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ABSTRACT 
In this paper, we present a modification of the ns2 code for the 
RTP/RTCP protocols. The legacy RTP/RTCP code in ns2 has not 
yet been validated but it provides a framework of the protocol’s 
specification for experimental use. We have modified the code by 
adding all the RTP/RTCP protocol’s attributes that are defined in 
RFC 3550 and related to QoS metrics. We have also implemented 
additional algorithms and functions in order to enhance our 
modified code with TCP friendly bandwidth share behavior. Our 
protocol, named RTPUP (“UP” stands for the University of 
Patras), is offered as a package and is fully documented so that it 
can be used for simulations and research within the ns2 simulation 
environment. 

Categories and Subject Descriptors 
I.6 [Simulation and Modeling]: Applications, Model Validation 
and Analysis, Model Development, Simulation Output Analysis, 
Miscellaneous. 

General Terms 
Algorithms, Performance, Design, Standardization, Verification. 

Keywords 
Network Simulator (NS-2), RTP/RTCP protocol, Multimedia 
transmission, TCP Friendly. 

1. INTRODUCTION 
Real time multimedia applications have enjoyed the global 
interest over the last years. These applications are characterized 
by three main properties: the demand for high data transmission 
rate (bandwidth-consuming applications), the sensitiveness to 
packet delays (latency and jitter), and last the tolerance to packet 
losses (packet-loss tolerant applications), when compared to other 
kind of applications. The Transmission Control Protocol (TCP) is 
the dominant and most widely used protocol at the transport layer. 
However, there are three characteristics of this protocol that 

makes it insufficient for real time data delivery:  

• TCP has a built-in retransmission mechanism that may 
be useless for delay-sensitive applications. 

• TCP does not carry any time related information, 
which are needed by real time applications, and lastly. 

• TCP employs a “strict” congestion control mechanism 
that reacts even in the light of a single packet loss event.  

Similarly, the User Datagram Protocol (UDP) does not provide 
any support for multimedia applications. Therefore, the need of a 
new protocol led the research community to design the Real Time 
Protocol (RTP) and the associated RTP Control Protocol (RTCP) 
[1], in order to support multimedia applications. The RTP 
protocol constitutes a new de facto standard and is the dominant 
transport protocol for multimedia data transmission. 

The implementation of the RTP in NS2 [2] is very generic. It only 
provides the main functions of a “common” transport protocol 
and runs on top of UDP. In this work, we extend the functionality 
of the RTP and RTCP code in NS2 to include: 

• The feedback functions that are described [1] and 
related to QoS metrics. 

• TCP friendly behavior with the meaning that the 
transmitted flow consumes no more bandwidth than a TCP 
connection, which is traversing the same path with the transmitted 
flow. 

With these new feedback functions any multimedia application 
can employ the internal mechanisms of the RTP and RTCP for 
Quality of Service (QoS) measurements. The TCP friendly 
bandwidth share mechanism is based on the TCP Friendly Rate 
Control (TFRC) protocol presented in [3]. Our motivation is to 
use the RTP modified code for simulations of multimedia data 
transmission from a server to a number of receivers, through 
multicasting and different multicast RTP streams. The ns2 code 
provides the framework for these simulation scenarios. However, 
one has to extend the code to support these scenarios because the 
RTP code in ns2 cannot support multiple RTP streams running in 
one network node. The rest of this paper is organized as follows: 
Section 2 discusses the Algorithmic aspects. The extensions made 
to RTP code in ns2 are presented in section 3, as section 4 
presents the performance evaluation of our modified code. 
Conclusions and future work are discussed in section 5.  
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2. ALGORITHMIC ASPECTS 
In this section we describe the algorithm to estimate a TCP 
friendly bandwidth share. Then we explain how we estimate the 
packet loss ratio and the Round trip Time (RTT) that are used for 
the TCP friendly bandwidth calculations. Finally, we present the 
inter-arrival jitter delay estimations, which are based on the RFC 
3550 recommendations. 

2.1 TCP Friendly Bandwidth Share 
Estimations 
The subject of transmission of TCP friendly flows over networks 
has engaged researchers all over the world, [4], [5] and [6]. In this 
work we use the analytical model of TCP presented in [4] in order 
to estimate a TCP friendly bandwidth share. 

2.2 Packet Loss Rate Estimation 
Every receiver that joins the RTP session can measure the packet 
loss rate based on RTP packet sequence numbers. In order to 
prevent a single spurious packet loss having an excessive effect 
on the packet loss estimation, the receivers smooth the values of 
packet loss rate using the filter presented in [6], which computes 
the weighted average of the  most recent loss rate values. The 
authors of 

m
[6] have also evaluated this filter and the results are 

very positive. 

2.3 RTT Estimations 
When a receiver  receives a RTP packet from a sender, it uses 
the following algorithm to estimate the RTT between the sender 
and the receiver: 

i

 if no feedback has been received before 
 RTT = sqrt(effective_RTT) 
 else 
 RTT = q * RTT + (1-q) * effective_RTT                    (1) 
where, q has a default value of 0.9 

2.4 Inter-arrival Jitter Estimations 
Our implementation for delay jitter calculations is based on the 
algorithm defined in RFC 3550. 

3. EXTENSIONS TO RTP CODE 
In this section we describe the extensions made to RTP code in 
ns2. Our work is mainly divided into two main areas: 

• Providing the RTP code the additional functionality 
defined in RFC 3550 and related to QoS metrics. 

• Employing TCP friendly bandwidth share mechanisms 
for experimental use. 

The extensions made in the ns2-2.30 version, on a Linux platform 
running Fedora 6 operating system. 

3.1 Software Architecture 
We present the structure of the RTPUP code using the UML 
diagram in figure 1. First of all we have renamed the RTP packet 
header from “hdr_rtp” to “hdr_rtpup” (“up” stands for University 
of Patras) to distinguish our code from the legacy code in ns2 in 
order to avoid confusion within the ns2 users community. We also 
defined new data structures named server_report and 
receiver_report to store the fields of the RTCP SR and RR, 

respectively. A new class named RTPUPReceiver was declared to 
hold the fields that are used by the receiving Agents for QoS 
measurements. Every new instance of the RTPUPSession class 
creates two instances of the RTPUPSource and one instance of 
the RTPUPReceiver classes, accordingly. The 
RTPUPSessionClass is called by the TCL script and in turn two 
new Agents (RTPUPAgent and RTCPUPAgent) are assigned to 
every node in the network that participates in the multicast 
stream. The RTPUPAgent holds all the functionality for sending 
and receiving RTPUP packets, whereas the RTCPUPAgent is 
responsible for transmission and reception of the RTCPUP sender 
and receiver reports. We have implemented a one-to-many 
scheme of the RTP/RTCP protocol, in which one sender transmits 
a multicast stream to a set of receivers. It is however, easy and 
quite straightforward to extend the code so that a node can be a 
receiver and at the same time an active sender. This applies to 
VoIP applications in which the sender is also a receiver during the 
VoIP session. Last, new functions are also used for the 
implementation of the algorithms described in the previous 
section.  

3.2 Modified and New Functions 
In our RTPUP code we distinguish three major 
functions/modules.  

3.2.1 Send and Receive RTPUP Packets 
RTPUP packets are generated based on a timeout event of the 
RTPUPTimer. The RTPUP Agent creates a new RTPUP packet 
by calling the send function: 

 void RTPUPAgent::sendpkt(){} 

The send function invokes the make packet function, which 
creates the new RTPUP packet and adds the following fields in 
the packet header: 

void RTPUPAgent::makepkt(Packet* p){} 

• the sequence number of the RTP packet.  

rh->seqno() = seqno_++; 

• the source id of the sending source 

rh->srcid() = session_->srcid(); 

• the timestamp 

rh->timestamp()= timestamp_; 

• the receivers which this sender serves with the receiver 
source id field and the effective RTT  

rh->receivers_= session_->receivers_; 

in which the effective RTT is defined by: 

_ LSR DLSReff rtt A t t= − −         (2) 

where, L S Rt  is the time during which the receiver received 

the last SR, D L S Rt  is the time elapsed between the reception 
of the SR last report and the generation of a new RR report, and A 
stands for the current time of the reception of the RR. We will see 
later how the calculation of the effective RTT is done by the 
sender. 



3.2.2 Build RTCPUP Sender and Receiver Report 
Function 
The build function is called by the RTCPUPAgent as a result of 
an RTCPUPTimer time-out event. The sender generates a new SR 
if it has sent RTPUP packets since the previous SR. When this 
condition is met the sender sets the we_sent flag to 1 and 
generates a sender report (SR). Next lines present the declaration 
and construction of the SR: 

//add sender report 
sender_report* sr; 
//fill in the report 
sr = new sender_report; 
//assign the sender’s id 

sr->sender_srcid()= localsrc_->srcid(); 
//assign the RTPUP packets sent 
sr->pkts_sent() = localsrc_->np(); 
//assign the total bytes sent 
sr->octets_sent() = localsrc_->nbytes(); 
//include the receivers served 
sr->rcvr_ = receivers_; 
//store the report 
rh_->sr_ = sr; 

The sender includes the total number of RTPUP packets and the 
total number of bytes that has sent since the beginning of the 
session. It also includes the receivers that this source serves.  
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 Figure 2. State chart of the build report function 

enter_rcv(RTPUPReceiver* s) 
The sender processes the RR and calculates the effective RTT 
time as follows: 

 

3.2.3 Receive Control RTCPUP Packet Function 
We have seen so far how the receivers access the RTPUP packets 
and how both sender and receivers build the SR and RR reports. 
We have also explained how the receivers perform the various 
calculations in order to provide the sender with QoS 
measurements. In this subsection we will describe what the 
actions are from the sender side in order to adjust its transmission 
rate. Therefore, the receive control function is the “merging” 
function in which the results of the program are presented and 
actions take place.  

eff_rtt = alpha - rh->rr_->LSR() –  

rh->rr_->DLSR(); 
where alpha is the current clock time 

The TCP receiver’s estimation is kept in a separate data structure. 
We use for it an instance of the class list in which its size is 
dynamically updated with the number of its elements so that we 
can hold a fair large amount of receivers. In addition, the class list 
offers a number of built-in functions that are very convenient for 
accessing and sorting its elements. Every time the sender receives 
a new report from the RTCPUP Agents in the multicast session it 
adjusts its transmission rate. The sender takes into account the 
minimum bandwidth estimations from the receiver set according 
to the algorithm below: 

Upon the reception of a new RTCPUP report sender and receivers 
perform different functions. The sender firs evaluates if the 
originator of this RR does exist in its receiver’s list. At this point 
it has to be mentioned that in the legacy ns2 code the allsrcs_ 
field for the sending source is empty as long as it does not 
received any RTPUP packets from any source. That was the 
reason that led us to define the RTUPReceiver class, so that the 
sending source could be able to keep a list of all the receivers in 
the session it serves. Therefore, if the condition is not met (the 
originator of the RR has not “heard” by the sender) the sender 
adds the originator to his receivers’ list. We use a similar function 
to the ns2 legacy code for constructing the receiver’s list:  

1
_ __ min( ,..., )i

r tcp r tcpnew rate r r=                                       (3) 

where,  is the bandwidth estimation of receiver . At this 
point and in order to prevent oscillations we use a 
noFeedbackTimer to check whether or not the sender has received 

_
i

r tcpr i
rr



feedback reports from all the receivers within a feedback interval. 
This feedback interval is defined as: 

feedback_interval = 2 * ps/tx_rate_ 

where ps is the packet size of the RTP packet and tx_rate_ is the 
current transmission rate. When the sender does not receive an 
expected RTCPUP report from a receiver within the feedback 
interval it cuts its sending rate to half. This is a congestion 
avoidance mechanism because a lost RTCPUP receiver report 
indicates a congested path. It has been noticed in our experimental 
simulations that this mechanism increases the overall performance 
of the protocol.  

4. PERFORMANCE EVALUATION 
We evaluate our model with simulations performed with the ns2 
simulation software. Our main objective is first to verify that the 
RTPUP works properly and second that it has indeed friendly 
TCP behavior. 

4.1 Simulation Environment and Network 
Topology Setup 
Our benchmark for the evaluation of the RTPUP protocol is a 
Local Area Network (LAN), which consists of one multimedia 
server and six heterogeneous receivers. The heterogeneity of the 
receivers lays in the variation of the link capacity, which connects 
the receivers with the LAN. We have intentionally created a 
“bottleneck” between routers 2 and 3 to create two different sets 
of wired receivers. The first set of receivers (Nodes 1, 2, 3 “fast 
receivers”) is able to receive at higher bit rates than the second set 
(Nodes 4, 5, 6 “slow receivers”). We run a simple simulation 
scenario in which the multimedia server transmits RTPUP traffic 
at an initial rate of 256Kb/s. The RTCP transmission interval is 
set to 500 msec. At the same time a File Transfer Protocol 
application (FTP) is transmitting TCP packets through the same 
pipe with the RTPUP traffic from Node 7 (TCP Agent) to Node 8 
(TCP Sink). We run two different simulation sets to investigate: 

• The behavior of our proposed protocol towards the 
TCP traffic 

• The behavior of the TFRC implementation in ns2 
towards the same TCP traffic 

• Pros and cons between our implementation and the 
TFRC code in ns2. 

Figure 3 depicts the network topology for the simulated scenarios. 

 
Figure 3. Simulated network topology 

4.2 First Simulation: Transmission of RTPUP 
Multicast Stream with Background TCP 
Traffic 
We initially set the bandwidth capacity of the RTPUP traffic to 
256Kb/s and the RTCPUP reporting interval to 500 msec. 
However, these two parameters do not remain unchangeable and 
adopt their values according to network conditions. As for the 
TCP protocol we use the standard TCP Reno version in ns2.  
The transmission of both RTPUP and TCP traffic starts in the 
beginning of the simulation. We run our simulation for 200 
seconds. In the chart presenting the simulation results (Figure 4) 
we can see the receiving rates from two representing nodes of the 
two different groups (Node 1,”fast receiver” and Node 4, “slow 
receiver”) and also the TCP receiving rate named as “TCP Sink”. 
We extract the following conclusions of the simulation results:  

• The RTPUP protocol presents the characteristics of the 
TCP congestion control mechanism, in which the protocol 
increases its sending rate as long as the end-to-end path is 
congestion-free. This is a direct result of the TCP friendly 
algorithm that has been implemented in our code. 

• The RTPUP protocol has also the characteristics of a 
multiplicative-decrease protocol, similar to TCP protocol. This is 
also the direct result of the implementation of the TCP analytical 
model in our code. However we have not implemented all the 
characteristics of the TCP protocol as our intention is to enrich the 
RTPUP with TCP friendly behavior and not to replicate the 
legacy TCP code.  

• Another important conclusion is that our modified 
RTPUP protocol does have TCP friendly behavior. The TCP 
traffic is being delivered from the source to the destination node, 
although the path is heavily congested by the RTPUP traffic.  

• RTPUP presents the same oscillations with the TCP 
protocol due to the implementation of the congestion control 
mechanism. We observe that when the TCP transmission rate 
increases, the RTUP transmission rate decreases and vice versa.  

• One last important observation is that RTPUP has 
similar delivery ratio to both “slow” and “fast” receivers. This is a 
desired attribute of the protocol as it ensures a fair delivery ratio, 
which most times is above 100 Kb/s. We will see in the next 



simulation test whether or not the TFRC implementation in ns2 is 
able to keep an equal delivery ratio to the whole set of receivers. 
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Figure 4. RTPUP versus TCP traffic 

0

0.005

0.01

0.015

0.02

0.025

0.03

jit
te

r d
el

ay
 (s

ec
)

0
0.00002
0.00004
0.00006
0.00008
0.0001
0.00012
0.00014
0.00016
0.00018
0.0002

Node 4 Node 1

 
Figure 5. Delay jitter measurements 

4.3 Delay Jitter Measurement 
The delay jitter measurement is straightforward and is being done 
with a procedure that is defined in the TCL Session/RTPUP class. 
The results below (Figure 5) present the measurements of the 
“slow” receiver (Node 4) in contrast to the delay jitter of the 
“fast” receiver (Node 1). These results were measured during the 
previous simulation and are presented in the same chart, although 
the delay jitter values are in different scales. We present the 
results from Node 4 on the left Y-axis and the results from Node 1 
on the right Y-axis. All the results are represented in seconds. We 
extract the following observations: 

• Fast receivers enjoy minimum values of delay jitter; the 
highest observed delay jitter value throughout the simulation 
time is 2 msecs. We regard this as a good performance metric for 
the RTPUP protocol as the simulation scenario was set up in 
such way to challenge the protocol’s performance. 

• Slow receivers present delay jitter values between 10 and 
15 msec and in general one-way jitter up to 150 msec is 
considered to be acceptable even for VoIP applications.   

 
4.4 Packet Loss Rate Measurement 
For the packet loss rate measurement we have also defined a new 
procedure in the TCL Session/RTPUP class. In this way we can 
get directly this metric from our simulation script. We measure 
the loss rate as the ratio of packets lost over the packets received 
during the sample interval. This sample interval is the time 
elapsed between two consequent Receiver Reports, (RR).  

_ / *10ploss rate plost prcv 0=     (4) 

We can observe from the simulation results (figure 6) that lost 
events occur mainly when the network is heavily congested and 
this happens only for a very short period. We present only the 
packet loss ratio from a “slow” receiver (Node 4) as we have not 
observed any packet losses from fast receivers. This is a desired 
attribute of our RTPUP implementation as we have a multicast 
protocol that is able to transmit at high bit rates in a congested 
network, with low delay jitter and minimal packet losses. In the 
next simulation we will see how our implementation outperforms 
the TFRC implementation in ns2. 

4.5 Second Simulation: Comparison with the 
TFRC Implementation in ns2 
In the last simulation we compare the TFRC implementation in 
ns2 against our RTP/RTCP with the TCP friendly enhancements. 
The TFRC code in ns2 has been used for simulation by a number 
of researchers and provides an acceptable implementation of the 
TFRC specification.  
The simulation scenario has exact the same network attributes 
with our previous simulation in order to achieve a fair 
comparison. In this case, RTP traffic is transmitted to the same set 
of receivers and the congestion control is left to TFRC protocol. 
We transmit also the same TCP traffic across the network from 
Node 7 to Node 8. Figure 7 depicts the simulation results. 
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Figure 6. Loss rate measurements 



6. ACKNOWLEDGEMENT 

0
100
200
300
400
500
600
700
800

3

18
.3

33
.6

48
.9

64
.2

79
.5

94
.8

11
0

12
5

14
1

15
6

17
1

18
7

simulation time (sec)

re
ce

iv
in

g 
ra

te
 (K

b/
s)

Node 4 Node 1 TCP Sink

 
Figure 7. TFRC in ns2 versus TCP traffic 
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5. CONCLUSIONS/FUTURE WORK 
We present in this work an extension of the RTP code in ns2. Our 
motivation was to enrich the functionality of the existing code by 
including all the RTP/RTCP protocol’s specification in RFC 
3550, which are related to QoS metrics. We also extended our 
code to enhance it with TFRC mechanisms for research and 
experimental use. Our effort was to keep the functions and the 
data fields of the original ns2 code, to modify existing functions 
and to define only the necessary functions for the implementation 
of the new algorithms. We tried also to keep the “code style” of 
the ns2, document our code and offer it as a package for easier 
integration into ns2 libraries. There were several simulation runs 
and tests along with those that are presented in this work in order 
to verify that we get the correct QoS measurements. Simulation 
results show that the RTPUP performance has certain advantages 
for multicast transmission of delay sensitive data, such as VoIP 
and video streaming. In our future work we will extend the RTUP 
code to support simultaneous RTPUP multicast streams in one 
node for experimental use. Finally, simulation examples, sources 
and documentation are available in the following URL: 
http://ru6.cti.gr/ru6/ns_rtp_home.php 
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