
ICC2129 1

Performance Monitoring on Networked Virtual
Environments
Christos Bouras, Eri Giannaka

Abstract— As networked virtual environments gain increasing

interest and acceptance in the field of Internet applications, a lot
of effort is drawn in the optimization of their performance, which
will result in the wide adaptation of this evolving mean of
communication. This paper focuses on the performance
monitoring of such a networked virtual environment, called
EVE, in order to identify the elements that degrade its network
performance.

Index Terms— networked virtual environments, performance
monitoring, simulation

I. INTRODUCTION
The inherent need of humans to communicate acted as the

moving force for the formation, expansion and wide adoption
of the Internet. The need for communication, collaboration
and learning from distance, resulted in the evolvement of the
primitive services originally offered (i.e. e-mail) to advanced
functionalities, which offer a high sense of realism to the user,
forming a reality, the so-called virtual reality. Virtual
environments were, at first, used in the field of entertainment,
through computer games. The innovation was then pointed out
to the fact that a real place could be simulated, using 3D
technology, where the user could navigate and interact with
3D objects as in real life.

Even though virtual environments were first introduced as
stand alone applications, which could run on a single
computer, the promising functionalities of this new form of
representation and interaction as well as the familiarity of the
users with it drew increased research interest. This fact
resulted in virtual reality to be viewed as the solution for
achieving communication and collaboration between scattered
users, both in the field of entertainment as well as in the
newborn field of distance learning. This led to the creation of
networked virtual environments (NVEs) [14].

Manuscript received March 5, 2004.
Christos Bouras is with the Research Academic Computer Technology

Institute, Patras, Greece (phone: +30-2610-960375, fax: +30-2610-960358, e-
mail: bouras@cti.gr) and the Computer Engineer and Informatics Department,
University of Patras, Greece (phone: +30-2610-996951, fax: +30-2610-
969016, e-mail: bouras@ceid.upatras.gr).

Eri Giannaka, is with the Research Academic Computer Technology
Institute, Patras, Greece phone: +30-2610-960380, fax: +30-2610-960358, e-
mail: giannaka@cti.gr) and the Computer Engineer and Informatics
Department, University of Patras, Greece.

Many platforms which adopted the virtual reality
technology were implemented and networked virtual
environments started to be enhanced with additional
functionality, as text and audio chat, streaming media support,
application sharing, etc. However, these enhanced features are
demanding both in terms of system as well as in terms of
network resources. In particular, the distribution of the shared
3D objects of the virtual worlds and of the changes and
modifications on them, the concurrent transmission of audio
and video as well as the effort for consistency on the scattered
users’ views create resource overhead and cause delays that
can be critical for the consistency and reliability of the
networked environment. Therefore, the big challenge is
perceived to be the optimization of the network performance
and the reliability of the networked environments.

In this paper we describe such a networked virtual
environment, called EVE [1], which is intended to be used not
only for the support of multi-user virtual environments, but
also for the provision of advanced services which can
efficiently support distance learning and educational purposes.
In addition, we focus on the aspects of the system that should
be taken into consideration in order the virtual environment to
be efficient and reliable, as well as the parameters that should
be monitored and simulated in order to identify the time
consuming and demanding components of this platform. By
identifying these parameters, it becomes more feasible to
define and determine ways or architectural models, under
which the platform could present an optimized networked
performance.

The performance monitoring and evaluation of such a
networked virtual environment can be performed using tools
called, networked simulators. These tools have a long history,
almost equal to that of the Internet, since there has always
been an increased interest on how efficiently the newborn
applications operated over the network. There are many
simulators currently available, each of which is characterized
of some basic and some advanced functionalities, which can
serve all kinds of applications, in respect with the nature of
each of these applications.

The remainder of this paper is organized as follows. We
will begin by describing EVE’s architecture, in order to
present the communication model that is a basic factor for the
network performance. In chapter III we will present the tool
that we have selected in order to approach the network
behavior of EVE and the reasons that led to its adaptation.
Chapter IV is engaged with the simulation model that was

mailto:bouras@cti.gr
mailto:bouras@cti.gr
mailto:giannaka@cti.gr

ICC2129 2

used for the experiments on EVE. These experiments are
described in chapter V. Finally we conclude with the results
that are raised from the experiments conducted on EVE and
the future work that we have planned in order to get an
efficient and reliable environment.

II. EVE ARCHITECTURE
EVE’s architecture is based on a client-multi server

platform model. The current form of EVE constitutes a simple
structure, which allows and supports the basic functionality
that the platform is intended to offer [2], [3].

One of the most basic considerations of Networked Virtual
Environments is the maintenance of the consistency of the
users’ view, which is translated in efficient and reliable
updates for the modifications that take place in the Virtual
Worlds. Based on this notation, the structure of the server side
for EVE was directed to the decrement of the load for the
processes that actualize and transmit the updates of the Virtual
Worlds. Therefore, the server side architecture comprises of
two basic components, one main server, the Message Server,
who is mainly responsible for the maintenance of the
consistency and the application servers, which host and
support additional services offered by the platform. In
particular EVE comprises two application servers, a chat and
an audio server.

In order the users’ client to communicate with EVE’s
servers and have access to the provided functionalities it needs
a web browser, a VRML browser, a VRML client, a main
client, a chat client and an audio client.

The network communication of EVE, alike its architecture,
is focused on providing the available functionality at the best
possible performance. Therefore, for the transmission of the
packets and the achievement of the communication of the
connected clients with the host servers (message server, audio
server and chat server) as well as for the server-to-server
communication, there are two types of communication
supported. Each of these types is found to be optimum for
certain kinds of messages. Thus, we categorized the messages
exchanged in the EVE communication platform in three basic
categories: a) the messages related with the initialization of
the virtual world and the initial connection of a client to a
server as well as the messages exchanged between the servers
of the platform, b) the position messages that are related with
the avatars’ position in the virtual environment and finally c)
the important messages, which correspond to messages that
are vital for the consistency of the networked virtual
environment. For simplicity reasons, we consider as important
messages all messages except for the position messages.

III. NS-2 SIMULATOR
As mentioned in [4], NS2 is an object-oriented, discrete

event driven network simulator, which was designed and
implemented at the University of Berkley. NS2 is written in

C++ and Otcl and is proven to be primarily useful for
simulating local and wide area networks. In particular, this
network simulator implements network protocols as TCP and
UDP, traffic source behavior such as FTP, Telnet, Web, CBR
and VBR, router queue management mechanism such as Drop
Tail, RED and CBQ, routing algorithms such as Dijkstra, and
more. In addition NS implements efficiently multicast and
some MAC level protocols for LAN simulations.

From the information provided for NS2 in [4], the
comparison among JSim, SSFNet and NS conducted in [8], as
well as from the results of [5], [6] it came up that ns-2
represents a powerful solution for the simulation of networked
virtual environments, as its design covers a wide range of
characteristics and options that could be met in a variety of
such applications.

In particular, as mentioned above, ns-2 supports and
simulates efficiently a wide range of protocols, as well as
multiple kinds of networks as local networks, mobile and
satellite networking along with various kinds of routing as
unicast and multicast. Consequently, this network simulator
has the ability to simulate successfully networked virtual
environments that may combine one or more of the above
mentioned characteristics. In addition, the object orientation
of C++ along with the programming simplicity of Tcl make
ns-2 one of the most powerful tools for the simulation of the
network performance of a wide range of applications.

Ns-2 was selected for the performance monitoring on EVE
and the its evaluation mainly because of the fact that it is able
to efficiently and successfully support both TCP and UDP
communication, which, as mentioned above, are adopted by
EVE’s communication model.

IV. SIMULATION MODEL FOR EVE
The first step for the successful simulation of the platform

is to define the parameters that need to be measured in order
to get accurate and valid results about the system’s
performance.

A. Parameters Measured
As mentioned, the main scope of the work presented is to

evaluate the performance of EVE by conducting experiments
in order to detect the components of the system that could
degrade the overall performance. These components could be
described by parameters, which should be measured, in order
to estimate, evaluate and get accurate results about the
network performance of EVE.

Throughput: This parameter represents the amount of data
moved successfully from one place to another in a given time
period and can provide valuable conclusions on the efficiency
of the platform regarding the delivery of the vital information.

Drop Rate: This parameter represents the average rate that
the system disallows messages due to system failures or
network congestions. In particular, this parameter can lead to
conclusions on the reliability that the platform offers for the
transmission of the events.

ICC2129 3

B. Simulation Topology
In the current version of EVE, there is one available

Message Server and two Application Servers, a Chat and an
Audio Server. Regarding the number of the clients connected,
an efficient lower level can be calculated for the case that the
platform supports only one virtual world.

Fig. 1: Topology used for the experiments

In this case the number of the clients can vary from one to

seventeen, which is translated in educational terms in sixteen
students and one tutor. For reasons of approaching real case
scenarios we define the number of the connected clients to
thirty. The topology that has been used for the conducting of
the experiments is shown in Fig. 1.

C. Service and Protocol description
The basic step for the realization of the experiments is the

translation of the communication model of EVE to the
programming structure that the ns-2 simulator adopts. Based
to the communication model that was described above the
following paragraphs present the connections that could take
place during a learning scenario in regard to some basic events
that can take place within the frame of EVE along with the
modifications that had to be made for the successful
evaluation of the platform’s performance.
1) User enters the Virtual Environment

Initially, each client generates a connection request to the
message server, which adopts the TCP protocol for terms of
reliability and safety. Therefore, a TCP agent is attached to the
Client’s node and a TCPSink agent is attached to the Message
Server for each of the connected clients. In addition, the
Message Server, each time that a connection request is
received, must notify the client and the application servers that
the new user is added. For this communication the TCP

protocol is again adopted. Therefore, for achieving this
functionality, we programmed a new TcpSink-like agent,
which triggers a new TCP agent which transmits a message to
the corresponding nodes. As mentioned above, the
communication between the application servers and the
message server is established for synchronization reasons each
time that a client decides to join or leave a virtual world. In
this case the Message Server sends a TCP message. For
security and consistency reasons, the application servers send
back an acknowledgement each time that such a message is
received. For this reason a TCPSink agent is attached to both
Chat and Audio Servers’ nodes.
2) User interacts with the Virtual Environment

However the TCP protocol is also used for the exchange of
the “important” messages that take place in the virtual
environment. For these cases, the Message Server, each time it
receives such a message, it retransmits it to all connected
clients but not to the application servers.
3) User moves in the environment

For the user’s movement in the Virtual Environment the
UDP communication is adopted. Therefore, we set a UDP
agent to each of the client nodes for transmitting the UDP
messages that are connected to the avatars position within the
environment. Each time that a UDP message is received by
the Message Server it must be retransmitted to all connected
clients. Therefore we create a new UDP-like agent, which is
attached to the message server node for each client and which
triggers that transmission of the received UDP message to all
connected clients.
4) User interacts with the application servers

Since the application servers receive the “connection”
message for a client, a direct communication between them is
established, without the interference of the Message Server.
Thus, the processing load in the Message Server, which is
mainly responsible for the maintaining of the consistency, is
decreased by an important factor. In particular, the Client-
Chat Server communication adopts once again the TCP
protocol. Therefore a TCP agent is attached to the Client.
Regarding the Chat Server, every time that a TCP message is
received by one of the clients, it must be retransmitted to all
connected clients. For this reason we programmed a TCPSink-
like agent, which emulates the described functionality.
Finally, we attach a TCPSink agent to all clients in order to
send an acknowledgement of receiving the messages sent by
the Chat Server.

As it happens in the case of the Chat Server, similarly, for
the Audio Server, after the Message Server receives the
“connection” message, a direct communication is established
between this server and the respective client. For the Audio
Communication, the H323 protocol is adopted. Therefore, we
implement H323 traffic and attach a UDP agent to all
connected clients. Each time that the Audio Server receives a
H323 message by one of the clients, it retransmits it to all
connected clients through a new UDP-like agent.
5) Users leaves the Virtual Environment

When a user decides to exit from the Virtual Environment a

ICC2129 4

message a TCP message is sent to the Message Server, which
in turn notifies the application servers for the withdrawal, so
as to destroy the direct connection, which has been established
between them.

In the Table 1 the functions, the communication that takes
place and the corresponding protocols are presented. MS
stands for Message Server, AS for Application Servers, AC
for Audio Server, CS for Chat Server and C for the client.

Function Communication-Protocols

Enter VE 1. C-TCP-MS 2. MS-TCP-AS/C 3. AS-TCPSink-MS
Interact with VE 1. C-TCP-MS 2. MS-TCP-AS/C
Move in VE 1. C-UDP-MS 2. MS-UDP-C

Text Chat in VE 1. C-TCP-CS 2. CS-TCP-C
Audio Chat in VE 1. C-UDP-AS 2. AS-UDP-C
Leave VE 1. C-TCP-MS 2. MS-TCP-AS/C 3. AS-TCPSink-MS

Table 1: Functions, communication and protocols used

V. EXPERIMENTS
There are two types of experiments conducted in order to

monitor the performance that the platform presents. The basic
factor that was modified in the results is the background
traffic that is created in some additional nodes, which
simulates the Internet traffic. It should be mentioned that
during the experiments we assume that the connected clients
do not run other types of applications.

Regarding the topology we must mention that the Message
Server, which is presented as the red hexagon in Figure 1, is
directly connected to the Application Servers, which are
presented as green boxes and with some of the clients which
are presented in dark red. The Message Server is also
connected to some nodes, which we call Intermediate nodes
and are presented in yellow color. Between the Message
server and the Intermediate nodes as well as between some of
the Intermediate nodes we create some background traffic that
fills a line of 10 MB.

In the first case we create a background traffic that fills in a
line of 10 MB with traffic that its average throughput is 7
Mbps.

In the second case we consider a heavier background traffic
that fills a line of 10 MB with traffic that its average
throughput is 8 Mbps.

For both of these cases we try to measure the average
throughput as well as the average drop rate for three types of
connections. These types are the following:
1) A client is directly connected to the message server
2) A clients is one hop away from the message server
3) A client is two hops away from the message server.

A. Background Traffic A
This subsection is dedicated to the results of the experiments
conducted for the performance of the platform under
Background Traffic A, considering that the connected clients
have available a line of 2 MB, which is shot of additional
traffic load.

Fig. 2: Throughput of the Background Traffics

1) Throughput under Background Traffic A

During the simulation of this experiment we measured the
throughput of the traffic that the Virtual Environment creates
during the simulated period of time, which is set to 5 minutes.
This traffic corresponds to both TCP messages and UDP
messages, which have been forwarded by the message server
each time that an update takes place either to the state of the
world or to the position of the avatars.

The results of this experiment are displayed in the
following figure.

Fig. 3: Throughput under Background Traffic A

The throughput for the client that is directly connected to

the server reaches an average amount of 240 Kbps when for
the client that is situated one hop away from the message
server and is affected by the background traffic that takes
place between the Message Server and the Intermediate node,
the throughput reaches an average of 195 Kbps. Finally, the
throughput of the client which is two hops away and is
affected by the background traffic that takes place both
between the Message server and the First Intermediate node as
well as between the first Intermediate node and the second
Intermediate node reaches an average of 145 Kbps. What is
important to be noticed in the above figure is the distribution
that the lines follow for the hops that are situated one or two
hops away, the first 80 seconds. At that period of time, the
throughput of the lines is very small, which indicates that only

ICC2129 5

a small amount of information manages to pass through the
Intermediate lines. This notice will be explained by the drop
rate that follows for the intermediate lines.
2) Drop Rate for Background Traffic A
This sub-section presents the results that came up from the
experiments on the intermediate lines in order to monitor the
drop rate percentage that takes place in these lines. This drop
rate is presented in Fig. 4.

Fig. 4: Drop Rate for the Intermediate lines under Background Traffic A

From the Figure above, we notice that at the beginning of

the simulation, in the Intermediate lines that are affected by
the Background Traffic A, there is a drop rate which initially
reaches a loss of more that 90% for both connections, that is
one hop and two hops connections. This percentage is
gradually reduced, until it reaches a percentage of 10%. It
should be noticed that the shape of the lines for the drop rate
agree with the throughput of the background traffic, which is
presented in Fig.2. In particular, from Fig. 2 we can remark
that at the first 80 seconds, the line is almost or totally filled
because of the Background Traffic A. Therefore, only a small
amount of packets manages to passes through the line, while
the rest of the packets, nearly 90% are dropped.

This large amount of dropped packets could lead to the
conclusion that the platform fails to support such a large
number of users and both the consistency as well as the
reliability and safety of the delivery is harmed. However,
before dropping such a conclusion we should examine what
part of this percentage corresponds to loss of “important”
messages, so as to form a precise opinion on the harmed
consistency. These percentages are displayed in Fig. 5.

From this figure we notice that the major part of the lost
information corresponds to UDP messages, which, as
mentioned earlier, are associated to the users’ movement
within the virtual environments, and only a small percentage
of lost information corresponds to the “important” TCP
messages. However, the TCP messages, lost are retransmitted,
the inconsistencies of the events that take place within the
virtual world are minimized. It should be noted, that the
retransmissions, lead to additional load for the platform,
which can be observed in the unsmooth shape that the
throughput follows for this traffic.

Fig. 5: Drop Rate for the Intermediate lines under Background Traffic A

Regarding the direct connection of the client to the Message

Server, the drop rate is very small and achieves and optimized
performance.

B. Background Traffic B
This subsection is dedicated to the results of the

experiments conducted for the performance of the platform
under Background Traffic B, considering again, for
comparison reasons, that the connected clients have available
a line of 2 MB, which does not suffer of any additional kind
of traffic.
1) Throughput under Background Traffic B

In this case we consider a heavier background traffic that
fills the line of 10 MB, which connects the Message Server to
the Intermediate Nodes and the Intermediate Nodes to the
clients. This background traffic has an average bandwidth of 8
Mbps.

From the experiments conducted from this type of traffic
we notice that the throughput for the client that is directly
connected to the server reaches an average amount of 100
Kbps when for the client that is situated one hop away from
the message server reduced almost at approximately 70 Kbps.
Finally, the throughput of the client which is two hops away
and is affected by the background traffic that takes place both
between the Message server and the First Intermediate node as
well as between the first Intermediate node and the second
Intermediate node is reduced to approximately 45 Kbps.

Similarly to the case of Background Traffic A, we notice in
the above figure that the shape that the lines follow for the
hops that are situated one or two hops away, the first 80
seconds indicates a very small value of the throughput. This
fact indicates that only a small amount of information
manages to pass through the Intermediate lines. This notice
will be explained by the drop rate that follows for the
intermediate lines.

ICC2129 6

Fig. 6: Throughput under Background Traffic B

2) Drop Rate for Background Traffic B
This sub-section presents the results that came up from the
experiments on the intermediate lines in order to monitor the
drop rate percentage that takes place in these lines, under
Background Traffic B. This drop rate is presented in Fig. 7.

Fig. 7: Drop Rate for the Intermediate lines under Background Traffic B

From the Figure above, we notice that at the beginning of

the simulation, in the Intermediate lines that are affected by
the Background Traffic A, there is a drop rate which initially
reaches a loss of more that 95% for both connections, that is
one hop and two hops connections. This percentage is
gradually reduced, until it reaches a percentage of 10%. It
should be noticed that the shape of the lines for the drop rate
also agrees with the shape of the throughput for Background
Traffic B, which is presented in Fig.2.
As we did, in the case of Background Traffic A, in order to
investigate the severity of this large amount of dropped
packets, we should examine what percent of this amount
corresponds to loss of “important” messages, so as to decide
on the platforms’ performance. These percentages are
displayed in Fig. 8.
From this figure we notice that also in this case, the major part
of the lost information corresponds to UDP messages, which,
as mentioned earlier, are associated to the users’ movement
within the virtual environments, and only a small percentage
of lost information corresponds to the “important” TCP
messages.

Fig. 8: Drop Rate for the Intermediate lines under Background Traffic B

Regarding the direct connection of the client to the Message

Server, the drop rate, also in this case, is very small and
achieves and optimized performance.

VI. RESULTS
Comparing the results from these two experiments we

notice that the Background Traffic B results to a severe loss of
information in comparison to Background Traffic A. It should
also be noted that for the direct connections one might have
supposed that the throughput would fluctuate in the same
range. However, the severe Background Traffic B results in
loss of information from the clients to the Message Server,
and thus the number of packets to be forwarded is reduced. It
should be mentioned that the reason for not performing
experiments to the Client-Message Server direction, is
because in this case, a packet that will be lost will never get to
the Message Server and consequently to the connected clients.
Therefore, there are no alterations in the view of the world
that the participants share.

In addition, from the experiments conducted, we ascertain
that the platform seems to operate efficiently under
Background Traffic A and for both cases the communication
model of the platform ensures that the lost packets will not
affect severely the consistency of the virtual worlds since
there is only a small amount of “important” messages that
need to be retransmitted.

However, it should also be mentioned that from the above
figures and given the fact that the clients’ link bandwidth to
both the Intermediate nodes as well as to the Message Server
is set to 2 MB, the Message Server seems unable to handle
such a number of simultaneous users.

VII. CONCLUSION AND FUTURE WORK
In its current form EVE is based on a simple architectural

model that can support efficiently only a limited number of
parallel virtual worlds and simultaneous users. However,
during the primer implementation of the EVE platform, we
took into account the possible need for extension due to
increased demand and participation. The new architectural
model uses the same rational as the original model, which

ICC2129 7

means that both the processing load as well as the
communication load should be distributed regarding with the
connections and requests [4].

The new model, which will be used for the extension of the
EVE platform is displayed in Fig. 9 and is still based on two
types of servers, the message server and the application
servers. These servers could be the audio and chat server, as
they are in the system, as well as some additional servers for
advanced functionality.

Fig. 9: Expanded architecture of EVE

The number of the message servers can be increased

regarding the client connections and the processing load. Each
message server shelters a certain number of virtual worlds.
This number will result from the performance monitoring that
we will conduct on EVE.

However, the main concept and innovation of this
architectural model is the fact that each message server is a
back up server for a number of the rest message servers. This
implies that if a failure happens, the clients supported and
hosted by the “damaged” message server can be distributed to
the other servers of the system. In addition, each message
server can be a client to another message server, when the
processing load of the first one exceeds its hosting
capabilities. The selection of the second message server,
which will undertake the accessional tasks is selected with the
following simple algorithm: the processing and network load
of all available message servers is computed, in respect to the
shared objects in each virtual worlds, the connections and
instances of the virtual environments, and the one with the
smaller load undertakes the tasks. In the case where the load is
similar to all available clients, the “host” server is selected
using the Round Robin algorithm.

Therefore, one of the basic next steps is to implement an
extended version of EVE and perform additional simulation
on it so as to estimate the extended architectural schema and
extract conclusions on how the optimization of its
performance could be achieved.

VIII. REFERENCES
[1] EVE (Educational Virtual Environments) prototype,

http://ouranos.ceid.upatras.gr/vr/.
[2] Bouras C., Tsiatsos Th., “Architectures and Protocols for Educational

Virtual Environments”, IEEE International Conference on Multimedia
and Expo (ICME2001), Tokyo, Japan, August 22-25 2001, pp. 1107 -
1110

[3] NS by example, http://nile.wpi.edu/NS/
[4] Teixeira R.C, and Duarte O.C.M.B, “`Evaluating the Impact of the

Communication System on Distributed Virtual Environments”',
Multimedia Tools and Applications, Kluwer Academic Publishers, vol.
19, no. 3, pp. 259 -- 278, March 2003

[5] Euisook Hong, Dongman Lee, Kyungran Kang, “An Efficient
Synchronization Mechanism Dynamically Adapting to the Network
State for Networked Virtual Environments”, Journal of KISS:
Information Networking, 2003. 2.

[6] S.Bajaj, L.Breslau, D.Estrin, K.Fall, S.Floyd, et al., “Improving
Simulation for Network Research, technical report”, University of
Southern California/Information Sciences Institute, CA, USA, 99-702b,
1999

[7] Comparison of Network Simulators Revised,
http://www.ssfnet.org/Exchange/gallery/dumbbell/dumbbell-
performance-May02.pdf

[8] Packetizer, H323 information site,
http://www.packetizer.com/iptel/h323/

[9] C. Bouras, E. Giannaka, T. Tsiatsos, “Issues for the Performance
Monitoring on Networked Virtual Environments”, 7th ConTEL –
International Conference on Telecommunications, Zagreb, Croatia, June
11 – 13 2003, pp. 725 - 728

	INTRODUCTION
	EVE Architecture
	NS-2 Simulator
	Simulation Model For EVE
	Parameters Measured
	Simulation Topology
	Service and Protocol description
	User enters the Virtual Environment
	User interacts with the Virtual Environment
	User moves in the environment
	User interacts with the application servers
	Users leaves the Virtual Environment

	Experiments
	A client is directly connected to the message server
	A clients is one hop away from the message server
	A client is two hops away from the message server.

	Background Traffic A
	Throughput under Background Traffic A
	Drop Rate for Background Traffic A

	Background Traffic B
	Throughput under Background Traffic B
	Drop Rate for Background Traffic B

	Results
	Conclusion And Future Work
	References

