
A Framework Model for DVEs using SIMUL8
Christos Bouras

Research Academic Computer
Technology Institute and Computer

Engineering and Informatics
Department, Greece

N. Kazatzaki Str. GR-26500
+30 2610 960375

bouras@cti.gr

Eri Giannaka
Research Academic Computer

Technology Institute and Computer
Engineering and Informatics

Department, Greece
N. Kazatzaki Str. GR-26500

+30 2610 960380

giannaka@cti.gr

Thrasyvoulos Tsiatsos
Research Academic Computer

Technology Institute and Informatics
Dept., Aristotle University of

Thessaloniki, Greece
N. Kazatzaki Str. GR-26500

+30 2310 998990

tsiatsos@csd.auth.gr

ABSTRACT
Distributed Virtual Environment systems simulate the behaviour
and activities of a great number of users interacting in a virtual
world over a wide area network. The sizes of the virtual worlds
and the tremendous number of users that DVEs are called to
support require additional bandwidth and computational
resources. For handling these growing requirements a lot of work
has been done both to the direction of alternative architectural
solutions as well as to techniques and algorithms for handling the
limitations of these environments. For supporting large-scale
DVEs, extended infrastructure is needed in terms of both
hardware and software. However, both researchers and
application designers do not always have access to such extended
infrastructure and the assessment and evaluation of developed
techniques becomes extremely difficult. To this direction, this
paper presents a simulation modelling tool for networked servers
DVEs that could be used by designers for simulating the
performance of their approaches under different scenarios.

Categories and Subject Descriptors

I.6.3 [Applications], I.6.5 [Model Development], I.6.7
[Simulation Support Systems]: Environments

General Terms
Management, Measurement, Performance, Design,
Experimentation.

Keywords
Distributed virtual environments, multiple networked servers
architecture, performance evaluation, resource management,
simulation applications.

1. INTRODUCTION
Distributed Virtual Environments (DVEs) have become a major
trend in distributed applications [9]. Virtual environments

simulate real or imaginary scenarios and are, nowadays,
characterized by rich graphics and a wide range of integrated
services. Many platforms, which adopt virtual reality technology,
are implemented and DVEs are constantly enhanced with
additional functionality, such as text and audio chat, streaming
media support, application sharing, etc. These highly interactive
systems simulate a virtual world, where multiple users share the
same scenario and the same view of the virtual scene [9]. Each
user is represented by an entity, called, avatar and has the ability
to navigate within the virtual world and interact both with the
other users of the system as well as with the system itself.

The advances in hardware and software technology, as well as the
wide expansion of high-speed internet access allowed for the
support of large-scale DVEs, which are currently used in various
fields, such as learning and training, collaborative work, military
applications and entertainment. The term large-scale is two-fold
and refers both to the size of the virtual environment as well as to
the tremendous number of users it is called to support [2]. For
handling these demanding applications, existing approaches, from
architectural point of view, fall usually into one of the following
architectures: a) networked servers architectures and b) peer-to-
peer architectures. To both directions there is lot of work done,
including algorithms for the partitioning problem ([3], [10]), load
balancing techniques [5], awareness methods [9] and other
techniques ([13], [7]), while a great number of platforms has been
designed and implemented ([1], [4], [8]).

As mentioned above, due to the great number of users that DVEs
aim to support, the rich graphics and the need for a high level of
realism, there is a constant trade-off between system performance
and fault tolerance. The decision for the techniques and
approaches used for dealing with this trade-off is usually related
to the scope and the special characteristics of the scenario that
each virtual world simulates. To this direction, this paper presents
a framework model for networked servers DVEs, which can be
used by application designers for selecting the appropriate model,
algorithm and technique for the scenario they are called to
simulate. The framework model proposed takes into account a
number of generic parameters, which can be set on demand by the
designers and stake-holders and it is based on “translating”
system requirements to the concepts of operational management.
The design and implementation of the framework is conducted
with Simul8 [11], an integrated environment for working with
simulation models, widely used in operational management.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2009 March 2-6, Rome, Italy

Copyright 2009 ICST, ISBN 978-963-9799-45-5

The rest of the paper is structured as follows: Section 2 presents
the motivation for the work presented as well as related work to
the area of simulation tools for evaluating DVEs’ performance,
while Section 3 describes the main concepts, entities, processes
and characteristics of generic Dynamic DVEs. Section 4 presents
the distributed framework approach, in terms of the flow of events
that take place and Section 5 presents the simulation framework
in terms of its basic entities and their “mapping” to Simul8
objects. Section 6 presents the actual DVE simulation model, in
terms of the issues and decisions implemented for incorporating
all aspects of DVE systems as well as the parameters created for
providing tailored solutions, according to the special needs and
characteristics of DVEs. Section 7 presents an indicative
experiment conducted for testing the model’s accuracy and
validity. Finally, Section 8 concludes the paper and presents some
planned next steps.

2. MOTIVATION AND RELATED WORK
One of the basic problems when designing and implementing
algorithms, methods and techniques for large-scale DVEs is the
way that their efficiency could be examined. In most of the cases,
the evaluation is based on theoretical models, which often fail to
meet the circumstances and situations met in real DVEs. In
particular, for supporting large-scale DVEs, extended
infrastructure is needed in terms of both hardware and software.
Due to the fact that both researchers and application designers do
not always have access to such extended infrastructure, the
assessment and evaluation of developed techniques becomes
extremely difficult. In most of the cases, both application
designers and researchers adopt specialized methods ([5]) for
evaluating different techniques, while in other cases simulation
tools have been developed from scratch [9]. However, given the
fact that the design and implementation is application or
technique-specific, the reusability of these tools for different
architectures and algorithms is not always successful as either
quantitative or qualitative parameters are not taken into account.

To this direction and for overcoming this important limitation, a
simulation framework for assessing DVEs’ performance is
designed and implemented. The modelling framework takes into
account a number of generic parameters, which can be set on
demand by the DVE designers and stake-holders and it is based
on transforming system requirements to the concepts of
operational management. For being consistent to this objective,
the design and implementation of the framework has been
realized with Simul8 [11], an integrated environment for working
with simulation models, mainly focused and widely used in
operational management. One of the main difficulties that needed
to be faced during the design and implementation process was the
incorporation of detailed aspects of DVEs, such as neighbouring
avatars concept, synchronization messages, computer resources
and routing techniques, in the set of options provided by Simul8,
which are more general and directed to classic operational
management problems.

Having overcome this difficulty, the simulation tool implemented
manages to incorporate all basic factors and parameters that affect
system’s performance, and through an easy and comprehensible
interface allows for the evaluation of diverse techniques, easily
tailored to the specific needs of each DVE. As mentioned above,
the simulation tool could be used by designers of DVE systems

for simulating the performance of their approaches under different
scenarios and system setups.

3. DISTRIBUTED VIRTUAL
ENVIRONMENTS
This section presents the main entities, characteristics and actions
that take place in a generic DVE. The main purpose of this section
is to provide an insight on the processes that need to be taken into
account for the simulation of the modelled framework.

A virtual environment could be considered as a simulation
generated by a computer, which can simulate either an imaginary
or real world. Even though these environments can be two-
dimensional, the term is mainly related to three-dimensional
environments that aim at providing to the users a high sense of
realism by incorporating realistic 3D graphics for creating an
immersive experience. In DVEs the simulated world runs not on
one computer system but on several, which are connected over a
network, as presented in Figure 1. Users that connect to these
systems are able to interact in real time, sharing the same view of
the virtual world.

Figure 1: Multi-server DVE architecture

DVEs aim at supporting a tremendous number of concurrent
users, scattered around the globe. The participants constitute
active parts of the DVE, usually represented by human-like
entities, called avatars for enhancing the awareness [6]. The state
and behaviour of each avatar is controlled by the user through the
client computer. Connected users can view the virtual world on
their computer (client), thus having their own local copy of the
virtual scene.

Apart from the users, DVEs are, on their vast majority, also
comprised by non-autonomous entities, called objects, which
constitute the graphical representation of entities that are placed
within the virtual world for supporting the context of the each
time simulated scenario (e.g. trees, books, chairs, weapons, etc).
According to the nature of the DVE and the scenario it simulates,
these objects could be static or moving, interactive or not.

In the majority of existing DVE systems, users have the ability to
navigate in the virtual world, thus changing their position
coordinates, interact with the objects of the virtual environment,
thus changing some of their attributes (such as location, shape,
colour, etc), interact and communicate with other participating
users. For achieving high-sense of realism and maintaining
consistency, it is of critical importance that all connected users

are always aware both of the presence of other users as well as of
any actions performed.

When a user connects to the DVE system, s/he is assigned to one
of the available servers. This assignment is based on the
algorithms and techniques that each DVE adopts for handling its
resources and for achieving load balancing among the servers.
Throughout the users’ presence in the system, the server, who is
responsible, accepts the messages produced by all avatars that it
handles, processes these messages and updates the state of the
virtual world accordingly. Then, it sends those changes to the
avatars concerned thus, modifying and synchronizing their view
of the virtual world, as presented in Figure 2.

Figure 2: DVE client-server communication

4. DISTRIBUTED FRAMEWORK
APPROACH
We consider a DVE system, which is comprised by a fixed
number of servers (computers). Each server has a certain amount
of resources and can serve requests/messages from the users. We
consider as resources the capacity of the Central Processing Unit
(CPU). At this point it should be mentioned that in real DVE
systems, resources are also related to the network efficiency, in
term of bandwidth availability. However, the network is a
dynamically changing medium, whose state cannot be controlled
by the application designer. Thus, throughout the simulation
model, the approach presented encounters the CPU capacity as
the main resource of the DVE system.

Each time that a user enters the DVE system a request is sent to a
central server, which is denoted as ConMan Server. This server
performs two main tasks: (a) accepts and authorizes the
connection requests from the users and redirects them to the
appropriate server, (b) monitors the performance of the working
servers over a period of time and acts when it is identified that
one or more servers need to be unloaded. For the monitoring task,
the ConMan Server performs network management operations
using the SNMP [12] protocol.

When users’ avatars enter the virtual world, and from the moment
they are assigned to a server, they start to navigate, interact and
perform actions, thus sending messages/requests to the servers.
Each of the servers of the DVE system is responsible for
processing and serving these requests/messages initialized by the
users, perform all the necessary updates to the virtual scene and
notify all concerned users about the updates. The processes that
take place and their processing, based both on their frequency and
resources they require, affect the servers’ performance. Therefore,
the performance of each server is constantly checked (after a
fixed period of time) by the ConMan Server. However, for
ensuring higher reliability, each server has a self-monitoring

mechanism. In particular, each server runs an SNMP agent, which
monitors the CPU usage. When a defined threshold is reached, the
SNMP agent sends a “trap” to the ConMan Server, which notifies
it that the specific machine reaches the point of saturation. When
the trap message is received by the ConMan Server, the
“partitioning” of the saturated server is initialized. The workflow
process is presented in Figure 3.

In particular, when a “trap” is received the ConMan Server
performs all the necessary actions for re-balancing existing
workload among the servers of the system. It should be mentioned
that the technique for workload re-balance is DVE specific.

Figure 3: DVE Workflow

Based on the above, for creating a networked servers architectural
framework we need to handle the following problem:

“Given a certain number of servers, with defined processing
power, we need to find the optimum assignment of resources for
serving as many users as possible with guaranteed efficiency,
based on each application’s special characteristics”.

This problem falls into the area of operational management,
where the efficiency is defined by the boundaries set for the CPU
usage.

5. SIMULATION FRAMEWORK
As mentioned above, the approach presented faces the problem
stated as an operational management one. To this direction, for
testing the framework’s efficiency and for studying the workflow
process of the networked servers DVE, a discrete event simulation
model is developed using SIMUL8 (version 12).

SIMUL8 [11] is an integrated environment for working with
simulation models and its use is mainly focused to operational
management problems. It has a powerful language and
visualization capabilities that allow the creation of accurate,

flexible, and detailed simulations in a reasonable time. It also has
several features (trials, warm-up period, random sampling, etc)
allowing one to conduct statistical analysis of the simulation
output.

The simulation model is developed to provide insights into the
workflow process and to estimate the system performance
measures. Figure 3 depicts a DVE system workflow, which is
made of several interconnected simulation objects (input node,
queues, and work centres). These objects as well as the simulation
parameters are described in the sub-sections that follow.

5.1 Simul8 Objects
This section presents briefly some of the basic objects that Simul8
provides for designing and creating models, whose behaviour can
be simulated.

Work Centres: A Work Centre is a place where work takes place
on Work Items. Work done at work centres usually takes up time
and sometimes requires the availability of resources.

Storage Bins (Queues): A storage bin is a place where work to
be done can wait until appropriate resources or work centres are
available.

Work Entry Points: A work entry point is a place where work to
be done appears in the model for the first time.

Work Exit Points: A Work Exit Point is a place where work that
is complete (or otherwise "finished") leaves the model. At the
point in time when each work item leaves, data is recorded about
how long it has spent in the model (from the time when it entered
through a "Work Entry Point ".)

Work Items: A Work Item is the work which is done in the
organization being simulated. Work Items flow through the
simulation, being stored in Storage Areas, and acted upon by
work Centres. Work Items can be allowed to "expire" while in a
storage bin.

Components: Components consist of one or more existing
objects (either the standards or other Components) that are
tailored in some way then saved as a single new object for future
use.

5.2 DVE Simulation Entities
This section presents the main entities of the simulation model. At
this point it should be mentioned that the entities of the DVE
system are mapped to the simulation objects provided by Simul8
tool, as presented in Table 1.

Table 1: Mapping of DVE entities to Simul8 objects

DVE Entity Simul8 Objects

Avatar Work Item

Virtual World Entry Point Work Entry Point

Avatar Messages Work Items

ConMan Server Component

DVE Servers Components

Inter-Server Messages Work Items

Virtual World Entry Point: This entity corresponds to the Work
Entry Point of Simul8. For the DVEs simulation, the Work Entry
Point represents the point, where users’ avatars enter the system.

Each Entry Point is characterized by the distribution used for
initializing and sending the messages as well as the inter-arrival
times between messages.

Messages: In the DVE simulation model there are three types of
messages taken into account and are presented as Work Items.
The first type is called “avatar”, the second one is called “request”
and the third one “synchronization”. The avatar processes
represent the actual avatars that enter the system, which means
that for each avatar there is an avatar message initialized. The
request process represents the messages sent by each avatar and
are labelled with their parent id (that is the avatar id which sent
the message).

Figure 4: Detailed Server Representation

For simplification purposes, we consider that all messages sent by
the users’ avatar are of the same type and require the same
resources. This simplification is mainly related to the fact that in
the simulation model we consider a general approach of a DVE
system, where message types (e.g. position messages, object
modification messages, chat messages) and attributes are not
distinguished. However, it should be mentioned, that the
simulation tool provides the necessary functionality for tailoring
the messages exchanged by using additional labels attached to
each message type. Finally, the synchronization messages
represent the messages exchanged among the servers of the
system for maintaining consistency and awareness. The
synchronization messages among the servers take place when
neighbouring avatars situated in different servers interact. As
neighbouring avatars the simulation model defines the ones that
their distance is equal or less than a defined value, which
represents the Area of Interest (AoI). The AoI is an indication for
whether two or more users can see each other.

ConMan Entity: The ConMan Server entity used in the DVE
model is a combination of a Work Centre and a storage bin object
(of Simul8 library). The ConMan Server is connected to the
Virtual World Entry Point and the messages that arrive, which
represent avatars, first move to the ConMan Queue and then to
the ConMan Work Centre, where they are processed. The
processing implies that ConMan first labels the messages with a
unique identifier and sets the life of each of these messages.

Server Entity: The Server entity used in the DVE model is a
Component of Simul8, and constitutes a combination of three
Queues and Work Centres and two Work Exit Points, as presented
in Figure 4. Each of these objects serves different tasks within the
model. Work done at work centres usually takes up time and
sometimes requires the availability of resources. For the DVE
simulation, we consider that the time it takes for processing each
message depends on the server’s processing capabilities and this
parameter could be adjusted by the system designers based on the
infrastructure they plan to use. The detailed description of the
tasks that the Server Entity performs is presented in the section
that follows.

6. SIMULATION MODEL
This section describes the sequence and flow followed throughout
the DVE simulation model along with the logic that runs on the
back.

6.1 Simulation Parameters
This sub-section presents the main parameters used for setting up
the performance and assessment results of the DVE system.

Number of Servers: this parameter defines the overall number of
servers available, which could be used any time needed.

CPU_Usage(t): the actual CPU usage of the server at time t. This
parameter is used for indicating the state of a server. For creating
the dynamic framework we need to define a maximum and a
minimum value for this parameter. The maximum value is used
for indicating that a server tends to be overloaded and the SNMP
“trap” is sent to the ConMan Server. The minimum CPU usage is
a value which indicates that a server could be considered as
under-used and its workload and tasks could be assigned to
another already working server. At this point it should be
mentioned that the proposed approach takes into account this
parameter when a server is under this threshold for a specific
period of time.

Server_Queue(t): the number of messages in the server’s queue,
which is an additional parameter for deciding whether the server
reaches a saturation point. Like the CPU parameter, for the Server
Queue, we need to define a maximum and a minimum value.

Routing technique: this parameter defines the way that workload
will be balanced among the servers of the system. This parameter,
as mentioned in a previous section, is strongly related to the
partitioning and load balancing approach adopted by each type of
application and should be carefully implemented for valid results.

System performance Check: this parameter defines the time
interval that is used by the ConMan Server for checking the
servers’ status.

In the simulation model, the logical interactions between the
different simulation objects (timing information, routing rules,
etc) are handled using Visual Logic, SIMUL8’s logic building
environment. Custom dialogs are also developed to extend the
model’s specifications by easily defining the above-mentioned
parameters, i.e. changing the number of servers, defining the
values of thresholds, the properties of the servers’ queues and
displaying simulation results.

6.2 DVE Model Overview
The simulation model of the DVE system is presented in Figure 5.
In particular, this figure presents the generic form of the DVE
system, where both ConMan_Server and the other servers are
combined into Component Type entities.

Figure 5: Generic DVE simulation model

The detailed representation of the DVE simulation model is
presented in Figure 6. In this figure, the components are left open
so that the sequence of events that take place through a DVE
session will be clearer to the end user.

Figure 6: Detailed DVE simulation model

Users enter the DVE system through the Virtual World Entry
Point and for each of the connected users an “avatar” message is
initialized. The distribution followed for avatars entrance in the
system, could be set in the simulation model according to each
application’s characteristics. Avatar connection messages are
forwarded to the ConMan server, which, as mentioned above,
labels each of these messages with a unique identifier as well as
an “avatar life” value. Given the fact that the avatar message
represents the actual users that participate in the DVE, the avatar
life attribute is used for defining the approximate period of time
(simulation time) that an avatar will spend in the DVE. This
attribute could be set according either to existing data for users’
stay in the virtual world or approximate values. In the testing
simulation performed, the avatar life was based on measures made
for the World of Warcraft game [14] where the median user stay
was about 50min.

After labelling avatar messages, the ConMan Server forwards the
messages to one of the available servers of the DVE system. The

selection of the destination is a process, which may vary among
real DVE systems and is related to the technique adopted for the
partitioning of the virtual world, for load and resource
management. In particular, the selection of the destination could
be:

 Circular: avatars are forwarded in a circular way to the
available servers of the system

 Equal Probability: avatars are forwarded with an equal
probability profile to the servers of the system

 Spatial: in cases where each server manages certain part
of the virtual world, avatars, according to their initial
position would need to be forwarded to the appropriate
server, which handled the corresponding partition.

All, above mentioned, decision techniques could be set to the
simulation model according to each system’s specifications. At
this point it should be mentioned that in its current form, the
modelling framework considers average values for most of the
parameters taken into account. However, the impact of factors,
such as the distance and network workload could be also added in
the proposed modelling tool.

When avatar messages are forwarded to the appropriate server,
they enter a queue, waiting to be added to the server’s list. The
server’s list is represented with a work centre object named
“Snum_Avat_Handler”. Upon receive of an avatar message the
server updates its list of existing avatars and forwards the message
to a storage bin object. This storage bin object for the simulation
model represents the list where all active avatars exist. The
avatars stay in this bin for as long as their “avatar life” attribute
defines and then they (expire). Expired avatar messages are
collected by a work centre called “Snum_Avat_Finish”, which acts
as the information point of the users, who have been served and
have exited the system.

As mentioned above, avatars in a DVE system have the ability to
navigate in the virtual world, interact with both objects and other
users’ avatars and communicate, thus generating messages. For
simulating this behaviour, the simulation model generates request
messages, which represent the messages realized by connected
users. In particular, for as long as the avatar messages are present
(while in the storage bin and before they expire), “request
messages” are initialized. These messages are labelled with a
“parent id”, which represents the avatar that sent the message.
The requests send by the users in an actual DVE system cannot be
known, neither to their number or frequency, as they depend on
each user’s individual behaviour and the nature of the simulated
virtual world. In particular, in a battle simulation users would
generate a tremendous number of users while running or fighting,
while in a class simulation, the messages would be less due to the
fact that avatars would be seated and would attend the lecture.
Therefore, the inter-arrival time of the request messages differs
from one DVE to another and should be properly set by the
designers. In any case and for any inter-arrival period, the
simulation model, through the Time Check Logic of Simul8 and
Visual Logic, implements the necessary code, which, every a
fixed time interval checks the number of avatars in the storage bin
and generates a request for each of these avatars. For the testing
simulations conducted, the time interval was set to 0.2 sec. The
request messages are placed in the “Snum_Queue” waiting for the
server to process them.

The actual processing unit of the server is represented by the work
centre titled “Snum_Server”, where all request messages are
processed. Each server of the DVE system is characterized by its
processing power, which in the simulation model is represented
by the time it takes to the server to process a message. For the
testing simulation experiments the serving time of all servers
available was set to 5x10-3 sec.

For monitoring servers’ performance a utilization parameter was
defined to the simulation model for each of the servers. This
utilization parameter represents the CPU usage of each server and
is calculated as follows:

T

B
U i

i ,

where iB is the busy time of server i over a T time interval. The

busy time iB is defined as follows:

timeprocesssservedreqB ii ___ ,

with servedreq _ the number of requests served by server i and

timeprocesssi __ the time for processing each request.

The CPU is checked in the simulation model, through the Time
Check Logic and Visual Logic, every a fixed time interval (which
is set to 1 sec for testing the simulation) and in case that one or
more of the servers have exceeded a threshold, the ConMan
Server changes the routing scheme for balancing the workload
among the participating servers.

7. ACCURACY AND RESULTS
This section presents an indicative simulation conducted for
testing the DVE simulation model accuracy and validity. In
particular, the scenario simulated was selected in such a way that
its results could be easily proven.

7.1 Scenario Setup
For testing the simulation framework, we consider a DVE, which
consists of five available servers. All of the servers have the same
processing power. Avatars join the virtual environments following
an exponential distribution with an average value of 10sec for the
inter-arrival times. The average “avatar_life” is set to 50min and
we consider that avatar perform actions, thus sending request
messages to the servers they are connected, every 0.2 sec.
Regarding the routing scheme that ConMan Server adopts for
assigning users (avatars) to the servers, we consider a circular one
(e.g. like cards be dealt from a pack). The maximum CPU
threshold is defined to 80% while the minimum one is set to 10%.
Finally, the duration of the experiment is set to 60 min, while the
standard check for servers’ CPU utilizations takes place every 1
sec. The values of the parameters taken into account are
summarized in Table 2.

Table 2: Parameter values for the simulated scenario

Parameter Value

Number of Servers 5

Servers’ Processing Time 0.005 sec

Avatar’s Entry Distribution Exponential (10sec average)

Requests’ Inter-arrival Time 0.2 sec

Routing Technique Circular

CPU Time Check 1sec

Simulation Duration 60 min

7.2 Experimental Results
This section presents the results extracted from the simulation
conducted with the DVE model. As described above, the
simulation period was set to 60 min and avatars entered the virtual
world following an exponential distribution with a 10sec average
value. The avatar entry distribution is depicted in Figure 7.
Totally, around 330 avatars joined the DVE system, but due to the
fact that they had different lifetimes, not all of them needed to be
concurrently served by the servers of the system.

One of the most critical aspects for the majority of the DVE
systems and an important indicator for the performance is the
CPU usage. To this direction the CPU usage percent over time
was monitored for testing whether one or more of the servers
exceeded the threshold defined. The results for the CPU
utilization for all connected servers are presented in Figure 8. As
it can be seen, all of the servers remain under the threshold for the
simulation period, with a small exception of Server 2.

Figure 7: Avatar entry distribution

However, it should be mentioned that even though the threshold
was exceeded, the value of 80% can ensure that the server is still
away from reaching the saturation point of 100% in CPU
utilization, which would affect seriously the overall DVE
performance.
Another parameter measured was the number of concurrent users
that each server could support, given their behavioural pattern in
the system (which is related to the frequency of the requests
generated by them).

Figure 8: Servers CPU Usage (%)

The results of the experiment conducted for all servers are
presented in Figure 9. In particular, this figure presents on the
primary axis (left) the CPU usage over time for each of the
servers in relation to the number of concurrent avatars in each of
them, which is presented in the secondary axis (right). As it can
be extracted by Figure 9, all servers behave similarly under
certain workload introduced by connected users. Also it can be
noticed that the system performs well (which means that the CPU
is below the 80% threshold) for about 20-25 concurrent users,
while the threshold is exceeded only in the case of more than 30
concurrent users.

Figure 9: CPU Usage (%) related to the number of avatars

over time (for all servers)

Given the similar behavior of all connected servers and the
complexity of Figure 9, which might be difficult to be read, the
results of the most workloaded server were exracted and are
presented in Figure 10.

Figure 10: CPU Usage (%) related to the number of avatars

over time (a representative example)

7.3 Discussion of the results
The results provided by the operation of the DVE simulation
model correspond to what could be expected for the case of a
DVE system with the parameters specified in the previous
section.

In particular, given the fact that the processing power of the
servers is higher from the requests generated by the users, the
system is expected to function within the boundaries set. Also,
given the capabilities of the servers, the number of concurrent
users they can support is more or less expected.

8. CONCLUSION AND FUTURE WORK
This paper presented a framework model for networked servers
DVEs, which was simulated using Simu8 simulation tool. The
entities, processes and characteristics of generic DVEs were
translated into Simul8 objects and the necessary logic was
programmed and added for covering all important aspects of these
dynamic systems. The motivation behind this implementation
came from the observation that one of the main issues in DVE
systems, which is the resource management, could be formed into
an operational management problem. To this direction, Simul8
was selected for designing the DVE simulation model, as it one of
the most popular and widely used tools, both in the industrial and
academic area of operational management.

Furthermore, given the fact that DVEs can widely vary on the
scenarios they aim to support, the resources they use, the
techniques and algorithms they adopt and the number of users
they are called to support, it is important to have a generalized
framework, which could be easily tailored for meeting the
specific needs of each DVE application. Therefore, the DVE
simulation model presented in this paper could be used by
application designers for selecting the appropriate model for the
scenario they are called to simulate as well as for evaluating
optimization techniques and algorithms.

To this direction, some of the planned next steps include the
simulation and evaluation of various existing techniques, used
widely for DVE systems, the assessment of the effect that

different parameters and factors have on a DVE system as well as
the experimentation with different performance optimization
methods.

9. REFERENCES
[1] Anarchy Online: http://www.anarchy-online.com.
[2] C. Bouras, E. Giannaka, T. Tsiatsos, “Exploiting Virtual

Objects Attributes and Avatars Behavior in DVEs
Partitioning”, The 17th International Conference on Artificial
Reality and Telexistence - ICAT 2007, Esbjerg, Denmark, 28
- 30 November 2007, pp. 157 – 163

[3] C. Bouras, E. Giannaka, T. Tsiatsos, “Partitioning of
Distributed Virtual Environments Based on Objects'
Attributes”, 11th IEEE International Symposium on
Distributed Simulation and Real Time Applications, Chania,
Crete, Greece, , 22 - 24 October 2007, pp. 72 – 75

[4] Everquest: http://everquest.station.sony.com/.
[5] Jonh C.S. Lui, M.F. Chan, “An Efficient Partitioning

Algorithm for Distributed Virtual Environment Systems”,
IEEE Trans. Parallel and Distributed Systems, Vol. 13, March
2002

[6] Joslin, Pandzic & Thalmann, “Trends in networked
collaborative virtual environments”, Computer
Communications, Volume 26, Number 5, 20 March 2003 , pp.
430-437

[7] Macedonia, Michael R., Zyda, Michael J., Pratt, David R.,
Brutzman, Donald P., Barham P. T. ”Exploiting Reality with
Multicast Groups,” IEEE Computer Graphics & Applications,
September 1995, pp.38-45.

[8] N. Beatrice, S. Antonio, L. Rynson, and L. Frederick. A
multiserver architecture for distributed virtual walkthrough, In
Proceedings of ACM VRST’02, pages 163–170, 2002.

[9] P. Morillo, S. Rueda, J.M. Orduna and J.Duato, “A Latency-
Aware Partitioning Method for Distributed Virtual
Environment Systems” , in IEEE Transactions on Parallel and
Distributed Systems (TPDS), volume 18, number 9, pp. 1215-
1226, September 2007. IEEE Computer Society Press, 2007

[10] P. Morillo, J.M. Orduña, M. Fernández and J. Duato,
“Improving the performance of Distributed Virtual
Environment Systems”, in IEEE Transactions on Parallel and
Distributed Systems (TPDS), volume 16, number 7, pp. 637-
649, July 2005. IEEE Computer Society Press, 2005.

[11] Simul8 Simulation Software: http:// www.simul8.com
[12] SNMP v2: http://tools.ietf.org/html/rfc1908
[13] T.A. Funkhouser, “Network Topologies for Scalable

Multi-User Virtual Environments”, IEEE VRAIS ‘96, San
Jose, CA, April, 1996.

[14] Zhuang, Xinyu, Ashwin Bharambe, Jeffrey Pang, and
Srinivasan Seshan. “Player Dynamics in Massively
Multiplayer Online Games.” Carnegie Mellon University
School of Computer Science (Oct 2007): 1-26.
<http://reportsarchive.adm.cs.cmu.edu/anon/2007/CMU-CS-
07-158.pdf> (12 Jan. 2008).

