
1569148901 1

Networking Aspects for the Security of Game
Input

Christos Bouras, Vassilis Poulopoulos and Vassilis Tsogkas
Research Academic Computer Technology Institute,

N. Kazantzaki, Panepistimioupoli Patras, 26500, Rio, Greece
bouras@cti.gr, poulop@cti.gr, tsogkas@cti.gr

tel. +302610996951
fax. +302610996358

Abstract— Following the trends of our era, Games At

Large IST Project introduces an innovative platform for
running interactive, rich content multimedia applications
over a Wireless Local Area Network. Games@Large
project’s vision is to provide a new system architecture for
Interactive Multimedia which will enhance existing CE
devices such as, Set Top Boxes (STB), Small Screen and
other devices, which are lacking both the CPU power and
the graphical performance to provide a rich user
experience. This paper presents the input command
transferring module that provides encryption capabilities
for ensuring the security of the transmitted sensitive user
data. In a nutshell, the client software when capturing
input from a keyboard device encrypts the commands that
are transmitted over a Wireless Local Area Network,
using a public key encryption scheme and the server is
responsible for decrypting and executing the commands to
the corresponding game application.

Index Terms — online gaming, remote command
execution, input device capturing, asymmetric encryption,
reverse channel

I. INTRODUCTION
omputer games constitute nowadays one of the
most dynamic and fastest changing technological

area, both in terms of market evolution and technology
development. In this area, as computer games are
evolving and online activities and gaming become part
of our lives, the need of interaction within a client –
server architecture becomes very intense. The
successful paradigms of online gaming such as WoW
[6], Half Life [7] and Second Life [8] are only just the
beginning of a new era for online games. The idea that
lies behind online gaming is that a game that can be
played by multiple users should not have only a local
context. The basic game software is installed on the

client machine while multiple servers are assigned with
the task of interconnecting all the possible users to what
is called the “world” or the scenario of the game. Games
at Large project goes one step further than the classical
procedure of online gaming and the main intention is to
enhance the idea of application on demand [5] in order
not only to support games on demand, but also to enable
devices that lack the physical power to load a game, to
run games [9].

The main idea is that one or more powerful servers
will actually execute the game for the client and only
frame screens of the game, and not the game loader or
the execution of complex graphics, will be presented to
the client. On the other hand the basic aspect of a game
is the interaction with the end user (gamer). This means
that apart from only presenting the game to the user
(through this client – server architecture) the system
must be able to capture the input from any input devices
of the end user and transfer it to the server in order to
represent the interaction that is done on a physical level
when playing a game. An important aspect of the
aforementioned procedure is security in the transferring
of input commands. In particular, keyboard input,
which in most cases depicts user sensitive data such as
passwords or credit cars numbers, must be foolproof.

The object of secure communications has been to
provide privacy or secrecy, i.e., to hide the contents of a
publicly exposed message from unauthorized recipients.
The asymmetric encryption / decryption channel solves
the major confidentiality issue of secure
communications. Cryptosystems [1] are symmetric if
either the same piece of information (key) is held in
secret by both communicants, or else that each
communicant holds one from a pair of related keys
where either key is easily derivable from the other.
These secret keys are used in the encryption process to

C

1569148901 2

introduce uncertainty (to the unauthorized receiver),
which can be removed in the process of decryption by
an authorized receiver using his copy of the key or the
"inverse key." This means, of course, that if a key is
compromised, further secure communications are
impossible with that key. On the other hand, in
asymmetric cryptographic schemes the transmitter and
receiver hold different keys at least one of which it is
computationally infeasible to derive from the other.

The work on public key cryptographic systems has
been rather intense over the last 20 years. The main
difficulty in developing secure systems based on public
key cryptography is not the problem of choosing
appropriately secure algorithms or implementing those
algorithms [3]. Rather, it is the deployment and
management of infrastructures to support the
authenticity of cryptographic keys: there is a need to
provide an assurance to the user about the relationship
between a public key and the identity (or authority) of
the holder of the corresponding private key. In a
traditional Public Key Infrastructure (PKI), this
assurance is delivered in the form of certificate,
essentially a signature by a Certification Authority (CA)
on a public key [2].

In this paper we present the general architecture of
the encryption subsystem which ensures that the input
from any keyboard devices connected to the client side
is encrypted before being transmitted to the server side
for execution. The purpose of this mechanism is to
expand the capabilities of the command transferring
channel that was presented in [4], enriching the
keyboard subsystem with encryption. More specifically,
we examine how capturing from any input device on
different end devices and on different operating systems
is done, how public key encryption is applied and how
commands are decrypted and executed at the target
software of the server. In our work, we are considering
only the confidentiality issues of the cryptographic
module assuming that authenticity should be provided
by the general architecture of the system or by a
different module.

The rest of the paper is structured as follows: the next
section describes the vision and goal of the Games at
Large project. Section 3 describes the general
architecture of the system and the architecture on each
device (the end device and the server). Section 4
describes the encrypted command channel
infrastructure which is the main scope of this
manuscript while section 5 describes the general
client-server infrastructure. The paper concludes with
general remarks and future work that will be done.

II. GAMES AT LARGE PROJECT
Games at Large (Games@Large) being an Integrated

Project (IP) intends to research, develop and implement
a new architecture to provide users with a richer variety
of entertainment experience in their houses, hotel rooms,
cruise ships and Internet Cafés, incorporating
unprecedented ubiquitous game-play. The project
evolved from the home environment to other local
Focus Areas (FA) regarding the benefits such FA may
gain based on the unique technology approach of
Games@Large. The Integrated Project includes
activities of TV Multimedia and Gaming using
Enhanced Media Extender, Local Processing and
Storage Server(s), Handheld Devices and Local
Wireless Network. Games@Large intends to enhance
the existing Digital Living Network Alliance (DLNA)
and the UPnP Forum standards by introducing the
unique set of features required for running games over a
local network, like all other media and content types
(video, audio).

Games offer a leisure time activity for every member
of the household – from avid gamers to kids, as well as
allowing whole families to play together. Games offer
also leisure time activity for guests in hotels and visitors
in Internet Cafes. Games@Large offers ubiquitous
accessibility for all members of the household on all
desired entertainment devices. The project focuses on
new innovative ideas such as multiple-game execution
on the Games Gateway and delivery of
graphics-rendering meta-data over the home network
via low latency, low bandwidth Pre-Rendering Protocol
to achieve low-cost implementation of ubiquitous game
play throughout the house, while taking advantage of
existing hardware, and providing multiple members of
the family with the ability to play simultaneously.

Games@Large intends to enable the Games to
diversify from dedicated appliances and a single corner
of the house, to any place at home such as, the TV in the
living room, the handheld device or any other device
with the relevant screen, controls and connectivity. The
project will also provide the required infrastructure for
running games on the hotel guest room TV or on small
screens for people sitting in Internet Cafés, cruse ships,
trains or airplanes.

Some technological challenges of the Games@Large
project are: Distributed computing and storage,
video/image/graphics delivery with very low latency
through a wired/wireless home network, adaptation of
PC screen-images to TV screen and handheld devices,
integration of wireless users’ game control devices,
translation of user ergonomics to different devices and
form factors, research of new class of Media Extenders

1569148901 3

for games, enhancement of STBs to support video
games, development of new methods for QoS linking
consumer prospective with system measurements,
enhancement of relevant industry standards for time
critical multimedia content while maximizing users
experience.

The project’s mission is to develop a new method for
ubiquitous video games through unique technology to
transfer graphical data while reducing latency and
ensuring QoS in a cost-effective manner.

III. SYSTEM ARCHITECTURE

Fig. 1 depicts the general system architecture. As it is
obvious, the system consists of two different “levels”.
The first level includes all the servers that are used by
the system, while the second level includes the
connection of the different end devices of the system.
The server side constitutes of multiple different servers
that are assigned with the task of serving the games and
require a high speed and stable communication between
them while the second level is the interconnection of
end devices with the server cluster in order to
communicate and interact during the game play. While
in the described architecture all the servers can
communicate to one another, the end devices can
actually interact only with the central Local Processing
Server (LPS).

Fig. 1 General System Architecture

The server side of the system is assigned with various
tasks the most important of which is that of executing
the game and sending the corresponding scenario to the
connected clients. The clients are constantly sending
feedback to the server which describes the input
commands that are to be executed to the game instance.
Thus, the server should be able to have at least two
communication channels with each client: one for

sending the game frames or 3D commands (direct
channel), and one for receiving the input from the
clients for the game (reverse channel). An important
aspect to notice is that the channel which, if hijacked,
could jeopardize the system’s security, is the return
channel since it contains not only the input commands
that are for execution to the game instance, but also any
other input from user. For instance, given the fact that
the platform is targeted for commercial use, it is
possible that the users will be required at some point to
insert personal information, passwords, or even a credit
card numbers. In this paper we will focalize on the
encryption of the command communication channel
and more specifically, on the encryption of keyboard
input commands.

IV. IMPLEMENTATION ISSUES

As already noted, the encryption procedure is only

needed for the keyboard commands that the client
transmits. We will now briefly describe the
initialization procedure for supporting RSA public key
encryption both at the client and the server of the G@L
environment, as well as the thereafter communication
between the LPS server and the connected client.

A. Startup phase

When both the client and the server start, some local

initializations take place (Fig. 2). Following, the client
launches a connection request to the server which is
advertised to the network neighborhood through the
UPnP module. The server accepts the new client
generating a unique RSA public-private key
combination. Initially, through the persistent connection,
the server transmits the modulus size in bits, the public
exponent size in bits and the key pair size in bytes of the
encrypted fields that follow.

Fig. 2 Initialization of the encryption module

1569148901 4

B. Transfer of encrypted keyboard input The public key is described by an RSA structure and
its fields are transmitted sequentially to the client
though the possibly unsafe channel. The client then
accepts the structure’s fields and re-generates the
server’s public key. From this point on, any keyboard
commands are encrypted by the client using the server’s
public key and decrypted by the server providing thus
the necessary security guarantee for the user-sensitive
data.

The idea that lies beneath the communication

command channel architecture is depicted in Fig. 3
Each end device consists of many possible input devices
for interacting with the server. As explained in [4],
several steps need to take place in order to successfully
deliver the input commands to the game process.

Fig. 3 Communication Command Channel

When the client program starts, it initiates the device

discovery procedure, which may be offered either by a
separate architectural module, e.g. the device discovery
module which uses UPnP, or by a system call causing the
discovery for input devices attached to the system. It is
essential afterwards, that the results of the device
discovery are registered in our program so that we are
aware of the existing input devices marking out several
other non-existing.

The next step of the procedure is to capture the input
coming from the controllers. This is achieved by
recording the key codes coming from the input devices.
As explained in [4], input devices such as mice or
keyboards are interrupt-driven while with joysticks or
joy pads the polling method is used for reading. If the
command that is to be transferred is originating from a
keyboard device, the client uses the server’s public key to

encrypt the data after it has been suitably formatted
adhering to a certain communication protocol. The
encrypted message is transmitted to the server using an
already open socket connection.

Once the encrypted message has arrived at the server
side, the server decrypts it obtaining the initial keyboard
commands that the client captured. If the received
massage is not a keyboard one, the server bypasses the
decryption stage, delivering the commands at the running
game instance. The algorithm procedure of this step is
presented in Fig. 4.

Paper Identification Number 1569148901 5

V. CLIENT - SERVER INFRASTRUCTURE

The “gateway” of the servers is the Local Processing
Server (LPS). The main goal of the LPS is to run multiple
games simultaneously, whereas each game runs in its
own game environment and is streamed to an end-device.
The game environment is an isolated and encapsulated
“sandbox,” providing the environment for game
execution. The procedure, that makes the simultaneous
running of multiple games possible, decouples the game
execution from the game output, directed to display
card/PC monitor, and all user-facing I/O, directed to the
keyboard/mouse/HID. The LPS server also implements
the encryption policy of the system by generating
random RSA public/private key pairs for any newly
connected clients and by decrypting the keyboard
commands that come from the clients.

A wide variety of different clients can utilize the G@L
environment: Laptops with Windows XP / Vista
environment, Set-Top Boxes with either Linux or
Windows CE and enhanced handheld devices with either
Windows CE or a Linux version for small screen devices.
Each client should implement the necessary RSA
functions for the encryption module. For this cause, we

are utilizing the OpenSSL RSA library which is available
for the aforementioned platforms [10].

//-- Client Encrypts and Send Keyboard Data
int encrypt(string message) {
//pk_size is the public key size
 server.send_data(keyboard_type);
 //notify the server for

VI. GENERAL REMARKS AND FUTURE WORK //keyboard command that follows
 unsigned char *encrypted;

 int enc_size = RSA_public_encrypt(
 strlen(message)+1, In this paper we have described the command

execution channel of the Games at Large project, an IP
project with the vision to research, develop and
implement a new architecture to provide users with a
richer variety of entertainment experience in their entire
houses, hotel rooms, cruise ships and Internet Cafés,
incorporating unprecedented ubiquitous game-play. As
the system is implemented, more and more features are
included on the release versions, such as modules that
enable encryption of the commands and modules that
utilize network specific characteristics in order to adapt
on the possible network environment. Additionally,
efforts are made towards the direction of creating
software for every possible operating system in order to
enable more end-devices to be connected to the Games at
Large Environment.

 (unsigned char *)message,
 encrypted, PUBLIC_KEY, PADDING);
 if (enc_size != pk_size)
 {
 Error("Ciphertext should match length of key");
 return(-1);
 }
//-- send encrypted data
 return server.send_data((char *)
 encrypted,enc_size);
}

//-- Server Receives and Dencrypts Keyboard Data
int dencrypt(string encrypted) {
 unsigned char *decrypted ;
 char temp [MSG_SIZE];
//-- receive encrypted data
 client.receive_data(temp,kp_size);
 memcpy((char *)encrypted, temp,kp_size*
 sizeof(char));
 int decr_length = RSA_private_decrypt(kp_size,
 encrypted, decrypted, PRIVATE_KEY,PADDING);
 if(!decrypted){
 Error("Encryption failed");
 return -1;

REFERENCES }
 Retrieve_vkey(decrypted);

[1] G. J. Simmons, “Symmetric and Asymmetric Encryption,” in
ACM Computing Surveys (CSUR), vol. 11, no. 4, ACM Press
New York, NY, USA 1979, pp. 305-330.

}

Fig. 4 Encryption and Decryption of messages

[2] P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott. “Efficient
algorithms for pairing-based cryptosystems,” In Advances in
Cryptology – CRYPTO 2002, volume 2442 of LNCS, pages
354–368. Springer-Verlag, 2002.

[3] S. Sattam, Al-Riyami and K. G. Paterson, “Certificateless Public
Key Cryptography,” Lecture Notes in Computer Science, pp. 452
- 473, 2003

[4] C. Bouras, V. Poulopoulos, I. Sengounis and V. Tsogkas,
“Networking Aspects for Gaming Systems,” Third International
Conference on Internet and Web Applications (ICIW 2008),
Athens, Greece, , 8 - 13 June 2008

[5] Games at Large project’s official website,
http://www.gamesatlarge.eu

[6] World of Warcraft official website, www.worldofwarcraft.com
[7] Half Life official website, http://orange.half-life2.com/
[8] Second Life official website, http://www.secondlife.com
[9] Y. Tzruya, A. Shani, F. Bellotti, A. Jurgelionis, Games@Large - a

new platform for ubiquitous gaming, BroadBand Europe 2006,
Geneva, Switzerland, November 2006

[10] J. Viega, M. Messier, and P. Chandra, 2002. Network Security
with OpenSSL, 1st Ed. O’Reilly, Cambridge, MA.

http://www.gamesatlarge.eu/
http://www.worldofwarcraft.com/
http://orange.half-life2.com/
http://www.secondlife.com/

	I. INTRODUCTION
	II. Games at Large Project
	III. System Architecture
	IV. Implementation Issues
	V. Client - Server Infrastructure
	VI. General Remarks and Future Work

