
Design and implementation of a Bandwidth Broker in a simulation
environment

Christos Bouras1,2, Dimitris Primpas1,2, Kostas Stamos1,2 and Nikolaos Stathis2

1Research Academic Computer Technology Institute, Riga Feraiou 61, GR-26221 Patras, Greece and
2Computer Engineering and Informatics Dept., Univ. of Patras, GR-26500 Patras, Greece

Tel:+30-2610-{960375, 960316, 990316}
Fax:+30-2610-{969016, 960358, 960358}

e-mail: {bouras, primpas, stamos}@cti.gr, stathis@ceid.upatras.gr

Abstract

 A Bandwidth Broker is an entity that has been proposed in order to provide end-to-end
QoS. For this purpose it manages the bandwidth (the QoS services) within a network
domain and it is also responsible for the communication with Bandwidth Brokers of
adjacent domains. In this paper, we present a Bandwidth Broker implementation in the
widely used NS-2 simulation environment. We describe the Bandwidth Broker architecture
that was our model for the simulation implementation. Furthermore, we illustrate the
experiments that we conducted that examined the Bandwidth Broker functionality as well
as its performance. All the experiments demonstrated that with this implementation we can
achieve end-to-end QoS and that our implementation can be used in order to model the
behavior of a Bandwidth Broker in the widely popular NS-2 network simulator.

1 Introduction
One of the most important solutions that have
been proposed for QoS provision has been the
Differentiated Services architecture [1]. The
DiffServ framework proposes a scalable service
differentiation in the Internet. In order for the
DiffServ architecture to be applied, some
functional elements must be implemented in
network nodes. These elements include a set of
per-hop forwarding behaviors, packet
classification functions, and traffic conditioning
functions including metering, marking, shaping,
and policing. There has been a lot of research on
developing such functional elements so as to
provide better QoS. Currently, many researchers
focus on finding ways to provide end-to-end
QoS over the Internet. It has quickly become
evident that simply using the current DiffServ
framework does not solve the problem due to the
fact that the Internet consists of numerous
network domains acting as autonomous systems,
each of which may be differently configured. In
order to overcome this problem a bilateral
agreement between adjacent domains has to be
achieved. One entity that has been proposed to
provide end-to-end QoS across a network
domain and can obtain synchronization and
cooperation with adjacent domains is the
Bandwidth Broker [2].

Following this research activity, we are
working on the implementation of a Bandwidth
Broker on NS-2 [8]. NS-2 is a powerful, open-

source simulating tool that provides some basic
DiffServ functionality. The DiffServ
functionality has already been extended in [3],
[9]. This paper describes the implementation
issues for the Bandwidth Broker as well as the
necessary experiments in order to validate and
evaluate our implementation.

The rest of the paper is organized as follows:
Section 2 presents an introduction to Bandwidth
Brokers. Section 3 gives a small description of
the simulation tool, the architecture and the
implementation of the Bandwidth Broker in this
tool. Section 4 presents the experiments that
were conducted and finally section 5 describes
our conclusions as well as the future work that
we intend to do on this area.

2 Bandwidth Brokers
A Bandwidth Broker (BB) [2] is an entity
responsible for providing QoS within a network
domain. The BB manages the resources within
the specific domain by controlling the network
and by accepting or rejecting requests for the
QoS services that the network provides. Every
user (service operator) that is willing to use a
QoS service (in our case an amount of the
bandwidth), between its node and a destination,
sends a request to the BB. The choice of the BB
to either accept or reject a request is based on the
network load and on the Service Level
Agreement (SLA) [7]. The SLA is the service
contract between the service provider and every

 2

customer that indicates the service that the
costumer is going to receive. The decision to
accept or reject a request is made by a module
called admission control that takes into account
the network condition and the pre-defined SLA.
A BB is also responsible for the inter-domain
communication with BBs of adjacent domains.
This procedure is quite complicated, as it
requires direct communication between the 2
adjacent BBs and also a special agreement
between the 2 domains that should be taken into
consideration by the decision mechanism.

Figure 1 shows a representation of a network
containing three domains: AS1, AS2 and AS3.
In each domain there is a BB and a number of
service users. Every BB communicates with the
service users and with its adjacent BBs. A
bandwidth broker contains several modules, as
Figure 2 illustrates, that are necessary for its
transparent and efficient operation.

• An inter-domain interface. It is used for
communication with adjacent BBs

• An intra-domain interface. It is used for
communication with the service components
that are located inside the domain that the BB
controls

• A routing table interface. It is used so that the
BB knows the network topology and the
routing paths

• A user/application interface. The scope of this
interface is to allow the user and applications
to send requests to the BB.

• A policy manager interface. This interface
allows implementation of complex policy
management or admission control.

• A network management interface. It is used
for coordination of network provisioning and
monitoring.

AS1 AS3AS2
SLA SLA

Router

Router Router

BB1 BB2 BB3

inter-domain
communication

intra-domain
communication

Figure 1: A network representation containing three domains

When a user is willing to use an amount of

network resources, he sends a Resource
Allocation Request (RAR) to the BB of his local
domain. The BB receives the RAR, examines
whether the requested resources are available
and also whether the SLA requirements are
fulfilled (this operation is performed by the
admission control module) and sends a Request
Allocation Answer (RAA) back to the user
informing him if the RAR was accepted or not.
If the RAA contains a positive answer, the
network resources that were requested should be
reserved. In order to achieve this, the BB uses
the intra-domain interface to configure the
routers placed in its domain in order to apply a
specified per hop behaviour, according to the
QoS service that the network provides.

The resource management in each domain is
mainly accomplished via the DiffServ
architecture. The DiffServ architecture proposes
the provision of service differentiation to the
traffic in a scalable manner by suggesting the

aggregation of individual application flows with
similar quality needs. These aggregations are
appointed to different classes of service and the
network treats the packets that belong to each
class differently. The Differentiated Services
Code Point (DSCP) is a field in the IP header
that specifies the class of service each packet
belongs to. The network classifies and marks the
packets in order to provide to them differential
per hop behavior (PHB) according to the class of
service they belong to. The PHB is specified on
all the network nodes and includes functions that
implement resource allocation and packet drop
policy. The packet scheduling mechanism
determines the resource allocation. During the
last years many such scheduling mechanisms
have been proposed, such as Priority Queuing,
Weighted Fair Queuing (WFQ), Modified
Deficit Round Robin (MDRR) [5], [10]. The
decision about the classification procedure and
which packet scheduling mechanism will be
used is up to the network administrator. This

 3

decision should be taken at the design phase of
the QoS service which will be offered on the
network domain. Generally, a Bandwidth Broker
should be customizable enough in order to allow
changes on the QoS mechanisms.

A number of Bandwidth Broker
implementations have appeared in the literature,
and several architectures have been tested in
actual scenarios [11], [12], [13] and in simulated
environments [4], [14].

inter -domain

intra -domain

user/applicati
on interf ace

PM interf ace

NMS interf ace

routing
inf ormationdata store

Simple Policy
Serv ices

edge router (s) edge router (s)

adjacent BB adjacent BB

application serv er

network operator

user / host

Figure 2: Bandwidth Broker Architecture

3 Bandwidth Broker Implementation

3.1 Simulation environment

Simulation has always been a valuable tool for
experimentation and validation of models,
architectures and mechanisms in the field of
networking. It provides an easy way to test
various solutions in order to evaluate their
performance without the need of an actual
network, which would have to be dedicated for
experiments. In our case, a Bandwidth Broker
has been implemented and tested on a simulation
environment in order to evaluate its performance
characteristics and its used mechanisms. The
simulator that we used is the Network Simulator
(NS-2), which is a free open-source simulator
[8]. NS is available for anyone to download and
it comes in many releases for various operating
systems such as FreeBSD, Linux, SunOS,
Solaris and Windows. Its current release is ns-
2.27. NS-2 is a powerful simulation tool that can
simulate many kinds of networks, such as mobile
and satellite networks. A user can define
arbitrary network topologies consisting of nodes
and links and attach applications and queues on
each node. A researcher using NS-2 can design
new protocols, test their functionality and
performance and compare them.

The simulator is written in C++ and uses
OTcl as a command and configuration interface.
NS-2 supports many network protocols such as

TCP and UDP, many traffic sources such as
FTP, Telnet, Web, CBR and VBR, queue
management mechanisms, such as RED,
DropTail and CBQ and routing algorithms such
as Dijkstra and Bellman-Ford. NS-2 is an event
driven simulator that takes tcl scripts as input
and executes them. The output can have many
forms, even graphical representation of the
network. A common output can be files that
thoroughly describe the traffic on a link or the
condition of a queue. The output files can be
additionally processed in order to calculate
specific quantities such as the throughput of a
traffic class.

During our work, we used the ns-allinone-
2.26 release that contained some additional tools,
apart from NS-2 and OTcl. The most important
of these tools are:
• Nam. It is a tool that used to make graphical

representations of the network topology and
the network’s operation

• x-graph. This tool is used to make graphical
representations of some output data

• gt-itm. It is a mechanism of automatically
producing network topologies
NS-2 is updated very often and many people

support it either by fixing bugs or by writing
new code that adds functionality to the
simulator. Following this practise, the version
that we used was extended with more DiffServ
functionality as documented in [3], [9].

 4

3.2 The implementation in NS simulator

The implementation of a Bandwidth Broker on
NS-2 followed the classic architecture of a
bandwidth broker as Figure 2 illustrates. In order
to implement it correctly, it was necessary to
make several changes and additions to the NS-2
structure and source code. An agent in NS-2
represents an endpoint where packets are
consumed and constructed, using a specific
protocol. The Bandwidth Broker that was
implemented is based on two new agents, the
Edge Bandwidth Broker and the Base Bandwidth
Broker. More specifically, we created the classes
BBedgeAgent and BBbaseAgent, derived from
class Agent that implements the Edge Bandwidth
Broker and the Base Bandwidth Broker. We also
created two new packet types, BBB and BBE,
which are used for the BB interfaces (to simulate
the BB messages) and have a size of 64 bytes.
BBbaseAgent creates BBB packets and
consumes BBE packets created by the
BBedgeAgent. BBedgeAgent creates BBE
packets and consumes BBB packets created by
the BBbaseAgent. In order to create a new
packet type, it is necessary to define the header
of the new packet. The header fields that we
defined for the BBB and the BBE packets were
the address of the sender of the RAR, the address
of the other end node, the type of the packet
(RAR or RAA), the amount of the requested
bandwidth and the final answer the BaseBB
sends to the sender (Negative or Positive). The
total bandwidth that the BB manages on each
link is determined by a new tcl instruction
“set_bndw”. The syntax is “BΒedgeAgent
set_bndw node_id bandwidth”. This instruction
informs the BBedgeAgent for the bandwidth that
the BB will manage on the link that exists
between the node where the BBedgeAgent is
running and its adjacent node with node-id
node_id.

A BBedgeAgent, which represents a client
(user / application), can send a RAR requesting
guaranteed bandwidth between the node where it
is running and another node with node-id
node_id using the new tcl instruction “sendto”.
The syntax is “BΒedgeAgent sendto node_id
bandwidth”. The BBedgeAgent that exists on
every node simulates a situation where a BB
client is connected to a router on a real network.
This agent operates as client that makes the
communication with the base BB and updates its
local router with the configuration modifications
according to new admissions. In our case, this
agent also stores data regarding the adjacent
nodes of the node and communicates with the
base BB every time the base BB needs this
information. So, the architecture is partly
distributed as some information is stored locally

on every “client” and not centrally on the base
BB.

3.3 The admission control algorithm

All this new functionality on NS-2 provides the
capability to simulate a network that is managed
by a Bandwidth Broker. The Base Bandwidth
Broker Agent connects to every Edge Bandwidth
Broker Agent. The system function is achieved
with the use of the messages that are always sent
either from an Edge Bandwidth Broker to a Base
Bandwidth Broker or from a Base Bandwidth
Broker to an Edge Bandwidth Broker. Two Edge
Bandwidth Brokers never communicate by
sending messages to each other, since the Base
Bandwidth Broker always intervenes in the
communication.

The system’s operation begins when an Edge
Bandwidth Broker makes a request asking
guaranteed bandwidth of x bps from the node it
is running to some other network node. If at that
time the Base Bandwidth Broker serves another
request, then it sends an answer informing the
Edge Bandwidth Broker about its unavailability
to serve the new request. Otherwise, the Base
Bandwidth Broker begins to serve the request.
Initially, it checks whether there is available
bandwidth from the node where the Edge
Bandwidth Broker that made the request runs, to
the other end-node. Every Edge Bandwidth
Broker maintains information about the available
bandwidth between the node on which it is
running and all the adjacent nodes. The
bandwidth that is available to be managed by the
Bandwidth Broker is specified on each edge
bandwidth broker agent and can be a fraction of
the total bandwidth. The Base Bandwidth Broker
searches the routing tables to find the next hop
n1 from the node n0 that made the request to the
end-node nk. Then, the Base Bandwidth Broker
sends a query to the Edge Bandwidth Broker that
runs on node n0 asking if there is available
bandwidth between the nodes n0 and n1. If the
answer is affirmative, the Base Bandwidth
Broker finds the next hop n2 that lies in the path
from node n1 to node nk and sends a query to
node n1 asking if there is available bandwidth
between the nodes n1 and n2. If all the answers
are affirmative, this procedure continues until
node nk is reached. This means that there exists
available bandwidth from node n0 to node nk and
the Base Bandwidth Broker will send a positive
answer to the Edge Bandwidth Broker that made
the request so that node n0 is notified that it is
allowed to begin transmitting data to the
backbone network. The procedure will be
completed after the Base Bandwidth Broker
sends to all the Edge Bandwidth Brokers that lie
on the path n0,n1,…,nk, messages informing them
to reduce by x bps the available bandwidth on

 5

the links that constitute the path. In case one of
the Edge Bandwidth Brokers sends a negative
answer, because there is not sufficient bandwidth
available on a link, the Base Bandwidth Broker
sends a negative answer to the node that made
the initial request and the procedure ends there.

Following the admission of a new request, the
next most important point on the operation of the
bandwidth broker is the resource allocation
scheme that is used in order to provide the
admitted guarantees.

3.4 The supported QoS service

The Bandwidth Broker provides to the users a
QoS service that tries to provide bandwidth
guarantees as well as minimum delay and jitter.
This service is the IP Premium and is now
supported by many network providers. The main
characteristic of this service is that it follows the
classic DiffServ architecture. It classifies the
packets using the DSCP values 46 and 6 for
admitted and downgraded packets. The policing
is performed at the edge of the network and in
the core routers only priority queuing is
performed.

The original ns-2.26 functionality supports
packet classification at the edge routers using the
source-destination pair of the IP header. We
have already enhanced the simulator so that the
classification is done using the DSCP field of the
IP header. This enables packets that have the
same source and destination nodes but belong to
different applications to belong to different
classes as well, and packets with different source
and destination nodes to belong to the same
class. We have also implemented the Modified
Deficit Round Robin Scheduling Algorithm
(MDRR) [6][15] and changed the whole queue
management mechanism to enqueue packets
based on DSCP. The QoS service, as it has been
implemented, classifies the packets for each
class that has been admitted by the bandwidth
broker with DSCP value 46. Then, when the
packets are inserted in the network, we apply

strict token bucket policy in order to make sure
that the transmitted rate agrees with the admitted
rate. Next, on all the network nodes, the queue
management mechanism is properly configured.
The used queue management mechanism is a
high priority queue on every node that is used
for all the admitted traffic classes. Additionally,
instead of priority queuing, the MDRR
mechanism can be used. With this decision, the
admitted traffic (for the QoS service) except
from bandwidth guarantees, also benefits from
low delay and jitter that is provided by the strict
priority queues.

The role of the bandwidth broker in this stage
is to reconfigure properly the backbone routers,
every time a new request has been accepted.
More specifically, when the admission control
module responds with a positive answer, the
Base Bandwidth Broker informs the edge
bandwidth broker client that made the request
and starts the procedure to configure the network
devices. The Base Bandwidth Broker is aware of
the routing information and determines the path
and therefore the backbone routers that need to
be configured. In this case, the Base Bandwidth
Broker informs the necessary edge BB clients
that operate on each backbone router. Next, the
clients use the data structure where they save all
the information about the links that they manage
and their status to determine the information
about the reserved amount of bandwidth.
Moreover, they have been provided with a
configuration template of the QoS service and
therefore they create the appropriate
configuration parameters for the queue
management mechanism. The next step for each
client is to apply the configuration parameters to
the queue management mechanism (Priority
Queuing).

Summarizing the procedure described above,
upon receiving a request from an edge client, the
Base Bandwidth Broker reacts according to the
following pseudocode:

Get routing info from the source to the sink

Store the links that should be reconfigured in vector v

for all links in v

 determine the edge BB client that manages this link

 Determine the new configuration parameters

 send the new configuration parameters to the edge BB client

end for

 6

Upon receiving a call from the base
bandwidth broker, the edge bandwidth broker's
function performs the following steps:

Retrieve from the data
structure the total reserved
bandwidth for the link

Apply the configuration
parameters to the QoS
mechanisms at the managed
routers

4 Experiments
The Bandwidth Broker, as it has been
implemented on the NS-2 simulator and
described in section 3, was tested for various
network topologies and traffic loads. The scope
of all the tests was initially to measure the
performance of the implemented modules
(algorithms) and afterwards to test a full
scenario of the available bandwidth broker
service in order to provide end to end QoS. The
4 network topologies that were used for the
tests are shown in Figure 3. For every
simulation test, the network was loaded with
background traffic that was inserted with the
cross connect method [3], [9].

Router

Router

Router

Router

Router

RouterRouter

End-user

End-user

End-user

End-user

Router

Router

Router

Router

Router

RouterRouter

End-user

End-user

End-user

End-user

RouterRouter

Router

Router

Router

Router

Router

Router

Router
End-user

End-user

End-user

End-user

Router

Router

Router

Router

Router

Router

Router

Router

Router

Router

Router
End-user

End-user

End-user

End-user

Router

Router Router

Router

Router

Router

Figure 3: The tested network topologies

4.1 Performance Evaluation

Initially, we measured the packets that are
exchanged every time a new request is submitted
and the bandwidth broker admits it and are
presented on Table 1. The number of the packets
depends on the location of the Base Bandwidth
Broker on the network. It is obvious from the

admission control algorithm and the distributed
nature of the implemented bandwidth broker that
the number of the packets depends on the
location of the Base Bandwidth Broker on the
network. In case that the routing path of the new
flow does not contain the router that the BB base
is connected to, then the number of packets is
larger.

Topology Packets sent by BΒ

edge
Packets sent by BΒ

base
Total packets

1 6 14 20
2 8 20 28
3 10 26 36
4 12 32 44

Table 1: exchanged packets for the above topologies

 7

Our next step was to evaluate the performance
of the Bandwidth Broker and the overhead that it
inserts in the network. As we presented above,
the exchanged packets for each request and
answer from the BB depend on the network
topology and where the main Bandwidth Broker
agent and the specific source and sink are
located. The packets that are exchanged for the
Bandwidth Broker purposes are quite small (64
bytes) and also are classified as high priority
packets using the priority queues that are used
for the admitted traffic. This choice has been

done in order to avoid packet loss for BB
communication if the network is congested. We
also tried to measure the total time for the BB
operation, which is the time from the moment
that the source sends a request until the Base
Bandwidth Broker agent answers positively or
negatively. These measurements have been done
for all the above network topologies (Figure 3)
and for various time periods (every 50 sec) in
order to make sure that they are independent of
random situations of congestion.

Measurement
time (sec)

Topology 1
(sec)

Topology 2
(sec)

Topology 3
(sec)

Topology 4
(sec)

50 0.106 0.170 0.267 0.331
100 0.105 0.174 0.243 0.307
150 0.107 0.165 0.244 0.300
200 0.103 0.171 0.246 0.306
250 0.108 0.169 0.235 0.310

Table 2: Duration of bandwidth broker operation

Studying the results in Table 2, we can

conclude that the duration of the total operation
to process a new request and answer positively
or negatively depends on the network topology
and in particular on the number of nodes and the
length of the routing path. As the topology
becomes larger, the duration of the total process
increases. This result is also related with the
implementation of the BB, because it keeps
information on all BBEdge agents and requires
communication of the BBBase Agent with all
the BBEdge Agents on the routing path in order
to admit a new request. In a new BB model
where all the information will be stored locally
on the BBBase Agent, this time can be reduced
but then some of the advantages of the
distributed model are lost. Therefore, the total
duration of a BB operation can be reduced, but

nevertheless the measured duration can not be
considered as high, since it is less that 0.5
seconds.

4.2 Testing the whole Bandwidth broker
service to provide end to end QoS

Having tested the BB operation, we then
simulated the scenario were the backbone links
are all 10Mbps and the BB manages 2Mbps on
each link for QoS requests (as determined by the
QoS service’s dimensioning). The topology that
was used is the first one in Figure 3. At this
point, 2 sources requested 1Mbps each and were
successfully admitted by the network as the total
bandwidth was available. The throughput of the
traffic that these 2 sources created is presented in
Figure 4.

0

0,2

0,4

0,6

0,8

1

1,2

3

3,
8

4,
6

5,
4

6,
2 7

7,
8

8,
6

9,
4

10
,2 11

11
,8

12
,6

13
,4

14
,2 15

15
,8

16
,6

17
,4

18
,2 19

19
,8

time (sec)

 T
hr

ou
gh

pu
t (

M
bp

s)

flow1 flow0

Figure 4: Throughput of the admitted traffic by the BB

According to this figure, the 2 sources created

traffic with transmission rate exactly 1Mbps and
the traffic was received by the recipient since it
had crossed the network with high priority. This

 8

result demonstrates the proper operation of the
BB module, since it admitted the requested flows
and it also succeeded in keeping these
guarantees. The following experiments aim at
simulating more complicated situations, such as
the situation where the sources create traffic with
higher rate than the rate admitted by the BB.

In this case, we simulated the above scenario
with the difference that the sources request
1Mbps each, but as soon as the BB admits the
requests, the sources start creating traffic with a
rate of 2Mbps (which is a rate double than the
one they requested). At this point, the operation
of the policing mechanism of the IP Premium
service is very crucial as it should limit the
source’s rate. The policing mechanism that the
resource allocation scheme uses is token bucket
policing and has been configured to drop the
packets that exceed this profile. On the other

hand, it could have been configured to treat the
exceeded packets with best effort service, but in
any case it is a policy decision regarding the
operation of the network and we decided to
simulate the stricter approach, where the
exceeded packets are dropped. Several
combinations of policing profiles were tested
and are presented in Table 3. The policing
profile consists of the committed rate and the
burst size. At this point we should also mention
that the policing profile is closely related to the
transport protocol that the sources use and in our
case the sources use the UDP protocol.

Figure 5 presents the results for the above
policing profiles and Table 4 the average
throughput that the flows experience using the
above policing profiles.

Policing profile Token bucket rate Token bucket depth

1 1.1*admitted rate 10*MTU
2 1.1*admitted rate 2*MTU
3 1.1*admitted rate 1*MTU

Table 3: The used policing profiles

Policing profile Average throughput of flow
1 (Mbps)

Average throughput of flow
2 (Mbps)

1 1.018 0.980
2 1.013 1.068
3 1.013 1.067

Table 4: Average throughput of the flows for the 3 different policing profiles

Profile 1

0

0,5

1

1,5

2

2,5

3

5,
8

8,
6

11
,4

14
,2 17

19
,8

22
,6

25
,4

28
,2 31

33
,8

36
,6

39
,4

42
,2 45

47
,8

time (sec)

th
ro

ug
hp

ut
 (M

bp
s)

flow1 flow0

Profile 2

0

0,5

1

1,5

2

2,5

1

18
,4

35
,8

53
,2

70
,6 88 10
5

12
3

14
0

15
8

17
5

19
2

21
0

22
7

24
5

26
2

27
9

29
7

time (sec)

tro
ug

hp
ut

(M
bp

s)

flow0 flow1

Profile 3

0

0,5

1

1,5

2

2,5

1 19 37 55 73 91 10
9

12
7

14
5

16
3

18
1

19
9

21
7

23
5

25
3

27
1

28
9

time (sec)

th
ro

ug
hp

ut
 (M

bp
s)

flow0 flow1

Figure 5: The final throughput of the flows for the above policing profiles

 9

According to the results that are presented in
Table 4 and in Figure 5, it is obvious that the
policing profile should be as tight as possible in
order to prevent the network from transmitting
traffic that exceeds the admitted guarantees. The
best choice seems to be to configure the
committed rate slightly higher than the admitted
(in the experiments it is 10% higher) and the
burst size only a few packets (1-2 packets), as in
this case the final throughput that the flows
achieve is very close to the requested and also
the variation of the throughput is normalized.

6 Conclusions - Future work
The main work that is presented in this paper is
our effort to implement the basic functionality of
a Bandwidth Broker on NS-2. Its operation is to
manage a specific fraction of bandwidth on each
link, receive requests and admit or reject them
according to the bandwidth availability and the
predefined agreements (SLAs). The Bandwidth
Broker provides a QoS service to the admitted
traffic using well-known DiffServ functionality.
The tests that were described above demonstrate
that the Bandwidth Broker operates well as it
reacts properly for each request. Additionally,
there was an investigation of the policing
mechanism that should be used to avoid
transmitting more guaranteed traffic than the
admitted. Finally, we tried to evaluate the
performance of the Bandwidth Broker by
measuring the exchanged packets as well as the
average processing time of a new request on the
Bandwidth Broker, which is quite small.

All the tests that were performed also
indicated some points that need further research
and investigation. Our first goal is to investigate
alternative admission control algorithms. Also,
we plan to implement a more centralized second
version of the Bandwidth Broker where all the
information will be stored on the main BB agent
and the admission control will be centrally
performed. The edge BB agents will inform the
base BB for new entries (new nodes on the
network) and will also periodically update the
information on the base BB agent. This version
will be tested and compared with the current
distributed version in order to find the
appropriate trade-off between distributed and
central model. Finally, we plan to implement the
communication protocol between two adjacent
Bandwidth Brokers and simulate the scenario of
interconnected domains that are managed by
independent Bandwidth Brokers.

References
1. RFC 2475 “An Architecture for Differentiated

Services”, S. Blake, D. Black, M. Carlson, E.
Davies, Z. Wang, W. Weiss, December 1998

2. RFC 2905 “AAA Authorization Application
Examples”, J. Vollbrecht, P. Calhoun, S. Farrell, L.
Gommans, G. Gross, B. de Bruijn, C. de Laat, M.
Holdrege, D. Spence, August 2000

3. C. Bouras, D. Primpas, A. Sevasti, A. Varnavas
“Enhancing the DiffServ architecture of a
simulation environment”, 6th IEEE International
Workshop on Distributed Simulation and Real
Time Applications, Fort Worth, Texas, USA,
October 11 – 13, 2002

4. Olov Schelén, Andreas Nilsson, Joakim Norrgård,
Stephen Pink “Performance of QoS Agents for
Provisioning Network Resources”. In Proceedings
of IFIP Seventh International Workshop on Quality
of Service (IWQoS'99), London, UK, June 1999

5. S. Vegesna, ‘IP Quality of Service: the complete
resource for understanding and deploying IP
quality of service for Cisco networks’, Cisco Press,
2001

6. C Bouras, M. Campanella, M. Przybylski, A.
Sevasti “QoS and SLA aspects across multiple
management domains: The SEQUIN approach”
(http://www.elsevier.com/locate/future). Future
Generation Computer Systems 19 (2003), pp 313-
326

7. G. Fankhauser, D. Schweikert, and B. Plattner,
"Service Level Agreement Trading for the
Differentiated Services Architecture," Tech. Rep.
59, TIK, 1999

8. http://www.isi.edu/nsnam/ns/ns-build.html
9. http://ouranos.ceid.upatras.gr/diffserv/start.htm
10. http://www.cisco.com
11. Manzoor Hashmani and Mikio Yoshida

"ENICOM's Bandwidth Broker", Saint 2001
Workshops, pp 213-220, Jan 8-12, 2001, San
Diego, USA

12. QBone Bandwidth Broker Architecture,
http://qbone.internet2.edu/bb/bboutline2.html

13. J. Ogawa, A. Terzis, S. Tsui, L. Wang, L. Zhang.
“A Prototype Implementation of the Two-Tier
Architecture for Differentiated Services”, RTAS99
Vancouver, Canada

14. C. Bouras, K. Stamos, “An Adaptive Admission
Control Algorithm for Bandwidth Brokers”, 3rd
IEEE International Symposium on Network
Computing and Applications (NCA04),
Cambridge, MA, USA, August 30 - September 1
2004

