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Abstract

Multistage Interconnection Networks (MINs) with crossbar switches have been used

to interconnect processors and memory modules in parallel multiprocessor systems.

They also play an increasingly important role in the development of ATM networks.

In this paper we analyze the general case of MINs, made of k � k switches with

�nite, in�nite or zero length bu�ers (unbu�ered). The exact solution of the steady

state distribution of the �rst stage is derived for all cases. We use this to get an

approximation for the steady state distributions in the second stage and beyond. In

the case of unbu�ered switches we reach the known exact solution for all the stages

of the MIN. Our results are validated by extensive simulations.
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1 Introduction

Multistage Interconnection Networks (MINs) have attracted from the early

'80s the attention of the designers of highly parallel multiprocessor systems

? This research was partially supported by the European Union ESPRIT Basic

Research Projects ALCOM IT (contract no. 20244) and GEPPCOM (contract no.

9072) and the Greek Ministry of Education.
??A short version of this paper ([4]) has appeared in Euro{Par '97

Preprint submitted to Elsevier Preprint 7 August 1998



with a large number of processors. They are required to provide high band-

width to support the communication between processors and memory mod-

ules. MINs (which are packet-switched) have been adopted in the past in

several machines ([3],[13]) and are expected also to play an important role

in the development of high-speed networks based on Asynchronous Transfer

Mode (ATM) [15]. The performance of a MIN is of crucial importance, thus a

lot of research has been dedicated to the study of how these networks perform

under various conditions, through analytic techniques or simulation ([1], [2],

[6], [7], [8], [9], [11], [12], [14] ). Analytic results can be found for speci�c cases

of MINs, which mainly rely on approximation methods.

Koch in [7] proved that an increase of the link-bandwidth of unbu�ered but-

ter
y networks by a constant factor increases their throughput by more than

a constant factor. Bouras et.al. [1] provided nearly tight upper bounds on the

mean delays of the second stage and beyond, in the case of in�nite bu�ers

and validated their results by simulations. Their analysis indicated that after

the second stage there is no notable di�erence between the delay times, giving

a partial positive answer to the conjecture and experimental results of [8].

Merchant [11] approximated the underlying non-marcovian processes by mar-

cov models. His marcov approximation of the throughput of �nite and in�nite

bu�ered MINs under uniform and non-uniform traÆc is validated by com-

parisons to simulation results. Garofalakis and Spirakis [6] analyzed Banyan

networks with �nite bu�ers, providing the exact solution of the steady-state

distribution of the �rst stage in the situation where packets are lost when

they encounter a full bu�er. Rehrmann et.al. [14] presented an analysis of

the commmunication throughput of single-bu�ered multistage interconnec-

tion networks consisting of 2 � 2 switches and with maximum injection rate

p = 1, using the relaxed blocking model where messages that cannot be routed,

due to the fact that a receiving bu�er is occupied, are deleted. They show

that the throughput is �(n=
p
logn) if n is the size of the network. They also

analysed the equilibrium-situation of the network and gived tight upper and

lower bounds on the steady-state distribution of I/O sequences.

The basic building block of the packet-switched MINs considered here, is a

k-input, k-output (k � k) switch grouped in stages. We examine MINs that

provide a unique path from each source (processor) to each sink (memory

module), which belong to the class of Banyan MINs [5]. Our work considers

general MINs, that is, MINs made by switches with �nite, in�nite or zero

length bu�ers (unbu�ered), arbitrary switch size (k�k) and variable injection

rate p at the sources. Assuming that the traÆc (requests for memory modules)

feeding the �rst stage of the MIN is uniform, that at each cycle a packet is

generated with �xed probability p, and that packets are lost when they are

attempted to be queued at a full bu�er (relaxed blocking model), we derive for

the general MIN, the exact steady-state distribution of queue lengths in the

�rst stage, and of course exact formulas for the expected number of packets
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lost per cycle, and the mean queue length. We then use the results for the �rst

stage and an operational approximation hypothesis to get the (approximate)

distributions of the queue sizes of the second stage and beyond. Extensive

simulations verify our results, as we discuss in Section 6.

The assumption of uniform and independent Bernoulli traÆc feeding the �rst

stage of the MIN, is of course a simpli�cation of the real world situation, espe-

cially regarding the use of MINs in ATM switches. However, this assumption

is important in order to reach the exact (�rst stage) and nearly exact (sub-

sequent stages) analytic solution. This analytic solution may provide insight

to the behavior of the MIN in any case (e.g. for the performance of a stage

compared to the respective performance of preceding stages), and is expected

to give a very good approximation to cases of heavy traÆc (p � 1), which are

the most interesting.

Our analysis, based on the theory of recurrence equations, explicitly provides

the form of the queue length distribution, which is a linear mixture of geo-

metrics. In the next section we present the model that we use and discuss the

equilibrium and interstage dependencies which are the factors that crucialy

a�ect any analytic approach. Sections 3 and 4 provide the basic exact ana-

lytic results for the �rst stage, and Section 5 describes the approximation for

the subsequent stages and presents the overal network performance measures.

Finally, in Section 6 we compare our results with simulation experiments and

discuss the performance of the general MIN.

2 Our Approach

2.1 The Model

MINs are packet switched and they are required to provide high bandwidth

to support the communication between processors and memory modules. We

consider that the network is built by switches connected by unidirectional

lines. General MINs consist of a number of k � k switches (nodes) grouped

into stages (Figures 1 and 2). A k-input, k-output switch, can receive packets

at each of its k input ports and send them through each of its k output ports

(Figure 2). In each output port there is a bu�er. We assume that the bu�ers

may be of in�nite, �nite or zero length (unbu�ered switches). Such a network

can be modeled as a labelled digraph where nodes are of the following three

types: source nodes (indegree 0, outdegree 1), sink nodes (indegree 1, outdegree

0) or switches (positive indegree and outdegree). In this labelled digraph each

edge represents one or more lines going from a node to its succesor.
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Fig. 1. MIN with 3 stages and 2� 2 switches.
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Fig. 2. A k-input , k-output (k � k) switch with bu�er size b � 1.

If there is a unique path from each processor (source node) to each memory

module (sink node) then a MIN belongs to the class of Banyan Networks

(BNs). We assume oblivious routing algorithms, i.e. algorithms in which the

path of a packet through the network is �xed at the source node issuing it.

The path can be encoded as a sequence of labels of the successive switch

outputs of the path (path descriptor). Packets are generated at each processor

by independent, identically distributed random processes. In our analysis we

assume that each processor generates a packet with probability p at each

cycle, and sends this with equal probability to any memory module (uniform

access). The switches have a FIFO policy for their servers (outputs). Con
icts

between packets simultaneously routed to the same output port are resolved

by queueing the packet. Our analysis assumes that packets are lost when they

are attempted to be queued at a full queue or in the case with unbu�ered

switches. In actual parallel machines, the sending processor is noti�ed, in

order to resubmit the packet later on. The service time of the output queues

of each switch is assumed constant and equal to the network cycle time. The
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uniform access assumption allows us to represent any k�k switch as a system

of k queues working in parallel, with a deterministic server each (of service

time equal to 1). Any packet which enters any of the k inputs of the switch,

goes with probability 1=k to any of the (output) queues of the switch. In our

analysis we assume that the bu�er length b includes the server (output). So,

an unbu�ered switch is referred with b = 1. We assume that arrivals happen

at the end of each cycle (thus �rst the queue is served and then new packets

arrive, if any). The routing logic at each switch is assumed to be fair, i.e.

con
icts are randomly resolved.

2.2 The Equilibrium and Interstage Dependencies

Most authors that have used analytic approaches for the analysis of MIN's,

have remarked the basic diÆculty for any analytic approach. Except for the

case of unbu�ered switches ([8], [12]) in all other cases, the traÆc 
ow be-

tween consecutive stages depends upon time, that is the distribution of packet

arrivals at the second and the subsequent stages is not time independent, as

is the case for the �rst stage which is feeded by the independent \Bernoulli"

processors. ([8], [10], [11], [14]). However, in [14] it is pointed out that the

behaviour, say bt, of a stage at time t depends mainly upon the present, a

little bit (bt�1=4) upon the situation at time t� 1, and is nearly independent

(bt�r=4
r) from ancient events at time t�r. So, the dependency from history is

exponentially desreasing. This last observation, together with the assumption

that every stage of the MIN will reach an equilibrium (steady-state), leads to

the marcovian approximation which we present in section 5. The output queues

of stage m that feed the stage m+ 1, are assumed to operate like independent

\Bernoulli" processors with a packet generation probability equal to their uti-

lization. Clearly, this hypothesis equates the dynamics of the output process

of a stage with its \macroscopic" averages, ignoring any time dependency of

its behaviour.

The assumption that the stages of a MIN reach a steady-state, is validated

not only by our simulation experiments, but also by the fact that it is true

for the �rst stage (which actually feeds the subsequent stages of the network),

where our approach presents the exact solution for any MIN.

Futhermore, our markovian approximation provides a uni�ed framework for

the performance evaluation of MINs, which when it is applied to the case of

unbu�ered swithes, leads to the known exact solution, expressed by a recur-

rence equation ([8], [12]). This gives strong evidence that our approximation

provides nearly exact solutions, which tend to the exact solution, as the bu�er

size is decreased down to the unbu�ered case, which we treat simply as a

case of the general bu�ered switched MINs (with bu�er size equal to 1). As
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we discuss later in this paper, our approximation agrees extremely well to

the simulation experiments that we have performed, not only for the mean

steady-state metrics, but also for the distribution of packets in the switches,

as well.

3 The General Recurrence Relation for the First Stage

Let C be the random variable denoting the number of packets arriving to an

output bu�er of an k� k switch of the �rst stage of the network at the end of

a cycle and

xk;c = Pr(C = c)

Some of these arriving packets may be lost due to a full queue.

Lemma 1 The arrival process of packets at the output queues of the �rst stage

of the network, is given by a Binomial distribution bin(k; p=k), where p is the

�xed probability of a packet generated by a processor at each cycle. Therefore

we have

xk;c =

8
>>>>><
>>>>>:

0
B@
k

c

1
CA ( p

k
)c(1� p

k
)k�c; for 0 � c � k

0; otherwise

(1)

De�nition 2 Let q
(n)

be the number of packets in an arbitrary output queue

at the end of the cycle n and let q be the steady state limit of q
(n)
.

De�nition 3 Let �
(n)

be the number of packets that are entering an arbitrary

output queue at cycle n and let � be the steady state limit of �
(n)
. It holds that

�
(n) � C at each cycle n, when b is �nite. If b is in�nite, it is always true that

�
(n) = C.

De�nition 4 Let pj = Pr(q = j), j � 0, be the distribution of q at the steady

state. Also, p0;1 = p0 + p1

Lemma 5 For 0 < m � min(b; k):

Pr(�(n) = m) =

8
>>>>><
>>>>>:

xk;m ifq
(n�1) ��(q(n�1)) < b�m;

(xk;m + xk;m+1 + � � �+ xk;k) ifq
(n�1) ��(q(n�1)) = b�m;

0 otherwise

(2)
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where �(q(n)) is the departure of a packet from an arbitrary output queue at

the end of cycle n, if any.

For m = 0, Pr(�(n) = 0) = xk;0 for any q
(n�1)

.

Obviously, for m > min(b; k), Pr(�(n) = m) = 0.

PROOF. If q(n�1) is the number of packets in the bu�er during cycle n� 1,

at the end of the cycle after some possible arrivals, there will be left F (n�1) =

q
(n�1)��(q(n�1)) packets in the bu�er (�(q(n�1)) is the departure of a packet,

if there is one in the bu�er). Thus, if F (n�1)+m < b, the bu�er will not become

full if there will arrive up to m packets at the end of the cycle n� 1 and also

Pr(�(n) = m) = xk;m. If F (n�1)+m > b, obviously the bu�er cannot receive m

packets and Pr(�(n) = m) = 0. If F (n�1)+m = b, after m packets entering the

bu�er, it will be full, thus the extra packets (if any) will be lost. So, Pr(�(n) =

m) = Pr(either m arrive, either m+ 1 arrive, : : :, either k arrive) =

= (xk;m + xk;m+1 + � � �+ xk;k). It always holds that Pr(�
(n) = 0) = xk;0, since

at the end of the cycle n � 1, a packet will leave from the bu�er in any case

(if there is one). Clearly, when we have in�nite size bu�ers (b =1), we have

Pr(�(n) = m) = xk;m, always.

Theorem 6 The steady state 
ow balance equations are : (p0;1 = p0 + p1)

p0 = p0;1xk;0

p1 = p0;1xk;1 + p2xk;0

p2 = p0;1xk;2 + p2xk;1 + p3xk;0

...

pk = p0;1xk;k + p2xk;k�1 + � � �+ pk+1xk;0

(3)

while for k � j < b, the general recurence holds :

pjxk;0 = pj�k+1(xk;k) + pj�k+2(xk;k�1 + xk;k) + � � �+
pj�2(xk;3 + xk;4 + � � �+ xk;k)+

pj�1(xk;2 + xk;3 + � � �+ xk;k); k � j < b

(4)

The same equation (4) holds for j = b, in the case of �nite bu�ers, or un-

bu�ered switches (b = 1).
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PROOF. Starting with the case b =1, we have

Pr(q(n) = 0) = Pr(q(n�1) = 0 and v
(n) = 0) +Pr(q(n�1) = 1 and v

(n) = 0)

This, in steady state, becomes

Pr(q = 0) = Pr(q = 0 and v = 0) +Pr(q = 1 and v = 0)

Since arrivals are independent of the queue size when there is enough room in

the bu�ers, we get

p0 = p0xk;0 + p1xk;0; or

p0 = p0;1xk;0

In the same way we get

p1= p0xk;1 + p1xk;1 + p2xk;0

p2= p0xk;2 + p1xk;2 + p2xk;1 + p3xk;0

...

pk= p0xk;k + p1xk;k + p2xk;k�1 + � � �+ pkxk;1 + pk+1xk;0

For k < n < b we get

pn = pn�k+1xk;k + pn�k+2xk;k�1 + � � �+ pnxk;1 + pn+1xk;0

By setting p0;1 = p0 + p1 we now have

p0 = p0;1xk;0

p1 = p0;1xk;1 + p2xk;0

...

pk = p0;1xk;k + p2xk;k�1 + � � �+ pkxk;1 + pk+1xk;0

(5)

and

pn = pn�k+1xk;k + pn�k+2xk;k�1 + � � �+ pnxk;1 + pn+1xk;0 (6)

for k < n < b.

By adding p0 + � � �+ pk�1 and using xk;0 + xk;1 + � � �+ xk;k = 1 we get

pkxk;0 = p0;1xk;k + p2(xk;k�1 + xk;k) + � � �+ pk�1(xk;2 + � � �+ xk;k) (7)
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By using (6) for n = k + 1, with (7), and working inductively, we �nally get

pnxk;0 = pn�k+1xk;k + � � �+ pn�2(xk;3 + � � �+ xk;k) + � � �+
pn�1(xk;2 + � � �+ xk;k)

(8)

for k � n < b

Equation (8) proves Theorem 6 for b =1.

For b < 1, the situation for pb, the steady-state probability of having a full

bu�er, has to be given special consideration:

Pr(q(n) = b)=Pr(q(n�1) = b and v
(n) = 1)

+Pr(q(n�1) = b� 1 and v
(n) = 2)

...

+Pr(q(n�1) = b� k + 1 and v
(n) = k)

But

Pr(q(n�1) = b� k + � and v
(n) = k � �+ 1) =

Pr(q(n�1) = b� k + �)Pr(v(n) = k � �+ 1 given that q(n�1) = b� k + �) =

Pr(q(n�1) = b� k + �)(xk;(k��)+1 + xk;(k��)+2 + � � �+ xk;k)

In steady state we get

pb = pb(xk;1 + xk;2 + � � �+ xk;k) + pb�1(xk;2 + � � �+ xk;k) + � � �+ pb�k+1xk;k

or

pbxk;0 = pb�k+1xk;k + pb�k+2(xk;k�1 + xk;k) + � � �+ pb�1(xk;2 + � � �+ xk;k)

By the same way, working inductively, one may show that for k � j < b we

get :

pjxk;0 = pj�k+1xk;k + pj�k+2(xk;k+1 + xk;k) + � � �+ pj�1(xk;2 + � � �+ xk;k);

thus proving Theorem 6 , for b <1 (including the unbu�ered case b = 1).
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4 Solution of the First Stage

The characteristic equation for the above recurence relation (4) is,

for b � j � k (b <1 or b =1) :

F (y) = 0; (9)

where

F (y) = xk;0y
k�1 � (xk;2 + xk;3 + : : :+ xk;k)y

k�2 � : : :� (xk;k�1 + xk;k)y � xk;k

CASE 1: F (y) has distinct roots R1; : : : ; Rk�1. Then the steady-state proba-

bilities are

pj = A1R
j�1
1 + A2R

j�1
2 + � � �+ Ak�1R

j�1
k�1

(10)

where A1; A2; : : : ; Ak�1 are constants that can be derived from the initial

conditions

p0;1 = A1 + A2 + � � �+ Ak�1

p2 = A1R1 + A2R2 + � � �+ Ak�1Rk�1

...

pk�1 = A1R
k�2
1 + A2R

k�2
2 + � � �+ Ak�1R

k�2
k�1

(11)

together with p0;1 = p0 + p1 ,
Pb

n=0 pn = 1, (b < 1 or b = 1) and the

equations (3) for p0, p1, : : :, pk�2.

CASE 2: F (y) has at least one multiple nonzero root. Then the system is

unstable, that is

lim
n!1

q
(n) =1

Theorem 7 (stability criterion) A steady state queue size distribution ex-

ists if and only if F (y) has distinct roots.

The cases of instability should occur only when b = 1 (in�nite bu�ers) and

p = 1. However, applying our method for networks with switches 2� 2, 3� 3

and 4� 4, we never faced the above CASE 2. It is an open problem to prove

these observations analytically.

It is easy to derive analytically the roots R; : : : Rk�1 when k = 2; 3; 4; 5 that

is for networks with 2� 2, 3� 3, 4� 4, 5� 5 switches, which are, anyway, the

most interesting cases. For switches with k > 5, we must rely on arithmetic

methods in order to solve the (k � 1)-degree recurence relation.
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As we remark in Section 6, the 2 � 2 switches perform better compared to

switches with higher k, as far as the mean number of lost packets per cycle

are concerned. So, we present here analytic results for 2 � 2 switches except

for the case of unbu�ered switches, where we can easily derive results for the

general case k�k. In Section 6, we present numerical results for 3�3 switches

also, derivered analytically.

4.1 Switches with �nite bu�ers (b <1)

By using (5) for k = 2, we get one root R1, which, given that x2;0 = (1�p=2)2

and x2;2 = p
2
=4, is:

R1 =
x2;2

x2;0

= (
p

2� p

)2 (12)

The constant A1 is given by

A1 =

8><
>:

1�R1

1�Rb
1

; for p < 1

1
b
; for p > 1

(13)

The steady state probabilities are :

p0 = A1x2;0

p1 = A1(1� x2;0)

pj = A1R
j�1
1 ; 2 � j � b

9>>>>>=
>>>>>;

for p < 1 (14)

or

p0 = 1=4b

p1 = 3=4b

pj = 1=b; 2 � j � b

9
>>>>>=
>>>>>;

for p = 1 (15)

By using the above steady-state probabilities of (14) or (15), we derive the

mean number of packets in an output queue of the �rst stage:

E(q) =
bX

j=0

jpj = p+
p
2[1� pb(1� p+ b)]

4(1� p)
; for p < 1 and b > 1 (16)
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and

E(q) =
bX

j=0

jpj =
b+ 1

2
� 1

4b
; for p = 1 and b > 1

It is worth pointing out that for b ! 1 , we get pb ! 0 much faster, thus

equation (16) agrees with the known formula of [8] for the in�nite bu�er case

(equation 23).

For the mean number of packets lost in a cycle at an output queue of the �rst

stage we have:

for p < 1: Mean number of arriving packets E(C) = p and

E(v) =

8
><
>:
p� (p2=4)pb; b > 1

p� (p2=4); b = 1(unbu�ered switch)
(17)

thus :

E(packets lost in one cycle) = E(C)� E(v) =

8><
>:
(p2=4)pb; b > 1

p
2
=4; b = 1

(18)

for p = 1:

E(C) = 1; E(v) = 1� 1

4b
(19)

E(packets lost in one cycle) = E(C)� E(v) =

8><
>:
1=4b; b > 1

1=4; b = 1
(20)

4.2 Switches with in�nite bu�ers (b =1)

In this case we have b =1, thus for k = 2, we get the same

x2;0 = (1� p=2)2; x2;2 = p
2
=4

and the root R1 = ( p

2�p
)2. The di�erence is in the constant A1 which is now :

A1 = 1� R1 (21)
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The steady-state probabilities are :

p0 = 1� p

p1 = A1(1� x2;0)

pj = A1R
j�1
1 ; j � 2

9
>>>>>=
>>>>>;

for p < 1 (22)

For p = 1 we don't have steady-state probabilities, since this is an instability

case. Equations (22) are in agreement with [8], since they provide the known

result:

E(q) = p+
p
2

4(1� p)
(23)

4.3 Unbu�ered switches (b = 1)

For the general case (k � k switches), we have two balance equations :

p0 = p0xk;0 + p1xk;0 = xk;0

p1 = p0(xk;1 + xk;2 + � � �xk;k) + p1(xk;1 + xk;2 + � � �xk;k)
= 1� xk;0

(24)

Since xk;0 = (1� p=k)k, we have

p1 = 1� (1� p=k)k (25)

Equation (25) is exactly the equation Pm+1 = 1� (1� Pm=k)
k of [12] and [8],

whenm = 0. We may remark here, that the above authors, derive this equation

for all the stages of the network. This is an evidence that our approximation

for the stages beyond the �rst stage (section 5) is valid even for the cases when

b > 1. Easily, we get

E(q) = 1� xk;0 = 1� (1� p=k)k

E(lost) = p� 1 + xk;0 = p� 1 + (1� p=k)k
(26)

The last equation is the same with (18) for b = 1, when k = 2, as expected.
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5 Subsequent Stages and Network Performance

In accordance to the remarks stated in Section 2.2, we assume now the fol-

lowing approximation hypothesis :

Hypothesis : The output queues of stage m that feed stage m + 1, are

assumed to operate like processors with a packet generation probability p(m)

such that

p(m) = utilization of an output queue of stage m (and p(0) = p)

This hypothesis equates the dynamics of the output process of a stage with

its \macroscopic" averages.

De�nition 8 Let pj;i = the steady state probability of �nding j packets in an

output queue of stage i of the network.

Suppose that we have a network with L stages. Our approximation scheme is

iterative and is described in Algorithm I (Figure 3).

Algorithm I

p(0) := p

FOR i = 1 TO L DO

BEGIN

Set p := p(i�1)

Calculate xk;0; xk;1; : : : ; xk;k;

Evaluate p0;i; p1;i; : : : ; pb;i; from equations (10),(11)

Evaluate E(q), E(lost) for stage i

p(i) := 1� p0;i

END

CALCULATE NETWORK PERFORMANCE MEASURES

(BANDWIDTH, AVERAGE TRANSIT TIME etc.)

Fig. 3. The Algorithm I

This approximation scheme has the following nice properties :

- It provides an exact solution for all stages for unbu�ered networks as we

commented in Section 4.3

- It approximates not only the average maesures such as E(q) and E(lost),

but also the distribution itself of the queue sizes, with a maximum relative

error in all cases, less than 5%. Higher errors are observed only in cases

where the absolute values are very small and the simulation experiments

count only a few respective events (e.g. lost packets when p is small).

14



6 Comparison with Simulation Results and Discussion

We performed extensive simulations to validate our results. Some indicative

results are presented in Figures 4-7. The simulations verify our analysis for the

�rst stage and the subsequent ones for all di�erent cases (unbu�ered, in�nite

and �nite bu�ers). Moreover, they prove that the hypothesis introduced has

a strong physical sence.
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The comparison of the analytic results with the simulation experiments, con-

�rms the exact solution of the �rst stage for all classes of MINs studied and

the fact that the algorithm for the next stages presents an exact solution for

all stages in the case of unbu�ered network (b = 1). Our approximation pre-

dicts cumulative performance measures (such as mean queue length) with very

small relative error. As far as the steady state distribution of queue sizes is con-

cerned, we approximate the largest steady state probabilities with a very good

accuracy, in all stages. For the low-valued probabilities (pb; pb�1) we odserve a

small absolute error and a greater relative one. This error is caused probably

due to the fact that the blocking phenomena that relate to these probabilities

happen rarely, thus they are encountered a few times by the simulation of the
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network. A relative error of 5% for the above probabilities, will cause a relative

error of about 10% for the mean number of lost packets per queue, for the

stages beyond the �rst since it depends mainly on those small probabilities.

7 Conclusions and future work

Under our analysis, networks with 2� 2 switches seem to perform better than

the 3�3 switches, with respect to the mean number of packets lost per queue.

- For networks with 2� 2 switches :

For low traÆc (p � 0:4) bu�ers of size 3 are suÆcient to allow only a small

fraction (of about 0.0001) of the packets to be lost per queue. The bu�er

size becomes b = 8 for moderate to heave traÆc (0:4 < p � 0:8) and b = 15

for very heavy traÆc (0:8 < p � 0:9), respectively in order to keep the losses

at the same low level.

- For networks with 3� 3 switches :

The bu�ers should be respectively of length b = 4; b = 10; b = 18 in order

to get the same proportion of lost packets per cycle.
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We expect that this tendancy - as k increases the mean number of packets lost

increases - also holds for networks with greater k. The small fraction of lost

packets implies that resubmission of those packets from the processors will not

increase the input traÆc noticeably. Thus, one can use our analysis to predict

the performance of actual networks where lost packets are resubmitted later.

An interesting open problem is to use our analysis in order to obtain analytical

results when MINs are adopted in an ATM switching facric. Our approach will

be adopted to analyze such networks under di�erent traÆc considerations (eg.

constant service rates) than those presented in this paper.
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