measure end-to-end RTT

The videoconference session was terminated

Use of RUDE/CRUDE tool with traffic pattern imitating videoconference stream in both directions for recording jitter and packet loss

NETPERF throughput test was used to assess the bandwidth available for Premium IP service

Test results I

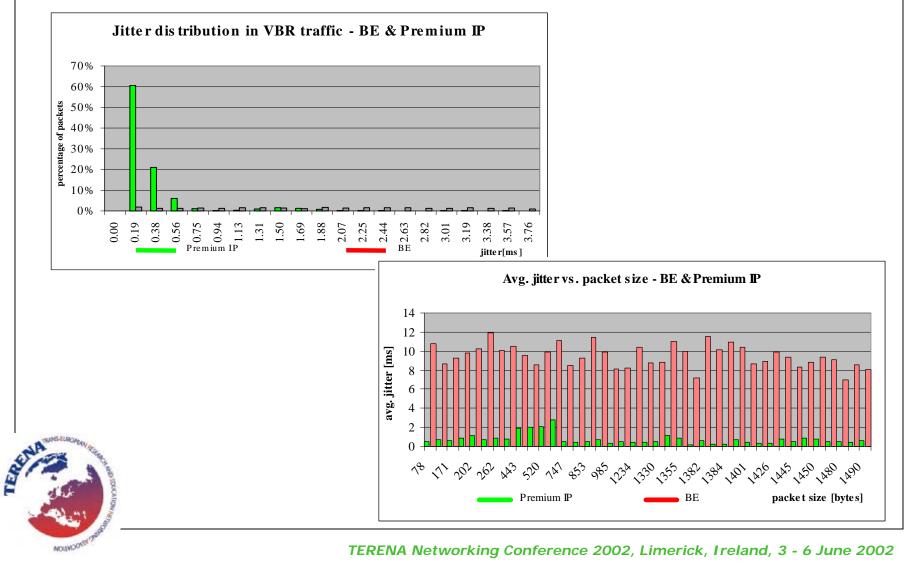
IP Premium			FROM		
Audio	SWITCH	FOKUS	RUS	GRNET	CINECA
SWITCH	Х	3(MCU)	4-5	6	6
FOKUS	3.6	Х	6	3	6
RUS	3.6	6	Х	6	6
GRNET	5.4	3(MCU)	5	Х	6
CINECA	6	6	5	6	X

IP Premium			FROM		
Video	SWITCH	FOKUS	RUS	GRNET	CINECA
SWITCH	Х	6(MCU)	5	6	6
FOKUS	4.8	Х	6	5	6
RUS	4.8	6	Х	4	6
GRNET	5.4	5(MCU)	5	Х	5
CINECA	5.4	6	5	5	X

15

Test results II

IP Premium			FROM		
Bandwidth [10 ³ bit/s]	SWITCH	FOKUS	RUS	GRNET	CINECA
SWITCH	Х	3307.87	1909.83	870.00	1816.73
FOKUS	1910.00	Х	8725.30	910.00	1825.09
RUS	1910.00	8895.45	Х	830.00	1835.18
GRNET	1910.00	853.41*	1909.02	Х	1839.94
CINECA	1751.46	1944.39	1844.84	910.00	Х


IP Premium	FROM														
RTT[ms]	SWITCH SWITCH		H	FOKUS			RUS		GRNET			CINECA			
KTT[IIIS]	MIN	AVG	MAX	MIN	AVG	MAX	MIN	AVG	MAX	MIN	AVG	MAX	MIN	AVG	MAX
SWITCH				37.00	37.00	41.00	50.68	51.31	55.43	112.22	114.29	124.14	17.04	19.91	19.97
FOKUS	30.0	38.00	60.00				14.66	17.30	414.66	109.67	110.49	167.59	17.80	20.50	40.00
RUS	50.0	50.00	61.00	10.00	13.00	480.00				186.94	229.82	313.69	29.95	39.62	49.96
GRNET	110.0	114.00	190.00	117.00	119.00	141.00	186.90	230.20	254.80				119.80	120.04	127.82
CINECA	25.1	27.67	48.41	27.00	30.00	82.00	39.93	42.01	81.85	119.82	120.05	127.82			

IP Premium			FROM		
Loss[%]	SWITCH	FOKUS	RUS	GRNET	CINECA
SWITCH	Х	0.00	0.00	0.02	0.00
FOKUS	0.00	Х	0.00	0.01	0.00
RUS	0.00	0.00	Х	0.02	0.00
GRNET	0.00	0.00	0.00	Х	0.00
CINECA	0.00	3.07	2.70	0.25	х

Test results III

17

Testing with IST projects

AQUILA (IST 1999-10077)

Enhanced architecture for QoS in Internet


PL (Warsaw) - AT (Vienna), 2.5 Mb/s activated on 15 April 2002

QoS monitoring infrastructure

	Advantages	Disadvantages
SMTs (Software Management Tools)	 Open architecture Distributed system Ease in manipulation of data Low implementation cost Easily expanded to end-users 	 Cumbersome deployment Security vulnerabilities
Commercial Products	 Ready for service product Accurate measurements 	 Close architecture Scaling - centralised architecture High installation cost

Monitoring scope, measurements methods and synchronisation

SMTs solution monitoring scenario (based on public domain SW with enhancements for data collection, analysis and presentation)

AND THE REAL PROPERTY OF

RIPE TTM test-boxes monitoring scenario (suggested for better accuracy)

SLAs

SLAs/SLSs are the essential mechanisms for agreeing, configuring, delivering, guaranteeing and evaluating the obtained QoS

SLA definition between two peers is the structural unit for the establishment of end-to-end services

There are always two SLAs, one for each direction. The contracted values might be different.

SLA definition

Definition of SLAs between GEANT and NRENs

Administrative/legal part

SLS part: defining the set of parameters (SLS template) and their values, such as a Traffic Conditioning Specification (TCS)

Matrix for NREN-to-NREN traffic IP Premium

23

Proposed SLS template

Scope

Flow description

Performance guarantees

OWD, IPDV, OWPL, MTU, Available bandwidth

Traffic Envelope and Traffic Conformance

Conformance to a shape and a limit of throughput/capacity

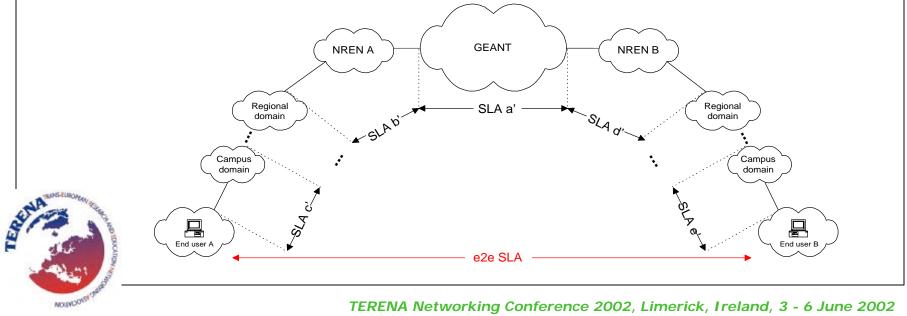
Conformance algorithm = the (b,r) token bucket

Conformance parameters = (b, r)

b = f(number of router interfaces on the same router that are part of the service, distance from the source)

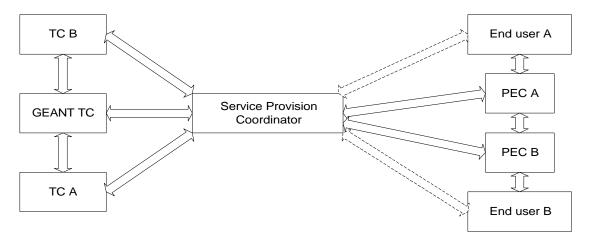
r = 1.5*avail_bw

Excess treatment, service schedule, reliability



24

e2e SLAs


Collection of the e2e chain SLAs

After the establishment of the e2e SLA, end-users must also be provided with SMTs to verify the quality and quantity of throughput provided by the service

Service provisioning

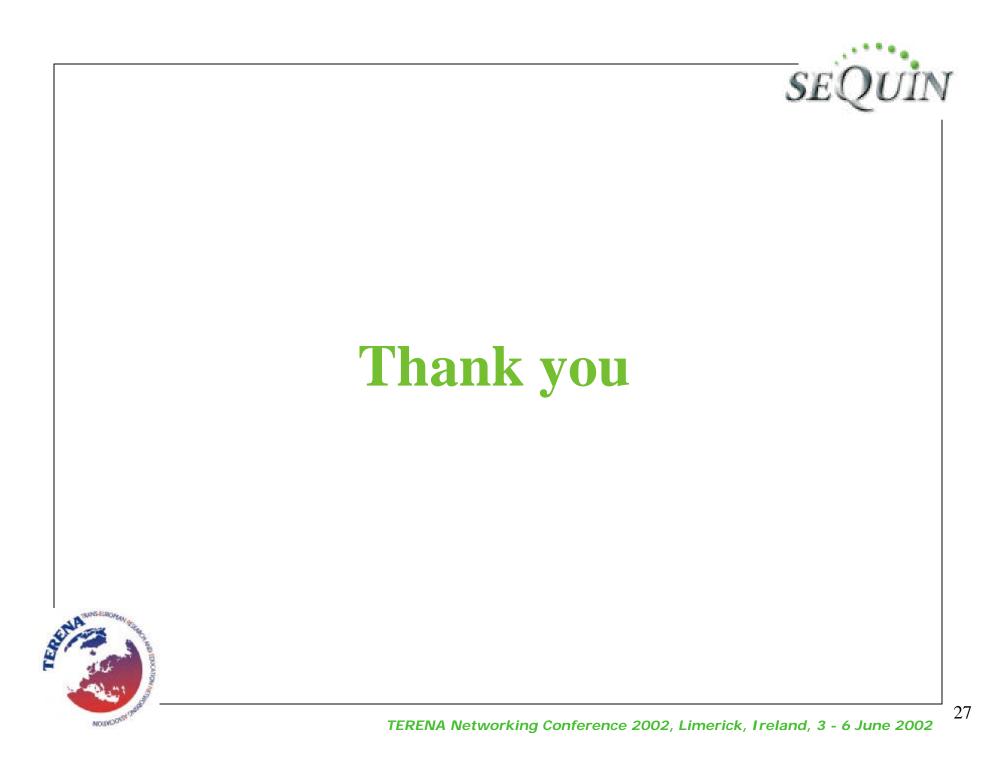
SUGGESTED: Centralized model of service provisioning Parameters and configuration for Premium IP are not yet state-of-art.

A more collaborative approach is initially needed

Detailed collaboration and exchange of information between all parties, at times in a somewhat un-coordinated fashion

Conclusions

SEQUIN has shown HOW to deploy Premium IP


NRENs are invited to implement it

The service provisioning model needs to be further elaborated

Support sought for development of monitoring tools, which is fundamental for the provisioning of the service

Premium IP as a replacement of ATM-based MBS

