
Extending the Functionality of RTP/RTCP Implementation
in Network Simulator (NS-2) to support TCP friendly

congestion control
Christos Bouras

Research Academic Computer
Technology Institute and University of

Patras
N. Kazantzaki Str., University of

Patras, 26500 Rion, Greece
+30 2610 960375

bouras@cti.gr

Apostolos Gkamas
Research Academic Computer

Technology Institute and University of
Patras

N. Kazantzaki Str., University of
Patras, 26500 Rion, Greece

+30 2610 960465

gkamas@cti.gr

Georgios Kioumourtzis
University of Patras, Department of

Computer Engineering and Informatics
University of Patras, 26500, Rion,

Patras, Greece
+30 2610 960316

gkioumou@ceid.upatras.gr

ABSTRACT
In this paper, we present a modification of the ns2 code for the
RTP/RTCP protocols. The legacy RTP/RTCP code in ns2 has not
yet been validated but it provides a framework of the protocol’s
specification for experimental use. We have modified the code by
adding all the RTP/RTCP protocol’s attributes that are defined in
RFC 3550 and related to QoS metrics. We have also implemented
additional algorithms and functions in order to enhance our
modified code with TCP friendly bandwidth share behavior. Our
protocol, named RTPUP (“UP” stands for the University of
Patras), is offered as a package and is fully documented so that it
can be used for simulations and research within the ns2 simulation
environment.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Applications, Model Validation
and Analysis, Model Development, Simulation Output Analysis,
Miscellaneous.

General Terms
Algorithms, Performance, Design, Standardization, Verification.

Keywords
Network Simulator (NS-2), RTP/RTCP protocol, Multimedia
transmission, TCP Friendly.

1. INTRODUCTION
Real time multimedia applications have enjoyed the global
interest over the last years. These applications are characterized
by three main properties: the demand for high data transmission
rate (bandwidth-consuming applications), the sensitiveness to
packet delays (latency and jitter), and last the tolerance to packet
losses (packet-loss tolerant applications), when compared to other
kind of applications. The Transmission Control Protocol (TCP) is
the dominant and most widely used protocol at the transport layer.
However, there are three characteristics of this protocol that

makes it insufficient for real time data delivery:

• TCP has a built-in retransmission mechanism that may
be useless for delay-sensitive applications.

• TCP does not carry any time related information,
which are needed by real time applications, and lastly.

• TCP employs a “strict” congestion control mechanism
that reacts even in the light of a single packet loss event.

Similarly, the User Datagram Protocol (UDP) does not provide
any support for multimedia applications. Therefore, the need of a
new protocol led the research community to design the Real Time
Protocol (RTP) and the associated RTP Control Protocol (RTCP)
[1], in order to support multimedia applications. The RTP
protocol constitutes a new de facto standard and is the dominant
transport protocol for multimedia data transmission.

The implementation of the RTP in NS2 [2] is very generic. It only
provides the main functions of a “common” transport protocol
and runs on top of UDP. In this work, we extend the functionality
of the RTP and RTCP code in NS2 to include:

• The feedback functions that are described [1] and
related to QoS metrics.

• TCP friendly behavior with the meaning that the
transmitted flow consumes no more bandwidth than a TCP
connection, which is traversing the same path with the transmitted
flow.

With these new feedback functions any multimedia application
can employ the internal mechanisms of the RTP and RTCP for
Quality of Service (QoS) measurements. The TCP friendly
bandwidth share mechanism is based on the TCP Friendly Rate
Control (TFRC) protocol presented in [3]. Our motivation is to
use the RTP modified code for simulations of multimedia data
transmission from a server to a number of receivers, through
multicasting and different multicast RTP streams. The ns2 code
provides the framework for these simulation scenarios. However,
one has to extend the code to support these scenarios because the
RTP code in ns2 cannot support multiple RTP streams running in
one network node. The rest of this paper is organized as follows:
Section 2 discusses the Algorithmic aspects. The extensions made
to RTP code in ns2 are presented in section 3, as section 4
presents the performance evaluation of our modified code.
Conclusions and future work are discussed in section 5.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTools, March 03 – 07, 2008, Marseille, France.
ISBN 978-963-9799-20-2

mailto:bouras@cti.gr
mailto:gkamas@cti.gr
mailto:gkioumou@ceid.upatras.gr

2. ALGORITHMIC ASPECTS
In this section we describe the algorithm to estimate a TCP
friendly bandwidth share. Then we explain how we estimate the
packet loss ratio and the Round trip Time (RTT) that are used for
the TCP friendly bandwidth calculations. Finally, we present the
inter-arrival jitter delay estimations, which are based on the RFC
3550 recommendations.

2.1 TCP Friendly Bandwidth Share
Estimations
The subject of transmission of TCP friendly flows over networks
has engaged researchers all over the world, [4], [5] and [6]. In this
work we use the analytical model of TCP presented in [4] in order
to estimate a TCP friendly bandwidth share.

2.2 Packet Loss Rate Estimation
Every receiver that joins the RTP session can measure the packet
loss rate based on RTP packet sequence numbers. In order to
prevent a single spurious packet loss having an excessive effect
on the packet loss estimation, the receivers smooth the values of
packet loss rate using the filter presented in [6], which computes
the weighted average of the most recent loss rate values. The
authors of

m
[6] have also evaluated this filter and the results are

very positive.

2.3 RTT Estimations
When a receiver receives a RTP packet from a sender, it uses
the following algorithm to estimate the RTT between the sender
and the receiver:

i

 if no feedback has been received before
 RTT = sqrt(effective_RTT)
 else
 RTT = q * RTT + (1-q) * effective_RTT (1)
where, q has a default value of 0.9

2.4 Inter-arrival Jitter Estimations
Our implementation for delay jitter calculations is based on the
algorithm defined in RFC 3550.

3. EXTENSIONS TO RTP CODE
In this section we describe the extensions made to RTP code in
ns2. Our work is mainly divided into two main areas:

• Providing the RTP code the additional functionality
defined in RFC 3550 and related to QoS metrics.

• Employing TCP friendly bandwidth share mechanisms
for experimental use.

The extensions made in the ns2-2.30 version, on a Linux platform
running Fedora 6 operating system.

3.1 Software Architecture
We present the structure of the RTPUP code using the UML
diagram in figure 1. First of all we have renamed the RTP packet
header from “hdr_rtp” to “hdr_rtpup” (“up” stands for University
of Patras) to distinguish our code from the legacy code in ns2 in
order to avoid confusion within the ns2 users community. We also
defined new data structures named server_report and
receiver_report to store the fields of the RTCP SR and RR,

respectively. A new class named RTPUPReceiver was declared to
hold the fields that are used by the receiving Agents for QoS
measurements. Every new instance of the RTPUPSession class
creates two instances of the RTPUPSource and one instance of
the RTPUPReceiver classes, accordingly. The
RTPUPSessionClass is called by the TCL script and in turn two
new Agents (RTPUPAgent and RTCPUPAgent) are assigned to
every node in the network that participates in the multicast
stream. The RTPUPAgent holds all the functionality for sending
and receiving RTPUP packets, whereas the RTCPUPAgent is
responsible for transmission and reception of the RTCPUP sender
and receiver reports. We have implemented a one-to-many
scheme of the RTP/RTCP protocol, in which one sender transmits
a multicast stream to a set of receivers. It is however, easy and
quite straightforward to extend the code so that a node can be a
receiver and at the same time an active sender. This applies to
VoIP applications in which the sender is also a receiver during the
VoIP session. Last, new functions are also used for the
implementation of the algorithms described in the previous
section.

3.2 Modified and New Functions
In our RTPUP code we distinguish three major
functions/modules.

3.2.1 Send and Receive RTPUP Packets
RTPUP packets are generated based on a timeout event of the
RTPUPTimer. The RTPUP Agent creates a new RTPUP packet
by calling the send function:

 void RTPUPAgent::sendpkt(){}

The send function invokes the make packet function, which
creates the new RTPUP packet and adds the following fields in
the packet header:

void RTPUPAgent::makepkt(Packet* p){}

• the sequence number of the RTP packet.

rh->seqno() = seqno_++;

• the source id of the sending source

rh->srcid() = session_->srcid();

• the timestamp

rh->timestamp()= timestamp_;

• the receivers which this sender serves with the receiver
source id field and the effective RTT

rh->receivers_= session_->receivers_;

in which the effective RTT is defined by:

_ LSR DLSReff rtt A t t= − − (2)

where, L S Rt is the time during which the receiver received

the last SR, D L S Rt is the time elapsed between the reception
of the SR last report and the generation of a new RR report, and A
stands for the current time of the reception of the RR. We will see
later how the calculation of the effective RTT is done by the
sender.

3.2.2 Build RTCPUP Sender and Receiver Report
Function
The build function is called by the RTCPUPAgent as a result of
an RTCPUPTimer time-out event. The sender generates a new SR
if it has sent RTPUP packets since the previous SR. When this
condition is met the sender sets the we_sent flag to 1 and
generates a sender report (SR). Next lines present the declaration
and construction of the SR:

//add sender report
sender_report* sr;
//fill in the report
sr = new sender_report;
//assign the sender’s id

sr->sender_srcid()= localsrc_->srcid();
//assign the RTPUP packets sent
sr->pkts_sent() = localsrc_->np();
//assign the total bytes sent
sr->octets_sent() = localsrc_->nbytes();
//include the receivers served
sr->rcvr_ = receivers_;
//store the report
rh_->sr_ = sr;

The sender includes the total number of RTPUP packets and the
total number of bytes that has sent since the beginning of the
session. It also includes the receivers that this source serves.

r t c p t i m e o u t

t h e s e n d e r r e p o r t s
t h e t o t a l n u m b e r
o f R T P p a c k e t s a n d
b y t e s s e n t

S e n d e r R e p o r t

B u i l d
r e p o r t

w e _ s e n t = 1

R e c e i v e r R e p o r t

m e a s u r e f r a c t i o n
l o s s

D L S R = n o w - S R T

c a l c u l a t e D L S R i n c r e a s e r a t e

c a l c u l a t e n e w
r a t e

f r a c t i o n _ l o s s = 0

m e a s u r e
s m o o t h l o s s

 Figure 2. State chart of the build report function

enter_rcv(RTPUPReceiver* s)
The sender processes the RR and calculates the effective RTT
time as follows:

3.2.3 Receive Control RTCPUP Packet Function
We have seen so far how the receivers access the RTPUP packets
and how both sender and receivers build the SR and RR reports.
We have also explained how the receivers perform the various
calculations in order to provide the sender with QoS
measurements. In this subsection we will describe what the
actions are from the sender side in order to adjust its transmission
rate. Therefore, the receive control function is the “merging”
function in which the results of the program are presented and
actions take place.

eff_rtt = alpha - rh->rr_->LSR() –

rh->rr_->DLSR();
where alpha is the current clock time

The TCP receiver’s estimation is kept in a separate data structure.
We use for it an instance of the class list in which its size is
dynamically updated with the number of its elements so that we
can hold a fair large amount of receivers. In addition, the class list
offers a number of built-in functions that are very convenient for
accessing and sorting its elements. Every time the sender receives
a new report from the RTCPUP Agents in the multicast session it
adjusts its transmission rate. The sender takes into account the
minimum bandwidth estimations from the receiver set according
to the algorithm below:

Upon the reception of a new RTCPUP report sender and receivers
perform different functions. The sender firs evaluates if the
originator of this RR does exist in its receiver’s list. At this point
it has to be mentioned that in the legacy ns2 code the allsrcs_
field for the sending source is empty as long as it does not
received any RTPUP packets from any source. That was the
reason that led us to define the RTUPReceiver class, so that the
sending source could be able to keep a list of all the receivers in
the session it serves. Therefore, if the condition is not met (the
originator of the RR has not “heard” by the sender) the sender
adds the originator to his receivers’ list. We use a similar function
to the ns2 legacy code for constructing the receiver’s list:

1
_ __ min(,...,)i

r tcp r tcpnew rate r r= (3)

where, is the bandwidth estimation of receiver . At this
point and in order to prevent oscillations we use a
noFeedbackTimer to check whether or not the sender has received

_
i

r tcpr i
rr

feedback reports from all the receivers within a feedback interval.
This feedback interval is defined as:

feedback_interval = 2 * ps/tx_rate_

where ps is the packet size of the RTP packet and tx_rate_ is the
current transmission rate. When the sender does not receive an
expected RTCPUP report from a receiver within the feedback
interval it cuts its sending rate to half. This is a congestion
avoidance mechanism because a lost RTCPUP receiver report
indicates a congested path. It has been noticed in our experimental
simulations that this mechanism increases the overall performance
of the protocol.

4. PERFORMANCE EVALUATION
We evaluate our model with simulations performed with the ns2
simulation software. Our main objective is first to verify that the
RTPUP works properly and second that it has indeed friendly
TCP behavior.

4.1 Simulation Environment and Network
Topology Setup
Our benchmark for the evaluation of the RTPUP protocol is a
Local Area Network (LAN), which consists of one multimedia
server and six heterogeneous receivers. The heterogeneity of the
receivers lays in the variation of the link capacity, which connects
the receivers with the LAN. We have intentionally created a
“bottleneck” between routers 2 and 3 to create two different sets
of wired receivers. The first set of receivers (Nodes 1, 2, 3 “fast
receivers”) is able to receive at higher bit rates than the second set
(Nodes 4, 5, 6 “slow receivers”). We run a simple simulation
scenario in which the multimedia server transmits RTPUP traffic
at an initial rate of 256Kb/s. The RTCP transmission interval is
set to 500 msec. At the same time a File Transfer Protocol
application (FTP) is transmitting TCP packets through the same
pipe with the RTPUP traffic from Node 7 (TCP Agent) to Node 8
(TCP Sink). We run two different simulation sets to investigate:

• The behavior of our proposed protocol towards the
TCP traffic

• The behavior of the TFRC implementation in ns2
towards the same TCP traffic

• Pros and cons between our implementation and the
TFRC code in ns2.

Figure 3 depicts the network topology for the simulated scenarios.

Figure 3. Simulated network topology

4.2 First Simulation: Transmission of RTPUP
Multicast Stream with Background TCP
Traffic
We initially set the bandwidth capacity of the RTPUP traffic to
256Kb/s and the RTCPUP reporting interval to 500 msec.
However, these two parameters do not remain unchangeable and
adopt their values according to network conditions. As for the
TCP protocol we use the standard TCP Reno version in ns2.
The transmission of both RTPUP and TCP traffic starts in the
beginning of the simulation. We run our simulation for 200
seconds. In the chart presenting the simulation results (Figure 4)
we can see the receiving rates from two representing nodes of the
two different groups (Node 1,”fast receiver” and Node 4, “slow
receiver”) and also the TCP receiving rate named as “TCP Sink”.
We extract the following conclusions of the simulation results:

• The RTPUP protocol presents the characteristics of the
TCP congestion control mechanism, in which the protocol
increases its sending rate as long as the end-to-end path is
congestion-free. This is a direct result of the TCP friendly
algorithm that has been implemented in our code.

• The RTPUP protocol has also the characteristics of a
multiplicative-decrease protocol, similar to TCP protocol. This is
also the direct result of the implementation of the TCP analytical
model in our code. However we have not implemented all the
characteristics of the TCP protocol as our intention is to enrich the
RTPUP with TCP friendly behavior and not to replicate the
legacy TCP code.

• Another important conclusion is that our modified
RTPUP protocol does have TCP friendly behavior. The TCP
traffic is being delivered from the source to the destination node,
although the path is heavily congested by the RTPUP traffic.

• RTPUP presents the same oscillations with the TCP
protocol due to the implementation of the congestion control
mechanism. We observe that when the TCP transmission rate
increases, the RTUP transmission rate decreases and vice versa.

• One last important observation is that RTPUP has
similar delivery ratio to both “slow” and “fast” receivers. This is a
desired attribute of the protocol as it ensures a fair delivery ratio,
which most times is above 100 Kb/s. We will see in the next

simulation test whether or not the TFRC implementation in ns2 is
able to keep an equal delivery ratio to the whole set of receivers.

0

100

200

300

400

500

3 18 33 48 63 78 93 10
8

12
3

13
8

15
3

16
8

18
3

19
8

simulation time (sec)

re
ce

iv
in

g
ra

te
 (K

b/
s)

Node 4 Node 1 TCP Sink

Figure 4. RTPUP versus TCP traffic

0

0.005

0.01

0.015

0.02

0.025

0.03

jit
te

r d
el

ay
 (s

ec
)

0
0.00002
0.00004
0.00006
0.00008
0.0001
0.00012
0.00014
0.00016
0.00018
0.0002

Node 4 Node 1

Figure 5. Delay jitter measurements

4.3 Delay Jitter Measurement
The delay jitter measurement is straightforward and is being done
with a procedure that is defined in the TCL Session/RTPUP class.
The results below (Figure 5) present the measurements of the
“slow” receiver (Node 4) in contrast to the delay jitter of the
“fast” receiver (Node 1). These results were measured during the
previous simulation and are presented in the same chart, although
the delay jitter values are in different scales. We present the
results from Node 4 on the left Y-axis and the results from Node 1
on the right Y-axis. All the results are represented in seconds. We
extract the following observations:

• Fast receivers enjoy minimum values of delay jitter; the
highest observed delay jitter value throughout the simulation
time is 2 msecs. We regard this as a good performance metric for
the RTPUP protocol as the simulation scenario was set up in
such way to challenge the protocol’s performance.

• Slow receivers present delay jitter values between 10 and
15 msec and in general one-way jitter up to 150 msec is
considered to be acceptable even for VoIP applications.

4.4 Packet Loss Rate Measurement
For the packet loss rate measurement we have also defined a new
procedure in the TCL Session/RTPUP class. In this way we can
get directly this metric from our simulation script. We measure
the loss rate as the ratio of packets lost over the packets received
during the sample interval. This sample interval is the time
elapsed between two consequent Receiver Reports, (RR).

_ / *10ploss rate plost prcv 0= (4)

We can observe from the simulation results (figure 6) that lost
events occur mainly when the network is heavily congested and
this happens only for a very short period. We present only the
packet loss ratio from a “slow” receiver (Node 4) as we have not
observed any packet losses from fast receivers. This is a desired
attribute of our RTPUP implementation as we have a multicast
protocol that is able to transmit at high bit rates in a congested
network, with low delay jitter and minimal packet losses. In the
next simulation we will see how our implementation outperforms
the TFRC implementation in ns2.

4.5 Second Simulation: Comparison with the
TFRC Implementation in ns2
In the last simulation we compare the TFRC implementation in
ns2 against our RTP/RTCP with the TCP friendly enhancements.
The TFRC code in ns2 has been used for simulation by a number
of researchers and provides an acceptable implementation of the
TFRC specification.
The simulation scenario has exact the same network attributes
with our previous simulation in order to achieve a fair
comparison. In this case, RTP traffic is transmitted to the same set
of receivers and the congestion control is left to TFRC protocol.
We transmit also the same TCP traffic across the network from
Node 7 to Node 8. Figure 7 depicts the simulation results.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

2 17 32 47 62 77 92 10
7

12
2

13
7

15
2

16
7

18
2

19
7

simulation time (sec)

pa
ck

et
 lo

ss
 ra

tio
 (%

)

Node 4

Figure 6. Loss rate measurements

6. ACKNOWLEDGEMENT

0
100
200
300
400
500
600
700
800

3

18
.3

33
.6

48
.9

64
.2

79
.5

94
.8

11
0

12
5

14
1

15
6

17
1

18
7

simulation time (sec)

re
ce

iv
in

g
ra

te
 (K

b/
s)

Node 4 Node 1 TCP Sink

Figure 7. TFRC in ns2 versus TCP traffic

We thank the anonymous SIMUTools 2008 reviewers for their
helpful comments.

7. REFERENCES
[1] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “A

Transport Protocol for Real-Time Applications” RFC 3550,
July 2003

[2] http://www.isi.edu/nsnam/ns/
[3] Handley, M.; Floyd, S.; Padhye, J.; Widmer, J. “TCP

Friendly Rate Control (TFRC): Protocol Specification”
Request for Comments (RFC) 3448, The Internet Society,
January 2003

[4] J. Pandhye, J. Kurose, D. Towsley, R. Koodli, "A model
based TCP-friendly rate control protocol", Proc.
International Workshop on Network and Operating System
Support for Digital Audio and Video (NOSSDAV), Basking
Ridge, NJ, June 1999.

• We observe from the above results that the ns2 TFRC
implementation has “smoother” oscillations than our
implementation, which is a desired attribute especially for video
transmission. The TCP friendly behavior is also stable except for
some cases, in which TCP traffic is reduced to zero. In our
implementation the TCP traffic has always equal or higher values
when compared to the initial transmission rate.

[5] D. Sisalem, A. Wolisz, "MLDA: A TCP-friendly congestion
control framework for heterogeneous multicast
environments", in Eighth International Workshop on Quality
of Service (IWQoS 2000), Pittsburgh, PA, June 2000.

[6] L. Vicisiano, L. Rizzo, J. Crowcroft, "TCP - like congestion
control for layered multicast data transfer", in IEEE
INFOCOM, March 1998, pp. 996 - 1003.

• A second observation is that although Node 1 (“fast
receiver”) enjoys high receiving rates, Node 4 (“slow receiver”)
has very low receiving rates. However, it has to be mentioned that
the TFRC code in ns2 is used for unicast transmission. Thus, the
sender transmits different unicast streams to each one of the
receivers and adjusts its transmission rate accordingly.

[7] C. Bouras, A. Gkamas, G. Kioumourtzis, "A Framework for
Cross Layer Adaptation for Multimedia Transmission over
Wired and Wireless Networks”, The 2007 International
Conference on Internet Computing (ICOMP’07), Las Vegas,
Nevada, USA, 25 - 28 June 2007.

• Our final conclusion is that our RTP/RTCP implementation
introduces very good characteristics when we have multicast
video stream that is transmitted via a congested path. The code
and the implementation complexity of our implementation are
very low when compared to the TFRC module in ns2.

5. CONCLUSIONS/FUTURE WORK
We present in this work an extension of the RTP code in ns2. Our
motivation was to enrich the functionality of the existing code by
including all the RTP/RTCP protocol’s specification in RFC
3550, which are related to QoS metrics. We also extended our
code to enhance it with TFRC mechanisms for research and
experimental use. Our effort was to keep the functions and the
data fields of the original ns2 code, to modify existing functions
and to define only the necessary functions for the implementation
of the new algorithms. We tried also to keep the “code style” of
the ns2, document our code and offer it as a package for easier
integration into ns2 libraries. There were several simulation runs
and tests along with those that are presented in this work in order
to verify that we get the correct QoS measurements. Simulation
results show that the RTPUP performance has certain advantages
for multicast transmission of delay sensitive data, such as VoIP
and video streaming. In our future work we will extend the RTUP
code to support simultaneous RTPUP multicast streams in one
node for experimental use. Finally, simulation examples, sources
and documentation are available in the following URL:
http://ru6.cti.gr/ru6/ns_rtp_home.php

http://ru6.cti.gr/ru6/ns_rtp_home.php
http://www.isi.edu/nsnam/ns/

	1. INTRODUCTION
	2. ALGORITHMIC ASPECTS
	2.1 TCP Friendly Bandwidth Share Estimations
	2.2 Packet Loss Rate Estimation
	2.3 RTT Estimations
	2.4 Inter-arrival Jitter Estimations

	3. EXTENSIONS TO RTP CODE
	3.1 Software Architecture
	3.2 Modified and New Functions
	3.2.1 Send and Receive RTPUP Packets
	3.2.2 Build RTCPUP Sender and Receiver Report Function
	3.2.3 Receive Control RTCPUP Packet Function

	4. PERFORMANCE EVALUATION
	4.1 Simulation Environment and Network Topology Setup
	4.2 First Simulation: Transmission of RTPUP Multicast Stream with Background TCP Traffic
	4.3 Delay Jitter Measurement
	4.4 Packet Loss Rate Measurement
	4.5 Second Simulation: Comparison with the TFRC Implementation in ns2

	5. CONCLUSIONS/FUTURE WORK
	6. ACKNOWLEDGEMENT
	7. REFERENCES

