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SUMMARY

In this article we examine the architecture of an entity used for automatic management and provisioning of resources
for DiffServ networks. We examine the existing literature and implementations in this area, focusing on the design
choices made, and we propose an architecture for the design of Bandwidth Brokers that combines an adaptive admis-
sion control algorithm for increased utilization of network resources and a mechanism for reducing the complexity
overhead that intends to be both simple and effective. Specifically, we present a novel architecture for the admission
control module that aims at achieving a satisfactory balance between maximizing the resource utilization for the
network provider and minimizing the overhead of the module. We complement our theoretical discussion with
extensive experimental simulations for the proposed Bandwidth Broker components and analysis of the results. The
simulations study the possible configurations of the proposed algorithm and also compare it with alternative admis-
sion control policies. Copyright © 2007 John Wiley & Sons, Ltd.

1. INTRODUCTION

The Differentiated Services (DiffServ) framework is one of the basic architectures that have been 
proposed for QoS provisioning in the Internet and is widely supported by network equipment 
vendors. Because the Internet consists of numerous network domains with each one acting as an
autonomous system, just using the current DiffServ framework does not solve the problem of providing
end-to-end QoS, since each domain may be incompatibly configured. One entity that has been proposed
in order to overcome this problem and provide end-to-end QoS across network domains is the 
Bandwidth Broker.

A Bandwidth Broker [1] entity is responsible for providing QoS within a network domain. It manages
the resources within the specific domain by controlling the network load and by accepting or rejecting
bandwidth requests. A user within the domain that is willing to use an amount of the network resources
between two nodes has to send a request to the Bandwidth Broker. The Bandwidth Broker chooses either
to accept or reject a request based on the network load, its admission control policy and the Service-Level
Agreement (SLA). The SLA [2] is the service contract between the service provider and every customer
that describes the service that both the costumer and the service provider have agreed upon. The deci-
sion to accept or reject a request is made by the admission control module. In the case that the requested
resource is managed by multiple domains, the Bandwidth Broker is also responsible for the inter-domain
communication with Bandwidth Brokers of adjacent domains. This procedure requires communication
between adjacent Bandwidth Brokers and also a special agreement between the domains.
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In this paper we primarily focus on the admission control part of the Bandwidth Broker’s operations.
We propose an adaptive algorithm for resource reservation requests that arrive ahead of the actual time
for which they request the resource reservation. This allows our algorithm to gather a set of multiple
requests and examine them in order to make better utilization of the network, making use of the exist-
ing literature on scheduling problems. The algorithm then attempts to balance the calculation of the
optimal solution with a limitation on the computational overhead that the algorithm itself incurs at the
Bandwidth Broker operation. The importance of monitoring and adapting the computational overhead
for the Bandwidth Broker can be highlighted when there is a high arrival rate of requests, while the
requested bandwidth for each reservation is small. Such an example is the case of multiple VoIP requests
at a high bandwidth link. We have designed the architecture so that it can be configured according to the
specific parameters of each deployment (processing power of the Bandwidth Broker module, acceptable
delays for notification from the Bandwidth Broker), so that the proposed solution is suitable for a variety
of real-world cases. There are emerging types of networks, such as wireless networks, where the demand
for quality of service is strong, and where sophisticated solutions are applicable because of the nature of
the wireless environment: smaller-capacity links compared to wired networks, frequent and more unpre-
dictable entry of new users for the existing resources. Other research teams have already taken over the
work presented in this paper in order to apply it to wireless environments.

For network providers, utilization of the network resources and maximization of revenue is one of the
most important aspects of the Bandwidth Broker’s operation. Our approach focuses on the maximiza-
tion of the used bandwidth, on the assumption that the network provider’s revenue will depend on the
product of the bandwidth requested by a reservation, times its duration, which corresponds to the
network utilization and more closely represents the actual cost that the serving of a request incurs to the
network. Other models can also be used, such as the maximization of the number of admitted requests,
in case there is a flat pricing model. Our performance evaluations examine this aspect of the algorithm’s
performance as well.

The rest of the paper is organized as follows: Section 2 discusses related work in the areas of architec-
tural design, the admission control module of a Bandwidth Broker and the possible distribution of its
functionalities. In this section we examine and compare the characteristics of some of the most impor-
tant already existing architectures. Section 3 describes our proposed algorithm for a centralized admis-
sion control module, which is evaluated through simulation in Sections 5.1 and 5.2. Section 4 discusses
the operation of the architecture at an inter-domain level, while Section 5 contains the simulations that
were conducted in order to evaluate our proposals. Section 6 describes our final conclusions and the
future work that we intend to do in this area.

2. RELATED WORK

2.1. Admission control module

Admission control means that the Bandwidth Broker has to define whether the incoming resource reser-
vation requests will be accepted or not. Once a request has been accepted, the Bandwidth Broker has to
make sure that it will be met by the network. Admission control is a very important part of the Band-
width Broker operation, because it determines the fairness between the requests and the degree of
network utilization that the Bandwidth Broker will achieve for the managed domain. An improperly
designed admission control module can lead to low network utilization, unfairness and therefore frus-
tration to the users that request resources or it can also impose an unacceptable overhead to the Band-
width Broker’s operation. However, since the operating circumstances can vary widely from one case to
another, it is improbable that a single solution will fit all operating requirements. Our approach tries to
tackle this problem by incorporating an adaptive mechanism with the intent to converge to a suitable
level for each deployment scenario.

In general, we can separate the types of reservation requests depending on the actual time period for
which they request resources:
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• Immediate requests. When an immediate request is accepted, it is immediately effective, which means
that the requested resources are reserved right away. This type of request leaves little room to the
Bandwidth Broker for implementing a strategy that maximizes the network utilization.

• Book-ahead (or advance) requests. A book-ahead request specifies the resources that will be needed at
some later point in time, which has to be specifically defined. Wolf and Steinmetz [3] give a 
thorough presentation of the concept of book-ahead reservations, while a detailed discussion on 
the benefits and potential problems with book-ahead requests can be found in Gupta [4]. In 
general, book-ahead requests provide a richer functionality to the service and allow for better solu-
tions to the admission control problem. There are a lot of actual cases in the real world where a 
book-ahead request meets the requirements of an application: for example, pre-arranged video 
conferences.

Researchers have dealt with both types of admission requests. An approach that deals with both types
of incoming requests is the resource partitioning proposed in Ferrari et al. [5], which separates the admis-
sion decision for immediate and book-ahead requests. Immediate requests that were rejected can be
reconsidered for a book-ahead reservation. In order to avoid wasting resources because of fragmenta-
tion, the authors propose a moving boundary between the two partitions. The most common mechanism
for admitting book-ahead requests is to divide time in intervals (slots) of equal size, and calculate the
resources requested by a new reservation for the time slots that it overlaps [5,6].

For both immediate and book-ahead requests, it may be possible either to specifically declare the
ending time of the reservation or not. An intermediate case is when a reservation request has to provide
both its starting and ending times, but can make new additional requests that extend its initial reserva-
tion period. Hwang et al. [7] present a Bandwidth Management Point (BMP), which uses centralized
network state maintenance and pipe-based intra-domain resource management schemes in order to
reduce the admission control time and the scalability problems. Another approach is used by Wong and
Law [8], where SLA requests are converted by the border routers in messages of the COPS protocol [9]
and refined before they are sent to the Bandwidth Broker, which makes simple decisions based on the
refined requests.

In some cases, a book-ahead request may have a flexibility of allowing the Bandwidth Broker to answer
the request by either accepting it or rejecting it not immediately but after a period of time (which can be
specified). Our algorithm takes advantage of this flexibility, in order to calculate the most efficient admis-
sion decisions that maximize the network utilization and subsequently the network provider’s profit [10].
The provider may choose to allow requests that demand an immediate answer, balancing perhaps this
capability with additional cost.

Admission control can be done either on a hop-by-hop basis [11,12] or on a per-flow basis [13]. The
former case can be implemented by first calculating the path for an end-to-end reservation through a
routing protocol like RIP or OSPF, and then running the admission control algorithm for each link in the
calculated path.

A number of data structures have been proposed for efficiently implementing an admission control
algorithm. The most common are the simple implementation using an array, and various variations using
trees like segment trees and binary search trees [11].

In the more general case, time is considered continuous and therefore reservations can start and end
at any time. It is also very common, however, to use slotted time, so that reservations are considered
using a predefined granularity. Algorithms may either benefit from this granularity or completely depend
on it for their operation [11].

Most related work for Bandwidth Brokers examines a request as soon as it arrives and accepts it if the
reservation does not exceed the unreserved link capacity [14]. This approach has benefits in terms of
speed and efficiency, but it can lead to low network utilization. Greenberg et al. [15] show how the general
admission control problem can be formulated as an optimization problem, with the goal of maximizing
the net revenue. The network utilization can improve drastically if we allow the Bandwidth Broker’s
admission control to gather a number of requests and compute a better allocation of resources. This is
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the approach we have taken in this paper. Also Chhabra et al. [16] deal with price-based admission control,
in which both online (when answers to requests have to be issued immediately) and offline (when
requests can be gathered and evaluated) versions of the problem are discussed. Our work combines the
above approaches with an adaptive scheme that attempts to achieve a preferable balance between optimal
utilization of the network and minimal overhead for the Bandwidth Broker operation. An adaptive
scheme designed for the scheduling of popular video on demand that also uses delayed notification is
presented in Bouras et al. [17]. In Mykoniati et al. [18], the admission control approach taken by the
TEQUILA project is presented, which is based on a feedback model that can be tuned by operational poli-
cies and strategies. Its main characteristic is that it is based on the ability of the network to provide QoS
using functions that dimension the network on the basis of anticipated demand, and on the actual status
of the network using measurements.

2.2 Centralized and distributed architectures: comparison description and discussion

In this section we present proposed bandwidth architectures from the relevant literature on the design
of Bandwidth Brokers [19–22]. Our intention is to outline the advantages and disadvantages of the dif-
ferent strategies for the Bandwidth Broker design. Many researchers have worked on this area, produc-
ing various solutions, each of which is potentially suitable for several situations and weak on others. A
survey on existing Bandwidth Broker implementations can be found in Sohail and Jha [23].

Some of the architectures presented in the comparison table (Table 1) have been implemented, like the
University of Kansas and the UCLA architectures, while others are theoretical or at the design phase. The
table offers a view of the wide variation between the characteristics of the various proposed and 
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University of MIPTel QBone UCLA CTI NS-2
Kansas implementation

Architecture Centralized Centralized Centralized, can Distributed Distributed
be extended for
distributed

Admission Maintains and Pre-configured Traffic demand Accepted if Restricted by
control consults policy bandwidth matrix SLA is not available

database threshold violated bandwidth
Routing table No Yes Yes Yes No
Security Not defined Not defined Not defined Not defined Not defined
Robustness/ Not defined Not defined Recovery actions Recovery Not defined
failure recovery from most actions from

common failures most common
failures

Inter-domain TCP sockets for Custom Custom protocol Custom TCP
interface Linux routers/ protocol protocol

Telnet automated
script for
Cisco routers

Intra-domain TCP sockets for Custom COPS/SNMP/ COPS TCP
interface Linux protocol Telnet

routers/
automated script
for Cisco
routers

User interface Web-based GUI Message GUI, Host/User, Web-based —
exchange Server/Gateway GUI (PHP)

Interface

Table 1. Comparison table of various Bandwidth Broker architectures



implemented Bandwidth Broker architectures that one can find in the current literature. Most of the 
existing literature proposes Bandwidth Brokers that consist of a central module that deals with func-
tionalities such as admission control, inter-domain communication, maintaining a routing table interface,
connecting to the network routers and sending the proper configuration parameters.

In order to overcome the scalability issues that are associated with a centralized Bandwidth Broker
model and to avoid having the Bandwidth Broker as the bottleneck while the network itself is under-
utilized, Zhang et al. [13] propose a distributed Bandwidth Broker architecture. Their design consists of
one central Bandwidth Broker (cBB) and a number of edge Bandwidth Brokers (eBBs) in the domain.
There are two levels that represent the QoS states: link level and path level. The idea is to maintain data-
bases with information regarding both the reservations on the link and on the path level. The path-level
database information is extracted from the link QoS state database. While the link state database is only
maintained by the cBB, however, each of the eBBs maintains a mutually exclusive subset of the path state
database, and can therefore handle the admission control load for the relevant paths. The authors then
propose a number of variations on how the admission requests can be handled, depending on whether
they will be accepted or not. Also Cortese et al. [24] implements a hierarchical scheme of Bandwidth
Brokers by dividing the domain into small areas, each with its own Bandwidth Broker, and a parent Band-
width Broker at the domain level.

Comparing the distributed architectures with the centralized model, we note that while the distributed
architectures offer scalability advantages over the centralized model, they offer inferior resource man-
agement and introduce bandwidth wastage along the paths. Furthermore, if the link database needs to
be frequently accessed, the processing overhead can increase and become counter-productive.

Another important comparison point is the robustness of each solution and its behavior in unexpected
or undesirable circumstances. Failures at a network component can be categorized as follows:

• The component does not operate at all.
• The component operates erroneously and sends unexpected and unknown messages to its commu-

nicating nodes.
• The component is overrun by a malicious entity (e.g., a virus) and appears to be sending valid mes-

sages but it does not obey the proper behavior and tries to downgrade, corrupt or completely halt
the proper operation of the architecture.

The last two categories are also called Byzantine behaviors and can be summarized as states where the
component operates in an arbitrary fashion, not according to the algorithm it was designed to follow.

We also mention another trade-off between the centralized and the distributed classes of architectures:
a distributed architecture can be designed in such a way that greater robustness and tolerance for some
failed entities of the Bandwidth Broker architecture can be achieved, while a centralized architecture has
a single point of failure. On the other hand, it is much easier to secure and closely protect a single Band-
width Broker entity than it is to safeguard and scrutinize the behavior of a multitude of components that
comprise a distributed Bandwidth Broker architecture.

Furthermore, a distributed architecture also has to take into account the issue of consistency between
the components that comprise the Bandwidth Broker. This is also true in some cases of a single Band-
width Broker entity, where in order to increase robustness additional backup components are introduced
(like a duplicate Bandwidth Broker).

It also has to be taken into account that the relative pros and cons of the architectures are affected by
the deployment environment. Since the first category of failures (complete shutdown of the failed com-
ponent) is usually much more easily discovered and more desirable than the rest of the failure categories,
if the Bandwidth Broker architecture is implemented and deployed in an environment where such fail-
ures can be ruled out, the relevant types of consideration can naturally be discarded. Our proposal pre-
sented in the sections below is based on a centralized module, while an attempt to examine possible
benefits from a distributed architecture can be found in Bouras and Stamos [25].

BANDWIDTH BROKERS IN DiffServ NETWORKS 31

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2008; 18: 27–46
DOI: 10.1002/nem



3. DESCRIPTION OF ADMISSION CONTROL ALGORITHM

We define standby requests as requests that have not yet received an answer (either confirmation or rejec-
tion). Confirmed is a book-ahead request that has received an affirmative answer but waits to be acti-
vated. These states are shown in Figure 1.

For a DiffServ domain, it is not efficient to keep per-flow status in the core routing devices, and there-
fore an aggregated approach is used at the core routers. Admission control is performed by the Band-
width Broker at the domain scale, using the hose model [26] that has been proposed for VPN
provisioning. Its basic idea is that bandwidth management is simplified by assigning a limit at the band-
width that each edge router is allowed to accept in the domain. Its operation assumes that proper dimen-
sioning of the network has taken place and that part of the available bandwidth for the links has been
assigned to the management of the Bandwidth Broker for the DiffServ service. We have to note here that
this does not mean that all or most of the reservation requests will necessarily be accepted, but that the
network design will guarantee that there will be enough resources in order to service the reservation
requests that have been accepted. The hose model has the benefit of offering the flexibility to the edge
device of sending traffic to a set of endpoints without having to specify the detailed traffic matrix and
can also reduce the required size of access links through multiplexing gains because of the aggregation
of flows between endpoints. Various methods of implementing the hose service model are given in
Duffield et al. [26]. Our approach decouples the admission control decision from the routing issues. This
means that core routers are not involved in the process of admission control and signaling. Furthermore,
while combining routing decisions with admission control can be beneficial, it is not always possible, or
desirable for scalability reasons. Packets of a specific flow can be routed using different paths without
affecting the admission control process.

An important problem for admission control and dimensioning of network resources is how to take
into account the burstiness and self-similar behavior of network traffic. The problem can be simplified
by defining a unifying parameter for the characteristics of network resources that accurately captures
their effect on resource usage. Various researchers [27–29] have dealt with the concept of effective band-
width, which can be computed based on traffic parameters such as mean rate or maximum burst size. It
is an additive amount of bandwidth that is large enough to guarantee that the QoS requirements of all
flows are met.
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We suppose a new request has the form of

(1)

where tstart and tend are the starting and finishing times for the reservation, b is the requested bandwidth,
and w is the period for which the request can wait until it receives either a confirmation or a rejection of
the reservation. Our model is based on the peak rate allocation, so that each request specifies its maximum
transmission rate and the admission control module has to make sure that the sum of all peak rate does
not exceed the allocated service capacity. Bandwidth is defined at Layer 3, as the maximum amount of
bits/second of IP traffic, including the IP header that an endpoint may insert to the network. The Band-
width Broker’s admission control module keeps a list of unanswered requests, which we call waiting
queue, Wq, sorted by their starting time tstart. As soon as any item in Wq, say r1 (with the closest w to the
current time) is about to expire, the admission control module calculates the answers that it will provide
to this and a number of other requests, essentially by solving an offline scheduling problem.

Suppose n is the cardinality of Wq. We define

(2)

and we want to find a subset Rc � R such that Σri∈Rcbi ≤ B at any time point where B is the total available
bandwidth for the service (defined by the dimensioning for the DiffServ service according to the hose
model) and try to maximize Σri∈Rcbi throughout the period from the earliest tstart to the latest tend in the R
set. Rc is the set of requests that will be accepted by the algorithm, while requests in the set R–Rc will be
rejected. This problem is NP-complete [30] and therefore it is proposed to use an approximation algo-
rithm to solve the following linear programming relaxation in polynomial time [16] and then make the
solution discrete regarding the variables xi, which represent whether ri is accepted or not:

max Σi∈Rbi(tend – tstart)xi

Σi∈R(t)bixi ≤ B, for all t ∈ (earliest tstart, latest tend) in R
0 ≤ xi ≤ 1, i ∈ R

In order to avoid approximation of the solution, this problem can be solved using integer linear pro-
gramming, which, however, becomes very costly computationally as the problem instance increases
(which happens for a high rate of incoming requests). A mechanism monitoring the instance size and
carefully adapting it is needed in this case. The important point is how to select the R set. A simple
approach would be simply to set R = Wq. This solution, however, can become computationally costly, and
it can furthermore lead to low network utilization, because requests that have been made very far in
advance will probably have little competition, and will therefore be most likely accepted. In the example
in Figure 2, this can be demonstrated by request r6. If r6 is included in the R set as soon as r1, it will cer-
tainly be accepted, since there it has no other competition. It would be better though to delay the deci-
sion for r6, since by that time other requests (more profitable than r6) could have arrived.

Including in R only requests that overlap with tend for r1 may also not be an attractive solution, because
it might require the algorithm to be invoked too frequently, and that could introduce an unacceptable
overhead. In Figure 2, the algorithm will have to be invoked separately for r1, r3, r5 and r6. As our algo-
rithm does not provide for overbookings, we have also drawn a line that shows the maximum band-
width that can be allocated to the requests.

In order to combine the benefits of both these extremes and reduce their shortcomings, our solution is
to have an adaptive parameter for the size of R, which will increase if the number of requests in Wq

increases or if the algorithm was very time consuming, and decrease otherwise, according to

if (Ck-1 – T > T)
Rsize(k) = 1

else if (Ck-1 – T > 0)
Rsize(k) = (1 - (Ck-1 – T)/T) Rsize(k – 1)

else
Rsize(k) = Rsize(k – 1) + (Wq – Rsize(k – 1))*a

R r r r Wm q= { }1 2, , . . . , �

r t t b wstart end, , ,( )
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Ck−1 is the duration of the previous computation of the requests to be accepted, a is a parameter that deter-
mines the increase rate of Rsize and T is a threshold value of the maximum allowable time for a compu-
tation. Configuring parameter a determines how close to Wq we want the size of the R set to become after
an increase, so a is essentially the adaptation factor of the algorithm’s operation. The above pseudocode
guarantees that if the algorithm lasts more than an accepted threshold, it will be simplified to admission
control for a single request, which is the simplest computation possible and we can reasonably expect to
reduce the computational overhead to very low levels, from which the algorithm can slowly progress to
more complex computations according to the adaptation parameter a. In general, an adaptive scheme
can have problems of oscillation between extreme values, so we have considered the above scheme that
does not sharply increase or decrease the size of the R set, except for the case that for some reason the
computation time far exceeds the acceptable threshold.

As an example, if the last computation lasted more than twice the predefined threshold, then the size
of the subset R that will be examined for the current computation is reduced to 1, and therefore the com-
putation is simplified to examine whether accepting the next request violates the resource restrictions or
not. The assumption is that in that case the computation of an optimal solution is adding a large over-
head to the Bandwidth Broker’s operation, and we therefore simplify the computation as much as pos-
sible. In the case that the computation time exceeds the threshold but not twice its value, we assume that
the overhead is significant and must be reduced (but is not unacceptable as in the previous case). We
reduce it by a factor of 1 − (Ck−1 − T)/T, so that the reduction becomes more aggressive as Ck−1 becomes
larger. Finally, if the computation time is still below the threshold, we assume that there is space for
increasing the computation overhead by increasing the size of the subset R, and this is done using a factor
a ∈ (0, 1). The closest to 1 this factor is chosen, the more aggressive the increase is, with the obvious limit
of the size of the whole Wq.

In general, finding an optimal solution to the problem of optimally scheduling the requests is NP-
complete, since the Knapsack problem, which is known to be NP-complete [30], is equivalent to a 
simpler version of our scheduling problem where all tstart and tend times are equal. However, because 
it is not critical to have the optimal solution, we can either use an approximation scheme that runs in
polynomial time and approximates the optimal solution with the desired accuracy, or try to limit 
the instance size of the problem in order to be within the computational capabilities of the underlying
equipment.

Following is a summary of the algorithm for calculating the accepted requests at an ingress point of
the domain:
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If the current computation takes too long and w1 is about to expire, the computation is ignored and a
simpler fall-back mechanism is used which will individually examine r1 and then restart the computa-
tion for R − {r1}.

Because of the way the algorithm is constructed, it is not generally optimal on network utilization. As
we have mentioned, we make this trade-off in order to reduce the computation overhead for the Band-
width Broker module. A very fast processing module (or, conversely, a low rate of admission requests)
leads the algorithm to quickly converge to a good approximation of the optimal solution.

Thus, assuming that the computation time does not reach or exceed the threshold, we have that

Solving the recursive function gives

and therefore

(3)

where Rsize init is the initial size of R.
Therefore, Rsize converges to the size of Wq as quickly as (1 − a)t converges to near-zero values, which

happens quite rapidly, especially if a has been chosen close to 1, which means a very high adaptation
capability.

The algorithm is also not fair with respect to maintaining a first-come first-served order (since an earlier
request might be rejected in favor of a later request that will better utilize the network), but it guaran-
tees efficient operation with respect to the response to requests (it assures that all requests will be
answered on time, either positively or negatively) and it respects each request’s maximum waiting time
w. Compared to a simpler admission control algorithm that examines the requests as they arrive, our
proposal also is more cautious regarding ‘big’ requests that consume a lot of bandwidth for a long dura-
tion. The reason is that whereas a simple admission algorithm would accept a big request and then
‘starve’ the rest of the requests until the ‘big’ request was satisfied, our proposal examines requests over
a longer time period and is therefore capable of promoting a large number of ‘small’ requests (which

R t a R a
a

a
W a

t
t

qsize size init( ) = −( ) + + −( ) − −( )





×−

−

1 1 1
1 11

2

R t a R a a W a
t t

qsize size init( ) = −( ) + + −( ) + + −( )( ) ×− −
1 1 1 1

1 2
. . .

R t R t W R t aqsize size size( ) = −( ) + − −( )( ) ×1 1
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while (Wq not empty)
while (next request has not expired)
forall i where (bi > B)
xi = 0 // reject overbooking requests

Solve LP maximization:
max Σi∈Rbi(tend – tstart)xi

Σi∈R(t)bixi ≤ B, forall t ∈ (earliest tstart, latest tend) in R
xi ∈ {0,1}, i ∈ R
exit loop

end while
if ((C – T) >= T)
Rsize = 1

else if ((C – T) > 0)
Rsize = (1 - (C – T)/T)* Rsize

else
Rsize = Rsize + (Wq – Rsize)*a

end while



make better utilization of the network because they are more capable of filling availability ‘holes’) than
a single ‘big’ request that blocks most of the subsequent requests. This theoretical assumption is also
experimentally examined in the evaluation section of our work.

4. INTER-DOMAIN RESERVATIONS

Dealing with inter-domain reservations is a very important but also difficult and relatively untouched
issue in practical environments. Some efforts (Geant2 JRA3 [31], DRAGON [32]) have focused on the
automated inter-domain provisioning of Layer 2 services, while Geant2 SA3 [33] have been working on
the automated multi-domain provisioning of Differentiated Services. Other proposals include the one
from the TISPAN standardization body of the European Telecommunications Standards Institute (ETSI)
[34], which has produced the Resource and Admission Control Subsystem (RACS) specification identi-
fied in the overall TISPAN Next Generation Networking (NGN) architecture. RACS [35] is the TISPAN
NGN subsystem, responsible for elements of policing control including resource reservation and admis-
sion control in the access and aggregation networks. In the specific area of providing end-to-end QoS
requirements for a PSTN-grade voice and multimedia service, the MultiService Forum (MSF) has pro-
posed a QoS solution [36] and considered how it might best be supported over a packet network infra-
structure. This solution has a number of components, among which is the Bandwidth Manager [37], and
has chosen to adopt the DiffServ PIB (Policy Information Base) for the interface between the Bandwidth
Manager and the edge routers of a domain. It covers hierarchical organization of Bandwidth Manager
components, and reservations between managers in adjacent domains. Additionally, an end-to-end QoS
solution has also been defined by 3GPP [38], and it incorporates a Policy Decision Function that approx-
imates part of the Bandwidth Broker functionality discussed here. The 3GPP proposal is mainly special-
ized on 3G mobile networks and defines its own PIB for interfacing to the Policy Decision Function.

There are a number of issues that have to be resolved for efficient inter-domain reservations to work,
which include compatibility in the technology and architectures, SLA negotiation, pricing, routing,
restoration and authentication issues. One of the basic aims of the Bandwidth Broker concept was to give
a uniform solution to some of these issues. Our proposed admission control algorithm can be adapted
in several ways in a multi-domain environment.

A basic criterion is how the routing function for the end-to-end reservation will take place. End-to-end
routing that requires full knowledge of intra-domain topology is an efficient but practically not feasible
solution. Even if domain managers were willing to share full internal topology, updating and using such
information becomes a very complex procedure. A first level of inter-domain routing (where domains
are considered black box nodes and only inter-domain links are taken into account) is necessary. This
level of ‘domain’ routing can be performed in two ways:

• The source domain determines all domains that will have to be traversed until the destination
domain is reached.

• The source domain only determines the next adjacent domain, and each domain in turn determines
the next domain until the destination domain is reached.

Also admission control can take place in two ways:

• All domains that are involved in the reservation simultaneously process the reservation.
• Every domain waits for a positive answer from the preceding domain before it starts its own admis-

sion process.

The first option suits better the characteristics of the proposed admission control algorithm, because by
simultaneously examining the reservation requests each domain has the capability to gather multiple
requests and better utilize its resources without delaying the overall process. However, our solution does
not exclude any option for the admission control at the inter-domain level, which is an issue we intend
to further investigate in the future.
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Regarding inter-domain security, the effort in this area has concentrated on securing protocols such as
the Simple Inter-domain Bandwidth Broker Signaling (SIBBS [39,40]) protocol, which deals with the Band-
width Broker communication across domains. The SIBBS protocol is proposed by the Internet2 commu-
nity in order to implement the inter-domain communications of resource reservation between the
Bandwidth Brokers. It exchanges two pairs of messages for QoS configuration purposes: the Resource
Allocation Request (RAR)/Resource Allocation Answer (RAA) messages to request for a service, and the
CANCEL/ACK messages to terminate the requested service. The transmitted information is sensitive
and therefore has to be protected against possible security compromises. Lee et al. [41] outline the main
security threats that inter-domain Bandwidth Broker communication has to protect against, and explain
how the Public Key Infrastructure (PKI) can be integrated in order to produce a secure SIBBS imple-
mentation. Their implementation offers authentication, integrity, timeliness and non-repudiation services
based on the PKI technologies. Communication between Bandwidth Brokers is encrypted in order to
protect against the types of attacks described in the previous chapter.

5. PERFORMANCE EVALUATIONS

5.1 Evaluation set-up and admission control module configuration

Before assessing the performance of the algorithm compared with alternative admission control tech-
niques, we decided to examine the adaptive properties of the algorithm and its behavior according to
the tuning of the configurable parameters. For this phase of experimentation we used a simulated system
that accepted random requests (requests that did not follow a specific pattern in terms of their arrival
time or reservation requests), in order to study the performance of the algorithm and the effect of the
computation time threshold and adaptation parameter a on the behavior of the algorithm. Our simulated
system was running on an Intel-based PC with 512MB of memory running Windows 2000. The simula-
tions examined a high-level view of the network, without taking into account details at the packet level
since our main focus was on examining the relative performances of the algorithms and isolating these
from impact by external or low-level parameters.

The parameters for each request were randomly produced [42] within suitable boundaries (regarding
the total duration of each simulation, the total available bandwidth, and the minimum and maximum
reservation requests) for each situation that we wanted to simulate. Maximum available bandwidth for
the service were set at 50Mb/s, while the duration of each simulation was set at 30 time slots. The source
code and configurations for our simulations and experiments can be found elsewhere [43].

Figures 3–5 display the adaptive operation of the algorithm. In Figure 3, where a smaller threshold has
been defined, we can see that in no case are more than four requests examined simultaneously, and there-
fore the computation time for approximating the integer linear programming solution is bounded on this
threshold of the size of the input. Similarly, in Figure 4, where the threshold has increased, the algorithm
can gather more requests and therefore achieve better network utilization. Figure 5 displays the exam-
ined requests for an even largest threshold, that still does not permit examining more than eight simul-
taneous requests. In all cases the algorithm probes for larger sizes of the R set, until the point where the
computation time threshold is reached. At that point the algorithm retreats, as can be seen in Figures 3–5.

In the presented simulations the value of the adaptation parameter a was identical at 0.1, which pro-
duces a cautious behavior of the algorithm. The size of the examined set R is adapted gradually. Larger
values of a produce sharper increases and reductions of the R set. This can be observed in Figures 6–8,
which display the adaptive behavior of the algorithm when the a value is doubled at 0.2. The algorithm
tends to examine a larger number of requests (using a larger R set), but the threshold is also exceeded
more often and the algorithm has to adapt to smaller sets of examined reservation requests. This behav-
ior is magnified depending on the adaptation parameter. As Figure 9 illustrates, our simulations showed
that larger values for the adaptation parameter are not suitable for the proposed algorithm. We therefore
determined that in order to avoid an oscillatory behavior it is better to keep the adaptive parameter a
around the 0.1 range of values and not larger than 0.5.
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Figure 3. Examined requests for smaller threshold
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Figure 4. Examined requests for medium threshold
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Figure 5. Examined requests for larger threshold
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Figure 6. Examined requests with smaller threshold and aggressive adaptation
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Figure 7. Examined requests with medium threshold and aggressive adaptation

threshold=5, a=0.2

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

time

re
q

u
es

ts
 e

xa
m

in
ed

Figure 8. Examined requests with larger threshold and aggressive adaptation



5.2 Comparative evaluations

Our next set of experiments was designed in order to evaluate the admission control algorithm’s per-
formance in terms of the achieved acceptance rate and network utilization. For this reason, we imple-
mented our proposal in the popular ns-2 network simulator [44], running on an Intel-based Linux PC
with 288MB of main RAM memory available and a Pentium III Coppermine with 256kB cache memory
on the processor chip, which operated at the frequency of 700MHz. The parameters for each request were
randomly produced within suitable boundaries (regarding the total duration of each simulation, the total
available bandwidth, the minimum and maximum reservation requests) for each situation that we
wanted to simulate, and each set of requests designated a specific ingress point at the network (so all
requests competed for the same resource limit at the ingress point of the simulated network). We simu-
lated a scenario where every request had to specify a steady amount of bandwidth for a specific dura-
tion with specific time bounds (there was no possibility for a request to specify a variable bandwidth
rate). Randomness was obtained by using the ns-2 RNG class. This class contains an implementation of
the combined multiple recursive generator MRG32k3a [45]. The MRG32k3a generator provides 1.8 × 1019

independent streams of random numbers, each of which consists of 2.3 × 1015 substreams. Each substream
has a period (i.e., the number of random numbers before overlap) of 7.6 × 1022. The period of the entire
generator is 3.1 × 1057. More specifically, the random generator was independently generating numbers
that were then assigned to each of the attributes for a new request. If the random combination of attrib-
utes was invalid (for example, the start time of the reservation was after the stop time of the reservation)
the request was discarded as if it had never been generated. Otherwise, it was generated by the node
and sent to the Bandwidth Broker for examination. In order to see how each algorithm could scale, we
experimented with generating up to 1000 requests in a 50s interval. Listings of the random requests gen-
erated, as well as the source code for replicating our results in ns-2, can be found elsewhere [43]. The
topology defined at the simulator was a star network, with the Bandwidth Broker module being located
in the center and requests originating from one leaf node towards another leaf node of the network. The
links of the simulation represented the provisioning of hoses as defined in Duffield et al. [26]. Maximum
available bandwidth for the service was set at 100Mb/s, while the duration of each simulation was set
at 50 time slots. For the adaptive algorithm the results were obtained setting the adaptation parameter a
at a value of 0.2 (moderate adaptation) and a computational threshold of both 5 and 10 time slots. The
test case examined in our experiments represents the requirements of a network providing QoS to a large
number of discrete end users. These end users might require end-to-end QoS guarantees for specific appli-
cations, such as VoIP or videoconferencing, with varying start/end times and resources. Such a network
has typically performed dimensioning at its core, which is modeled by the VPN model referred in this
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paper. The deployment of an automated resource brokering mechanism is also necessary in this case. The
inter-domain negotiations and signaling are more thoroughly covered in the previous sections and related
work, while our experiments focus on the admission control procedure.

Our main goal was to study the operation of the adaptive admission control algorithm (from now on
called AAC) at a more realistic setting and compare their performance with other alternatives. In partic-
ular, the alternatives we studied are the Simple Admission Control (from now on called SAC), which
examines each request on its own and accepts it if there are enough resources to satisfy it, and the Price-
Based Admission Control algorithm (from now on called PBAC), which makes a decision on which
requests will be accepted trying to optimize the network utilization by gathering and evaluating a group
of requests. In order to solve the NP-complete problem that arises, an approximation algorithm is used
which can approximate the optimal solution within a specified range. This type of admission control is
similar to the offline version of the algorithm presented in Chhabra et al. [16]. We have selected the above
algorithms for evaluation, because their comparison can provide a good insight into the characteristics
we are interested in studying. SAC is the simplest algorithm and therefore a good benchmark for the
more complicated solutions. PBAC lacks adaptive capabilities, allowing us to identify the effect they have
on the simulated environment. The main metrics that we are interested in, in order to compare the per-
formance of the algorithms and evaluate the relative advantages and weaknesses of each, are:

• The acceptance rate, which shows the percentage of requests accepted out of the total number of
submitted requests. In the case that a flat pricing model is followed (where there is a standard profit
per reservation) this metric also corresponds to the network provider’s revenue.

• The generated profit for the provider, which is calculated as the product of the bandwidth con-
sumption of each reservation times its duration. This is, of course, a convention since the pricing
model can vary depending on the specific circumstances. We believe though that such a metric is
one of the most representative ones, since it can be understood as the amount of resources that is
consumed by a reservation and the sum for all reservations shows the network utilization that each
algorithm achieves. We are also interested in the average profit achieved per request, which can be
in several environments an additional indicator of the effectiveness of the algorithm. In an envi-
ronment, for example, when there is an additional overhead to the provider for signaling and allo-
cating a new reservation, it would be beneficial to achieve better network utilization per individual
request.

• The delay of being able to deliver either positive or negative answers to the submitted requests.
• The average size of the set of requests examined together, which is a measure of the complexity of

the optimization problem solved, and therefore of the overhead to the system.

For each experiment we have measured the percentage of accepted requests, the delay that was required
before the Bandwidth Broker would reply to a request, and the percentage of network utilization achieved
by each algorithm. The values reported are averages from multiple executions of the simulations, which
generally produced identical or very similar results. These results are summarized in Table 2, where
average values are presented for each algorithm. Repeating the experiments with the same distribution
of requests per time slot produces very similar results (within 5%) regarding the average values, which
leads us to believe that the results are representative of the behavior of the algorithms in the ns-2 simu-
lation environment.
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Averages per algorithm Acceptance rate Average delay Average network utilization
(time slots) (bytes × time slots)

SAC 29.60% 0 3 920 014
PBAC 21.79% 7.08 5 243 307
AAC thr = 5 25.72% 5.44 4 532 672
AAC thr = 10 24.77% 5.48 4 780 385

Table 2. Summary of results



The following figures display in more detail the behavior of the algorithms under different experiments
with different request frequencies, and they help reveal the features of each algorithm, its relative weak-
nesses and strengths.

As Figure 10 demonstrates, the acceptance ratio of all algorithms remains fairly similar throughout the
experiments. SAC is the algorithm that slightly achieves the highest acceptance rate, while PBAC is the
one with the lowest, with AAC variations covering the middle. This is not a surprising result, since SAC
will always accept a request if there are enough resources available, while PBAC is more oriented towards
generating the maximum amount of resource utilization, rather than treating all requests alike. This result
leads us to the conclusion that in environments where the most significant factor is the satisfaction of the
maximum amount of users regardless of their relative weight, the good performance of the SAC algo-
rithm combined with its simplicity make it the most suitable choice. In most cases, however, all users
will not generate the same revenue for the network provider and a cost scheme will most probably have
to take into account both the relative weight of each request and the effort to maximize the efficiency and
utilization of currently available resources. We have tried to cover this aspect in Figures 11 and 12, which
display the total absolute profit generated for each experiment and the profit per request, respectively.
We have chosen to measure the provider’s profit by calculating the product of a request’s duration (in
time slots used by the ns-2 simulator) times the resource allocation that a reservation requires. This metric
essentially describes how well the network links are filled with actual traffic, assuming that all simulated
users take advantage of the allocated network resources.

The results in Figure 12 demonstrate the relative strengths of the price-based approaches, since PBAC
is the most efficient algorithm in this regard, followed by AAC, with SAC displaying the worst 
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performance. AAC even surpasses the PBAC performance in several cases when the request arrival ratio
increases. The most plausible explanation for this result is that the increased arrival rate of new requests
makes the larger size of the set examined by the PBAC algorithm unnecessary. Increasing the threshold
for the AAC algorithm seems to have a positive effect on its performance, but comparison with PBAC
shows that a restrained increase in the threshold value is enough for obtaining equal or superior results.
Therefore, the recommendation for fine-tuning the AAC algorithm is that it is beneficial to increase the
threshold value as soon as the arrival rate of request increases.

In most real environments it is expected that a relatively quick response to a request will be essential.
As Figure 13 demonstrates, SAC is extremely responsive, as expected. This also means that there is room
for a trade-off that can be used to improve performance in other areas such as the utilization of the
network resources. PBAC is not efficient in that regard, as it demands the most time in order to respond
to the reservation requests, a situation that in many real-world scenarios is unattainable. The adaptive
variations prove to be attractive trade-offs, since for most of the experiments the additional delay they
incur is minimal, while at the same time they manage to improve the utilization of the provider’s
resources, as demonstrated above.

6. CONCLUSIONS AND FUTURE WORK

Our proposed adaptive admission control algorithm improves on the common admission control
modules of Bandwidth Brokers on a number of aspects. It offers better utilization of the network
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resources, while keeping a balance between simplicity and functionality. It automatically falls back to a
simpler model without trying to optimize the network utilization, if its operating environment indicates
that the algorithm is too complex for the circumstances. While we have studied the operation of the algo-
rithm and admission control using the hose model at the domain’s ingress points, it can easily be extended
and formulated in order to operate on a per flow basis, a variation of the basic algorithm that we intend
to simulate and compare with the presented architecture. Our experimental results show that the pro-
posed algorithm compares favorably to other variations of the admission control module when network
utilization and reduced computational overhead are important considerations.

A number of improvements can be made to the basic algorithm, depending among other things on the
implementation environment, the formulation and the specific circumstances of the admission control
problem that we face. For example, in some cases it might be allowed for some requests to not specify
their ending time. The Bandwidth Broker algorithm can easily be extended to take into account such
requests, by making the conservative assumption that they will reserve the requested bandwidth indef-
initely. This flexibility of course can be offered at a higher than normal cost, possibly determined by the
SLA parameters. Another idea that we plan to integrate into the basic algorithm is of requests that have
been overall rejected, but which can be notified at a later time when they will have better chances of
success. This can be achieved by keeping a tentative list of the total bandwidth requested at any time,
for both admitted and pending requests.

Our future work will also focus both on the extension of the study on the Bandwidth Broker architec-
tures, and on the issue of securing the Bandwidth Broker’s operation from compromised Bandwidth
Broker components, from disobedient clients, and from stolen or altered messages while transmitted on
the network. Specifically, we intend to evaluate our model on an actual environment and measure our
implementation’s resilience to various kinds of failures. Finally, we intend to further analyze and docu-
ment the proper configuration of the operation parameters of the described architecture.
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