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Abstract— As networked virtual environments gain increasing 

interest and acceptance in the field of Internet applications, a lot 
of effort is drawn in the optimization of their performance, which 
will result in the wide adaptation of this evolving mean of 
communication. This paper focuses on the performance 
monitoring of such a networked virtual environment, called 
EVE, in order to identify the elements that degrade its network 
performance. 
 

Index Terms— networked virtual environments, performance 
monitoring, simulation 
 

I. INTRODUCTION 
The inherent need of humans to communicate acted as the 

moving force for the formation, expansion and wide adoption 
of the Internet. The need for communication, collaboration 
and learning from distance, resulted in the evolvement of the 
primitive services originally offered (i.e. e-mail) to advanced 
functionalities, which offer a high sense of realism to the user, 
forming a reality, the so-called virtual reality. Virtual 
environments were, at first, used in the field of entertainment, 
through computer games. The innovation was then pointed out 
to the fact that a real place could be simulated, using 3D 
technology, where the user could navigate and interact with 
3D objects as in real life.  

Even though virtual environments were first introduced as 
stand alone applications, which could run on a single 
computer, the promising functionalities of this new form of 
representation and interaction as well as the familiarity of the 
users with it drew increased research interest. This fact 
resulted in virtual reality to be viewed as the solution for 
achieving communication and collaboration between scattered 
users, both in the field of entertainment as well as in the 
newborn field of distance learning. This led to the creation of 
networked virtual environments (NVEs) [14]. 
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Many platforms which adopted the virtual reality 
technology were implemented and networked virtual 
environments started to be enhanced with additional 
functionality, as text and audio chat, streaming media support, 
application sharing, etc. However, these enhanced features are 
demanding both in terms of system as well as in terms of 
network resources. In particular, the distribution of the shared 
3D objects of the virtual worlds and of the changes and 
modifications on them, the concurrent transmission of audio 
and video as well as the effort for consistency on the scattered 
users’ views create resource overhead and cause delays that 
can be critical for the consistency and reliability of the 
networked environment. Therefore, the big challenge is 
perceived to be the optimization of the network performance 
and the reliability of the networked environments. 

In this paper we describe such a networked virtual 
environment, called EVE [1], which is intended to be used not 
only for the support of multi-user virtual environments, but 
also for the provision of advanced services which can 
efficiently support distance learning and educational purposes. 
In addition, we focus on the aspects of the system that should 
be taken into consideration in order the virtual environment to 
be efficient and reliable, as well as the parameters that should 
be monitored and simulated in order to identify the time 
consuming and demanding components of this platform. By 
identifying these parameters, it becomes more feasible to 
define and determine ways or architectural models, under 
which the platform could present an optimized networked 
performance.  

The performance monitoring and evaluation of such a 
networked virtual environment can be performed using tools 
called, networked simulators. These tools have a long history, 
almost equal to that of the Internet, since there has always 
been an increased interest on how efficiently the newborn 
applications operated over the network. There are many 
simulators currently available, each of which is characterized 
of some basic and some advanced functionalities, which can 
serve all kinds of applications, in respect with the nature of 
each of these applications.  

The remainder of this paper is organized as follows. We 
will begin by describing EVE’s architecture, in order to 
present the communication model that is a basic factor for the 
network performance. In chapter III we will present the tool 
that we have selected in order to approach the network 
behavior of EVE and the reasons that led to its adaptation. 
Chapter IV is engaged with the simulation model that was 
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used for the experiments on EVE. These experiments are 
described in chapter V. Finally we conclude with the results 
that are raised from the experiments conducted on EVE and 
the future work that we have planned in order to get an 
efficient and reliable environment.  

 

II. EVE ARCHITECTURE 
EVE’s architecture is based on a client-multi server 

platform model. The current form of EVE constitutes a simple 
structure, which allows and supports the basic functionality 
that the platform is intended to offer [2], [3].  

One of the most basic considerations of Networked Virtual 
Environments is the maintenance of the consistency of the 
users’ view, which is translated in efficient and reliable 
updates for the modifications that take place in the Virtual 
Worlds. Based on this notation, the structure of the server side 
for EVE was directed to the decrement of the load for the 
processes that actualize and transmit the updates of the Virtual 
Worlds. Therefore, the server side architecture comprises of 
two basic components, one main server, the Message Server, 
who is mainly responsible for the maintenance of the 
consistency and the application servers, which host and 
support additional services offered by the platform. In 
particular EVE comprises two application servers, a chat and 
an audio server.  

In order the users’ client to communicate with EVE’s 
servers and have access to the provided functionalities it needs 
a web browser, a VRML browser, a VRML client, a main 
client, a chat client and an audio client.  

The network communication of EVE, alike its architecture, 
is focused on providing the available functionality at the best 
possible performance. Therefore, for the transmission of the 
packets and the achievement of the communication of the 
connected clients with the host servers (message server, audio 
server and chat server) as well as for the server-to-server 
communication, there are two types of communication 
supported. Each of these types is found to be optimum for 
certain kinds of messages. Thus, we categorized the messages 
exchanged in the EVE communication platform in three basic 
categories: a) the messages related with the initialization of 
the virtual world and the initial connection of a client to a 
server as well as the messages exchanged between the servers 
of the platform, b) the position messages that are related with 
the avatars’ position in the virtual environment and finally c) 
the important messages, which correspond to messages that 
are vital for the consistency of the networked virtual 
environment. For simplicity reasons, we consider as important 
messages all messages except for the position messages. 

 

III. NS-2 SIMULATOR 
As mentioned in [4], NS2 is an object-oriented, discrete 

event driven network simulator, which was designed and 
implemented at the University of Berkley. NS2 is written in 

C++ and Otcl and is proven to be primarily useful for 
simulating local and wide area networks. In particular, this 
network simulator implements network protocols as TCP and 
UDP, traffic source behavior such as FTP, Telnet, Web, CBR 
and VBR, router queue management mechanism such as Drop 
Tail, RED and CBQ, routing algorithms such as Dijkstra, and 
more. In addition NS implements efficiently multicast and 
some MAC level protocols for LAN simulations. 

From the information provided for NS2 in [4], the 
comparison among JSim, SSFNet and NS conducted in [8], as 
well as from the results of [5], [6] it came up that ns-2 
represents a powerful solution for the simulation of networked 
virtual environments, as its design covers a wide range of 
characteristics and options that could be met in a variety of 
such applications.  

In particular, as mentioned above, ns-2 supports and 
simulates efficiently a wide range of protocols, as well as 
multiple kinds of networks as local networks, mobile and 
satellite networking along with various kinds of routing as 
unicast and multicast. Consequently, this network simulator 
has the ability to simulate successfully networked virtual 
environments that may combine one or more of the above 
mentioned characteristics. In addition, the object orientation 
of C++ along with the programming simplicity of Tcl make 
ns-2 one of the most powerful tools for the simulation of the 
network performance of a wide range of applications. 

Ns-2 was selected for the performance monitoring on EVE 
and the its evaluation mainly because of the fact that it is able 
to efficiently and successfully support both TCP and UDP 
communication, which, as mentioned above, are adopted by 
EVE’s communication model. 

 

IV. SIMULATION MODEL FOR EVE 
The first step for the successful simulation of the platform 

is to define the parameters that need to be measured in order 
to get accurate and valid results about the system’s 
performance.  

A. Parameters Measured 
As mentioned, the main scope of the work presented is to 

evaluate the performance of EVE by conducting experiments 
in order to detect the components of the system that could 
degrade the overall performance. These components could be 
described by parameters, which should be measured, in order 
to estimate, evaluate and get accurate results about the 
network performance of EVE.  

Throughput: This parameter represents the amount of data 
moved successfully from one place to another in a given time 
period and can provide valuable conclusions on the efficiency 
of the platform regarding the delivery of the vital information. 

Drop Rate: This parameter represents the average rate that 
the system disallows messages due to system failures or 
network congestions. In particular, this parameter can lead to 
conclusions on the reliability that the platform offers for the 
transmission of the events. 
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B. Simulation Topology 
In the current version of EVE, there is one available 

Message Server and two Application Servers, a Chat and an 
Audio Server. Regarding the number of the clients connected, 
an efficient lower level can be calculated for the case that the 
platform supports only one virtual world.  

 

 
Fig. 1: Topology used for the experiments 

 
In this case the number of the clients can vary from one to 

seventeen, which is translated in educational terms in sixteen 
students and one tutor. For reasons of approaching real case 
scenarios we define the number of the connected clients to 
thirty. The topology that has been used for the conducting of 
the experiments is shown in Fig. 1. 

C.  Service and Protocol description  
The basic step for the realization of the experiments is the 

translation of the communication model of EVE to the 
programming structure that the ns-2 simulator adopts. Based 
to the communication model that was described above the 
following paragraphs present the connections that could take 
place during a learning scenario in regard to some basic events 
that can take place within the frame of EVE along with the 
modifications that had to be made for the successful 
evaluation of the platform’s performance. 
1) User enters the Virtual Environment 

Initially, each client generates a connection request to the 
message server, which adopts the TCP protocol for terms of 
reliability and safety. Therefore, a TCP agent is attached to the 
Client’s node and a TCPSink agent is attached to the Message 
Server for each of the connected clients. In addition, the 
Message Server, each time that a connection request is 
received, must notify the client and the application servers that 
the new user is added. For this communication the TCP 

protocol is again adopted. Therefore, for achieving this 
functionality, we programmed a new TcpSink-like agent, 
which triggers a new TCP agent which transmits a message to 
the corresponding nodes. As mentioned above, the 
communication between the application servers and the 
message server is established for synchronization reasons each 
time that a client decides to join or leave a virtual world. In 
this case the Message Server sends a TCP message. For 
security and consistency reasons, the application servers send 
back an acknowledgement each time that such a message is 
received. For this reason a TCPSink agent is attached to both 
Chat and Audio Servers’ nodes. 
2)  User interacts with the Virtual Environment 

However the TCP protocol is also used for the exchange of 
the “important” messages that take place in the virtual 
environment. For these cases, the Message Server, each time it 
receives such a message, it retransmits it to all connected 
clients but not to the application servers.  
3) User moves in the environment 

For the user’s movement in the Virtual Environment the 
UDP communication is adopted. Therefore, we set a UDP 
agent to each of the client nodes for transmitting the UDP 
messages that are connected to the avatars position within the 
environment. Each time that a UDP message is received by 
the Message Server it must be retransmitted to all connected 
clients. Therefore we create a new UDP-like agent, which is 
attached to the message server node for each client and which 
triggers that transmission of the received UDP message to all 
connected clients. 
4) User interacts with the application servers 

Since the application servers receive the “connection” 
message for a client, a direct communication between them is 
established, without the interference of the Message Server. 
Thus, the processing load in the Message Server, which is 
mainly responsible for the maintaining of the consistency, is 
decreased by an important factor. In particular, the Client-
Chat Server communication adopts once again the TCP 
protocol. Therefore a TCP agent is attached to the Client. 
Regarding the Chat Server, every time that a TCP message is 
received by one of the clients, it must be retransmitted to all 
connected clients. For this reason we programmed a TCPSink-
like agent, which emulates the described functionality. 
Finally, we attach a TCPSink agent to all clients in order to 
send an acknowledgement of receiving the messages sent by 
the Chat Server. 

As it happens in the case of the Chat Server, similarly, for 
the Audio Server, after the Message Server receives the 
“connection” message, a direct communication is established 
between this server and the respective client. For the Audio 
Communication, the H323 protocol is adopted. Therefore, we 
implement H323 traffic and attach a UDP agent to all 
connected clients. Each time that the Audio Server receives a 
H323 message by one of the clients, it retransmits it to all 
connected clients through a new UDP-like agent.  
5) Users leaves the Virtual Environment 

When a user decides to exit from the Virtual Environment a 
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message a TCP message is sent to the Message Server, which 
in turn notifies the application servers for the withdrawal, so 
as to destroy the direct connection, which has been established 
between them. 

In the Table 1 the functions, the communication that takes 
place and the corresponding protocols are presented. MS 
stands for Message Server, AS for Application Servers, AC 
for Audio Server, CS for Chat Server and C for the client. 

 
Function Communication-Protocols 

Enter VE 1. C-TCP-MS 2. MS-TCP-AS/C 3. AS-TCPSink-MS 
Interact with VE 1. C-TCP-MS 2. MS-TCP-AS/C  
Move in VE 1. C-UDP-MS 2. MS-UDP-C  

Text Chat in VE 1. C-TCP-CS 2. CS-TCP-C  
Audio Chat in VE 1. C-UDP-AS 2. AS-UDP-C  
Leave VE 1. C-TCP-MS 2. MS-TCP-AS/C 3. AS-TCPSink-MS 

Table 1: Functions, communication and protocols used 
 

V. EXPERIMENTS 
There are two types of experiments conducted in order to 

monitor the performance that the platform presents. The basic 
factor that was modified in the results is the background 
traffic that is created in some additional nodes, which 
simulates the Internet traffic. It should be mentioned that 
during the experiments we assume that the connected clients 
do not run other types of applications. 

Regarding the topology we must mention that the Message 
Server, which is presented as the red hexagon in Figure 1, is 
directly connected to the Application Servers, which are 
presented as green boxes and with some of the clients which 
are presented in dark red. The Message Server is also 
connected to some nodes, which we call Intermediate nodes 
and are presented in yellow color. Between the Message 
server and the Intermediate nodes as well as between some of 
the Intermediate nodes we create some background traffic that 
fills a line of 10 MB.  

In the first case we create a background traffic that fills in a 
line of 10 MB with traffic that its average throughput is 7 
Mbps.  

In the second case we consider a heavier background traffic 
that fills a line of 10 MB with traffic that its average 
throughput is 8 Mbps.  

For both of these cases we try to measure the average 
throughput as well as the average drop rate for three types of 
connections. These types are the following: 
1) A client is directly connected to the message server 
2) A clients is one hop away from the message server 
3) A client is two hops away from the message server. 

A. Background Traffic A 
This subsection is dedicated to the results of the experiments 
conducted for the performance of the platform under 
Background Traffic A, considering that the connected clients 
have available a line of 2 MB, which is shot of additional 
traffic load. 

Fig. 2: Throughput of the Background Traffics 
 

 
1) Throughput under Background Traffic A 

During the simulation of this experiment we measured the 
throughput of the traffic that the Virtual Environment creates 
during the simulated period of time, which is set to 5 minutes. 
This traffic corresponds to both TCP messages and UDP 
messages, which have been forwarded by the message server 
each time that an update takes place either to the state of the 
world or to the position of the avatars. 

The results of this experiment are displayed in the 
following figure. 

 

 
Fig. 3: Throughput under Background Traffic A 

 
The throughput for the client that is directly connected to 

the server reaches an average amount of 240 Kbps when for 
the client that is situated one hop away from the message 
server and is affected by the background traffic that takes 
place between the Message Server and the Intermediate node, 
the throughput reaches an average of 195 Kbps. Finally, the 
throughput of the client which is two hops away and is 
affected by the background traffic that takes place both 
between the Message server and the First Intermediate node as 
well as between the first Intermediate node and the second 
Intermediate node reaches an average of 145 Kbps. What is 
important to be noticed in the above figure is the distribution 
that the lines follow for the hops that are situated one or two 
hops away, the first 80 seconds. At that period of time, the 
throughput of the lines is very small, which indicates that only 
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a small amount of information manages to pass through the 
Intermediate lines. This notice will be explained by the drop 
rate that follows for the intermediate lines.  
2) Drop Rate for Background Traffic A 
This sub-section presents the results that came up from the 
experiments on the intermediate lines in order to monitor the 
drop rate percentage that takes place in these lines. This drop 
rate is presented in Fig. 4. 
 

 
Fig. 4: Drop Rate for the Intermediate lines under Background Traffic A 

 
From the Figure above, we notice that at the beginning of 

the simulation, in the Intermediate lines that are affected by 
the Background Traffic A, there is a drop rate which initially 
reaches a loss of more that 90% for both connections, that is 
one hop and two hops connections. This percentage is 
gradually reduced, until it reaches a percentage of 10%. It 
should be noticed that the shape of the lines for the drop rate 
agree with the throughput of the background traffic, which is 
presented in Fig.2. In particular, from Fig. 2 we can remark 
that at the first 80 seconds, the line is almost or totally filled 
because of the Background Traffic A. Therefore, only a small 
amount of packets manages to passes through the line, while 
the rest of the packets, nearly 90% are dropped.  

This large amount of dropped packets could lead to the 
conclusion that the platform fails to support such a large 
number of users and both the consistency as well as the 
reliability and safety of the delivery is harmed. However, 
before dropping such a conclusion we should examine what 
part of this percentage corresponds to loss of “important” 
messages, so as to form a precise opinion on the harmed 
consistency. These percentages are displayed in Fig. 5.   

From this figure we notice that the major part of the lost 
information corresponds to UDP messages, which, as 
mentioned earlier, are associated to the users’ movement 
within the virtual environments, and only a small percentage 
of lost information corresponds to the “important” TCP 
messages. However, the TCP messages, lost are retransmitted, 
the inconsistencies of the events that take place within the 
virtual world are minimized. It should be noted, that the 
retransmissions, lead to additional load for the platform, 
which can be observed in the unsmooth shape that the 
throughput follows for this traffic.  

 

 

 
Fig. 5: Drop Rate for the Intermediate lines under Background Traffic A 

 
Regarding the direct connection of the client to the Message 

Server, the drop rate is very small and achieves and optimized 
performance. 

 

B. Background Traffic B 
This subsection is dedicated to the results of the 

experiments conducted for the performance of the platform 
under Background Traffic B, considering again, for 
comparison reasons, that the connected clients have available 
a line of 2 MB, which does not suffer of any additional kind 
of traffic. 
1) Throughput under Background Traffic B 

In this case we consider a heavier background traffic that 
fills the line of 10 MB, which connects the Message Server to 
the Intermediate Nodes and the Intermediate Nodes to the 
clients. This background traffic has an average bandwidth of 8 
Mbps.  

From the experiments conducted from this type of traffic 
we notice that the throughput for the client that is directly 
connected to the server reaches an average amount of 100 
Kbps when for the client that is situated one hop away from 
the message server reduced almost at approximately 70 Kbps. 
Finally, the throughput of the client which is two hops away 
and is affected by the background traffic that takes place both 
between the Message server and the First Intermediate node as 
well as between the first Intermediate node and the second 
Intermediate node is reduced to approximately 45 Kbps. 

Similarly to the case of Background Traffic A, we notice in 
the above figure that the shape that the lines follow for the 
hops that are situated one or two hops away, the first 80 
seconds indicates a very small value of the throughput. This 
fact indicates that only a small amount of information 
manages to pass through the Intermediate lines. This notice 
will be explained by the drop rate that follows for the 
intermediate lines. 
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Fig. 6: Throughput under Background Traffic B 
 

2) Drop Rate for Background Traffic B 
This sub-section presents the results that came up from the 
experiments on the intermediate lines in order to monitor the 
drop rate percentage that takes place in these lines, under 
Background Traffic B. This drop rate is presented in Fig. 7. 
 

 
Fig. 7: Drop Rate for the Intermediate lines under Background Traffic B 
 
From the Figure above, we notice that at the beginning of 

the simulation, in the Intermediate lines that are affected by 
the Background Traffic A, there is a drop rate which initially 
reaches a loss of more that 95% for both connections, that is 
one hop and two hops connections. This percentage is 
gradually reduced, until it reaches a percentage of 10%. It 
should be noticed that the shape of the lines for the drop rate 
also agrees with the shape of the throughput for Background 
Traffic B, which is presented in Fig.2.  
As we did, in the case of Background Traffic A, in order to 
investigate the severity of this large amount of dropped 
packets, we should examine what percent of this amount 
corresponds to loss of “important” messages, so as to decide 
on the platforms’ performance. These percentages are 
displayed in Fig. 8.   
From this figure we notice that also in this case, the major part 
of the lost information corresponds to UDP messages, which, 
as mentioned earlier, are associated to the users’ movement 
within the virtual environments, and only a small percentage 
of lost information corresponds to the “important” TCP 
messages. 

 
Fig. 8: Drop Rate for the Intermediate lines under Background Traffic B 
 
Regarding the direct connection of the client to the Message 

Server, the drop rate, also in this case, is very small and 
achieves and optimized performance. 

VI. RESULTS 
Comparing the results from these two experiments we 

notice that the Background Traffic B results to a severe loss of 
information in comparison to Background Traffic A. It should 
also be noted that for the direct connections one might have 
supposed that the throughput would fluctuate in the same 
range. However, the severe Background Traffic B results in 
loss of information from the clients to the Message Server, 
and thus the number of packets to be forwarded is reduced. It 
should be mentioned that the reason for not performing 
experiments to the Client-Message Server direction, is 
because in this case, a packet that will be lost will never get to 
the Message Server and consequently to the connected clients. 
Therefore, there are no alterations in the view of the world 
that the participants share.  

In addition, from the experiments conducted, we ascertain 
that the platform seems to operate efficiently under 
Background Traffic A and for both cases the communication 
model of the platform ensures that the lost packets will not 
affect severely the consistency of the virtual worlds since 
there is only a small amount of  “important” messages that 
need to be retransmitted.  

However, it should also be mentioned that from the above 
figures and given the fact that the clients’ link bandwidth to 
both the Intermediate nodes as well as to the Message Server 
is set to 2 MB, the Message Server seems unable to handle 
such a number of simultaneous users. 

 

VII. CONCLUSION AND FUTURE WORK 
In its current form EVE is based on a simple architectural 

model that can support efficiently only a limited number of 
parallel virtual worlds and simultaneous users. However, 
during the primer implementation of the EVE platform, we 
took into account the possible need for extension due to 
increased demand and participation. The new architectural 
model uses the same rational as the original model, which 
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means that both the processing load as well as the 
communication load should be distributed regarding with the 
connections and requests [4]. 

The new model, which will be used for the extension of the 
EVE platform is displayed in Fig. 9 and is still based on two 
types of servers, the message server and the application 
servers. These servers could be the audio and chat server, as 
they are in the system, as well as some additional servers for 
advanced functionality.  

 
Fig. 9: Expanded architecture of EVE 

 
The number of the message servers can be increased 

regarding the client connections and the processing load. Each 
message server shelters a certain number of virtual worlds. 
This number will result from the performance monitoring that 
we will conduct on EVE.  

However, the main concept and innovation of this 
architectural model is the fact that each message server is a 
back up server for a number of the rest message servers. This 
implies that if a failure happens, the clients supported and 
hosted by the “damaged” message server can be distributed to 
the other servers of the system. In addition, each message 
server can be a client to another message server, when the 
processing load of the first one exceeds its hosting 
capabilities. The selection of the second message server, 
which will undertake the accessional tasks is selected with the 
following simple algorithm: the processing and network load 
of all available message servers is computed, in respect to the 
shared objects in each virtual worlds, the connections and 
instances of the virtual environments, and the one with the 
smaller load undertakes the tasks. In the case where the load is 
similar to all available clients, the “host” server is selected 
using the Round Robin algorithm.  

Therefore, one of the basic next steps is to implement an 
extended version of EVE and perform additional simulation 
on it so as to estimate the extended architectural schema and 
extract conclusions on how the optimization of its 
performance could be achieved. 
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