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Abstract

The issues of performance, response efficiency and data consistency are among the most important for data
intensive Web sites. In order to deal with these issues we analyze and evaluate a hybrid run-time management
policy that may be applied to data intensive Web sites. Our research relies on the performance evaluation of
experimental client/server configurations. We propose a hybrid Web site run-time management policy that may
apply to different Web site request patterns and data update frequencies. A run-time management policy is viewed
as a Web page materialization policy that can adapt to different conditions at run-time. We define a concept
that we have named the Compromise Factor (CF), to achieve the relationship between current server conditions
and the materialization policy. The issue of Web and database data consistency is the driving force behind our
approach. In some cases though, we prove that certain compromises to consistency can be beneficial to Web
server performance and at the same time be unnoticeable to users. We first present a general a comparative cost
model for the hybrid management policy and three other related and popular Web management policies. We then
evaluate the performance of all the approaches. The results of our evaluation show that the concept of the CF may
be beneficial to Web servers in terms of performance.

Keywords: Web server performance, content management, Web metrics and measurements, Web practice and
experience, Web consistency, views over the Web, querying/searching on the Web, Web latency

1. Introduction

In our days the Web is the most popular application on the Internet. Even though most
users do not know how the Web works, almost all of them experience a phenomenon that is
formally known as Web latency. Web latency can generally be viewed as the delay between
the time a user requests a Web page and the time that the Web page actually reaches his/her
computer. It can be traced down to all components of the client-server model [13,18,21].
One of the basic causes of latency is the Web/database interaction process that is invoked
in order to keep Web data consistent in cases where Web servers use a database as a back-
end. The reason for using databases as back-ends to Web servers is the help that they
provide in managing, upgrading and maintaining Web sites [9,17]. Even though there have
been other approaches proposed (such as the integration of Web servers into databases),
the independent Web and Database client/server model, is the most popular WWW service
approach in our days. This is the model that will be studied in this paper.
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A solution for reducing Web latency and keeping Web/database consistency is run-time
management policies. The issue of implementing run-time management policies for Web
sites, has become very important in recent years, due to the explosive growth of the Web.
A run-time management policy may be viewed as a Web server component that is executed
in parallel with the Web server’s functions and has total (or partial) control over those func-
tions. A run-time management policy receives inputs such as user request rates, database
update frequencies and server utilization parameters. Some of the outputs produced, are
the pages that should be materialized, the pages that should be kept in the server’s cache
and the pages that should be invalidated from cache. This work proposes a hybrid run-time
management policy that can efficiently handle the data demand and request load of a data
intensive Web sites.

In order to propose run-time management policies for data intensive Web sites we first
determine the meaning of data intensive Web sites. In this work we will refer to data
intensive Web sites as sites that share two common characteristics:

• A lot of data is demanded of these Web sites at a certain point in time.
• They use a frequently updated database as a back-end.

We will propose a general cost model for a hybrid run-time management policy that can
be tailored to different Web site needs and then present its performance evaluation. The
main aim of a run-time management policy, as considered in this work, is to efficiently
handle Web page request demand and at the same time perform efficient dynamic Web page
materialization. We will look at Web page materialization through a fragment approach and
show that it is more efficient than the classic page by page approach.

The paper is structured as follows. Section 2 presents related work in the field of run-time
management policies, Web page materialization, dynamic Web data and Web/Database
consistency. Section 3 presents the basic issues related to dynamic data handling on the
Web and how we deal with them in this work. In Section 4 we introduce the CF concept and
show how it can be computed in the general case. Section 5 contains the cost models for
the most popular approaches for dynamic data handling on the Web today but also of two
run-time management policies that we propose. In Section 6 we present our experimental
methodology and in Section 7 our experiments. Finally, Section 8 contains the future work
that can be carried out in the field and our conclusions.

2. Related work

A lot of work has been done in the fields of specifying, executing and optimizing run-time
management policies for data intensive Web sites. In [5–7,15], the approach is presented
for dealing with highly dynamic Web data, which was followed by IBM, during the design
and implementation of several Olympic games Web sites. The approach introduces a frag-
mentation technique based on Server Side Includes (called fragments). This approach is
the one used in this paper. The work at IBM utilizes a triggering algorithm to propagate
fragment updates to a materialization module. The basic concern is to keep Web/Database
consistency. The ideas that will be presented in this paper have been inspired by the IBM
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approach. We contribute to their work by introducing an acceptable data freshness com-
promise scenario, which permits the execution of the materialization policy on the same
hardware as the original Web site. A case study for materializing and replicating dynamic
data is presented in [22]. The paper presents an interesting materialization architecture that
is quite straightforward.

STRUDEL [8,10] is a Web site management tool that enables site builders to construct
and manage a site declaratively. The basic idea is the separation of the Web site’s data, the
site’s structure and the site’s graphical representation. Araneus [19,24] is a management
system for Web-bases. The system proposes a specific organization of Web documents
and Web data inside a Web-base. This structure ensures efficient management and perfor-
mance. These two projects require the design and the implementation of Web pages and
Web sites with the use of specific steps and tools. This way, they can ensure performance.
The projects have contributed to our work in the field of Web engineering. Our approach
can be considered more generic. We only require that Web sites must be designed with
the fragment approach. Our run-time management policy can then be utilized without any
further constraint.

Work related to the optimization of query workloads on DBMS can be found in
[2,11,12,23]. This work mainly discusses view selection techniques in order to boost
DBMS performance. The work can easily be utilized on the Web, in terms of choosing
Web pages that should be materialized. In this paper we do not prioritize certain pages
against others in the materialization procedure. We treat each page (each fragment actu-
ally) individually. It is part of our future work to add a prioritization and selection module
before the materialization module. In [16] the authors shift the database view paradigm
to the Web and show that it can be very useful. Their research work presents a simple
cost model that is based on the same principles as the one presented in this paper. The
basic difference is that we present a more analytic cost model that evaluates more compli-
cated policies that those presented in [16]. A similar approach to ours but implemented in
the field of data replication is presented in [20]. This approach is similar to ours since it
permits the stale replication of data to distributed servers in order to boost user query per-
formance. The basic difference with the approach in this paper is that the approach of [20]
is not transparent to users, since they can actually ask for a degree of acceptable staleness
along with their queries. This would be very difficult in a Web environment.

Another interesting approach on Web fragmentation and caching is presented in [26].
This approach does not require the “a priori ” construction of Web pages with the use of
Web fragments. It presents a novel caching approach that relies on automatic Web page
fragmentation. This work can be very beneficial to our work when we move our approach
to already implemented Web pages that do not follow the Web fragment approach. We
intend to utilize it in our future work.

3. Dynamic Web data and caching

There are two “extreme” approaches for handling dynamic data on the Web. The first is
the “on the fly” creation of dynamic Web pages on every user request and the second is
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the materialization and caching of all dynamic Web pages before any request has been
received. The first approach has the obvious drawback of large response times and the
second has the drawback of serving “stale” data to users. In this paper we refer to these
approaches even though they do not qualify as run-time management policies, in order to
show their extreme results.

The issue of materialization and caching of dynamic Web pages is one that has been
thoroughly discussed in the bibliography. The basic idea behind materializing and caching
dynamic Web pages is that a Web server response is much quicker when serving static and
not dynamic pages. There are several issues related to dynamic Web page caching:

Cache consistency and invalidation policy. The basic problem behind caching dynamic
data is consistency maintenance between the data that are stored in the database and
those that are stored in server cache. The problem of keeping caches consistent is a
very “popular” problem that has been addressed not only in the context of Web server
caches, but mostly in the context of proxy servers. Some of the proxy server approaches
can be applied to Web server caches [1,14,25]. The basic tradeoff related to cache con-
sistency and invalidation policies is between server resource utilization and the degree
of cache consistency. This is the basic issue that this paper deals with. The balancing
problem between consistency and utilization is addressed through the hybrid run-time
management policy that we propose.

Object caching. Another interesting issue in Web server caches is the selection of the
objects that can be cached. Web pages are not the only objects that can be cached in a
Web server’s cache. The issue of caching Web page fragments has also been presented
in the bibliography [5–7,15,26] and is very interesting in relevance to our approach,
since in this work we propose the materialization and caching of Web fragments that
can be viewed as Server Side Includes.

Cache size and type. The size of the cache is one of the most important parameters in
caching dynamic Web pages. In the extreme case that an infinite, or a very large cache,
was available many of the problems related to caching would be eliminated. Since, in
our days, large disks are available and fairly inexpensive, the issue of cache size should
not be considered very important when referring to disk caches. In the case of memory
caches the issue of capacity is still considered very important. In this work we will
consider disk caching of Web fragments as a part of our materialization approach.

Caches and Web server dependency. A caching scheme for dynamic Web pages should
be applicable to many different Web server implementations. In order to achieve this,
caching schemes should be implemented as a standalone application that is able to ex-
change information with various Web servers. Our approach can be implemented in
different Web server environments, as long as Web server utilization parameters can be
passed from the Web server to the management policy module.

In this paper we efficiently address all the issues mentioned above, through a run-time
management policy. Throughout this paper a run-time management policy will be consid-
ered as a materialization policy with a materialization frequency that can adapt to specific
server parameters at run-time. The materialization that we will consider in this paper uses
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Figure 1. The materialization architecture.

disk caching, but it can very be modified to use memory caching as well. Figure 1 shows
the materialization architecture.

Materialization is a term used to represent the transformation of dynamic Web data into
static Web data. In this paper the materialization of a dynamic Web page will cause the
creation of a static instance of the page, at a certain point in time. The data contained inside
the static page are those found in the database at the time of materialization since, all the
queries to the database are executed at that time.

When materialization policies are applied to Web sites, users request the static equiva-
lents of dynamic Web pages. It is clear that if the materialization frequency is not selected
according to database updates, users will view stale data on some of their requests.

4. The Compromise Factor (CF) concept

In this section we present a concept that can be beneficial to the key decision that must be
made by a materialization policy. An efficient materialization policy must select material-
ization frequencies for all the pages in a Web site. The main goal is to apply an efficient
materialization policy to a Web site that will have two main characteristics:

• to include data that is as “fresh” as possible in materialized Web pages and
• to be executed on a Web server without degrading its response performance.



28 BOURAS AND KONIDARIS

Figure 2. A Web page constructed by independent fragments.

It is clear that the two main materialization policy characteristics imply a balance (or
tradeoff) between data freshness and response performance. This work deals with this
tradeoff by introducing a balancing technique called the Compromise Factor.

Initially we assume that Web pages are constructed by independent fragments. Many
fragments make up a Web page. For simplicity reasons we will also assume that every
fragment is a result of a unique query to a database. The model that we use in our evaluation
is shown in Figure 2. In pure implementation terms, Web fragments are implemented as
independent Server Side Includes. It is clear that the fragments included in every Web
page, need to be updated with different update frequencies. For example, a stock quote
fragment must be updated more frequently than a news-ticker fragment. Let us assume
that the fragments constructing a Web page, change with respective mean frequencies of
3, 5 and 8 changes/min. A change in a fragment, results in a change in the Web page
that includes it. Consequently the whole Web page changes with a mean frequency of
16(= 3 + 5 + 8) changes/min. If this Web page was materialized with a mean frequency
of 16 materializations per minute one could say that “fresh” data would be sent to users
on average, over a period of time. The CF is a metric that computes the materialization
frequency in relevance to server conditions, fragment update frequencies and Web page
request frequencies.
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4.1. The problem

Let us assume that a Web server hosts a data intensive Web site constructed with the frag-
ment approach (e.g., [15]). As the site is data intensive, the demand is high and the back-
end database is frequently updated. The server follows a run-time management policy that
requires the materialization of changed Web pages in frequent time intervals. The Web
server has two main responsibilities:

1. To efficiently respond to user requests for pages.
2. To efficiently materialize changed Web pages in order to keep the data included in them

as fresh as possible.

The CF concept is a metric for keeping the balance between efficient response times and
efficient materialization. In most Web sites the periods of peak request coincide with the
periods of frequent data updates. The run-time management policies that are used in most
cases only consider the parameter of page freshness in order to go ahead with materializa-
tion. In other words, the run-time management policy does not rely on current Web server
conditions and current request demand, in order to decide on a suitable materialization
policy. The CF concept enables Web servers to switch between materialization frequen-
cies according to certain conditions. In order to provide a step by step approach to the CF
concept, we present the following examples.

Example 1 (Fragment based CF selection for one page). Let us assume that a Web page
consists of six fragments. Each fragment has a different mean update frequency. We intend
to find a metric that would help us decide on a suitable materialization frequency. The
empirical methodology that we use is the following. First we plot Figure 3. The vertical
axis represents the fragment number and the horizontal axis represents the corresponding
mean update frequency. The small squares correspond to the update frequencies of each
fragment. The thick vertical line represents the CF. It is clear that the concept of the CF in
this example represents the value of the materialization frequency that must be applied to
the specific Web page. The selected value of the CF depends on the update frequencies of
the fragments contained in the Web page. The position of the vertical line on the graph may
change according to server conditions and move to the left or to the right. The graph area
on the left of the CF line corresponds to the fragments of which the updates frequencies are
“satisfied” by the current value of CF. Since the materialization frequency is greater than
the update frequency of these fragments, they will be kept “fresh,” from a user’s point of
view, over a period of time. Of course, since user requests may occur after a fragment has
been updated and before it has been materialized some user requests will possibly receive
“stale” data. The graph area on the right corresponds to the fragments of which the update
frequencies are not “satisfied” by the current value of the CF. This means that there will
be materialized pages in the context of which these fragments will be “stale.” In the case
where the line representing the CF would be over Freq9, and thus equal to the update
frequency of the fastest changing Web page fragment, the materialized Web page would
mostly hold “fresh” data.
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Figure 3. The fragment based CF approach.

Example 2 (Web page based selection of the CF for multiple pages). In this example we
work on a Web page basis and attempt to compute the CF for multiple pages. Let us assume
that a Web site contains six Web pages that are constructed with the use of fragments. We
intend to find a metric that would help us batch the materialization of many pages at once.
What we actually want to achieve is the definition of a materialization frequency that would
be suitable for as many pages as possible. In order to do this we plot the graph of Figure 4.
The vertical axis represents the Web page numbers appointed to each page. The horizontal
axis represents the update frequencies of the Web pages. Each page has a series of update
frequencies associated with it. These frequencies are those of the fragments contained in
every page. The fragment frequencies form a frequency window for every Web page as
shown in Figure 4. The thick vertical line represents the current CF for the set of Web
pages contained in the graph. The CF here, defines the batch materialization frequency for
the set of pages.

Figure 4 shows that, according to the value of the Compromise Factor, each Web page
is compromised at a different extent. Page1 is not compromised at all, Page2 is 75%
compromised since 3 out of 4 of its fragments have update frequencies greater than the
current value of CF, and Page3 is 33% compromised. This approach is similar to [20] since
a Web server administrator can use it to identify specific precision-performance tradeoffs.
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Figure 4. The Web page based CF approach.

From what we have presented until now, the CF always causes compromises to Web
page “freshness.” This is not true. The concept of the CF can facilitate a Web server
without introducing compromises to Web page freshness.

As presented in this paper, a Web page “freshness” compromise is actually the inclusion
of portions of stale fragments in materialized pages. Looking at the issue from the users’
point of view, it does not really matter if a Web page contains stale data in the period
of time that they are not visiting it. Their only concern is whether a Web page contains
“fresh” data when they request it. An extreme example will prove this. Let us assume
that a Web page contains a stock-quote. A stock-quote must be, at least, updated every
one or two seconds in order for it to be useful. One user visits the specific Web page
every minute. Users will always be getting an updated version of the stock quote if the
Web page is materialized with a frequency of at least 1 materialization every 60 s, even
though the stock quote changes with a much greater frequency. It is clear that a Web page
materialization policy should take into consideration, not only the update frequencies of
the page but also the request frequency of the page. In order to approach the CF concept
under this consideration we present the following example.
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4.2. Selection of the CF

The selection of the CF for a set of Web pages requires specific steps. The selection of an
appropriate CF initially involves two parameters. These are:

• the update frequency of every page,
• the request frequency of every page.

The parameter that must be specified is the materialization frequency for every fragment.
In the following paragraphs we present a technique for the appropriate selection of the CF
(= materialization frequency) that requires a set-up period at the server.

We assume that we have selected a set-up period equal to T . During this period we will
define the mean update (fup) and request (freq) frequencies of every page in the Web page
set under consideration. During T the total requests for fragment k are:

TotalRequestsFk
=

N∑
i=1

OccurFk (i) · TotalRequestsPi
. (1)

In Equation (1), N is the total number of Web pages in the Web set under consideration
and OccurFk (i) is the number of occurrences of fragment Fk in Web page i. This number
is usually equal to 0 or 1. Conceptually this means that a Web fragment will normally
appear at most once in a Web page, since it would be redundant to show the same infor-
mation more than once inside a Web page. In order to be as general as possible we assume
that this variable can be even greater than 1. Equation (1) defines that the total requests
for fragment k will be equal to the sum of the total requests to the pages that contain it,
multiplied by its occurrence in those pages. But the total requests to Web page Pi during
T are equal to its request frequency multiplied by the set-up time T :

TotalRequestsPi
= freq(i) · T . (2)

Thus, Equation (1) becomes

TotalRequestsFk
=

N∑
i=1

OccurFk (i) · freq(i) · T

⇔ TotalRequestsFk

T
=

N∑
i=1

OccurFk (i) · freq(i)

⇔ freq(k) =
N∑

i=1

OccurFk (i) · freq(i). (3)

Equation (3) connects the request frequency of every fragment with the request frequencies
of the Web pages under consideration. With a similar rationale we come to Equation (4):

fup(k) =
N∑

i=1

OccurFk (i) · fup(i). (4)
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In order to connect the Web page update and request frequencies with the fragment materi-
alization frequencies and the CF concept we follow the simple algorithm presented below:

fmat(k) = max(freq(k), fup(k)).

The algorithm actually defines the values of the materialization frequency by comparing
the values of the request and the update frequencies. When the update frequency of a frag-
ment is greater than its request frequency, the materialization frequency of that fragment
must by at least equal to the request frequency of the fragment. In this case the CF is equal
to the request frequency of the fragment and the compromise is shown in Equation (5):

CompromiseFk
= fup(k) − freq(k). (5)

When the request frequency is greater than the update frequency of a fragment the materi-
alization frequency should be equal to the update frequency. In this case the CF is equal to
the update frequency and the compromise is equal to zero.

Since the values of the update and the request frequencies of the fragments are derived
from the correspondent values of the Web page update and request frequencies, that can be
directly computed through the Web server logs during the period T , the final values of the
fragment materialization frequency in both cases will be:

fmat(k) =
N∑

i=1

OccurFk (i) · freq(i) when freq(k) < fup(k) (6)

and

fmat(k) =
N∑

i=1

OccurFk (i) · fup(i) when freq(k) � fup(k). (7)

It is clear that the CF in both cases does not cause any staleness (on average) in the ac-
tual viewed data. A compromise is introduced only to the materialization frequency of
the fragments (in the case where freq(k) < fup(k)) since more frequent materializations
are considered unnecessary. The concept of the CF must also be dependent on the server
utilization parameters. If certain parameters (disk and memory utilization, total requests)
pass a specific threshold then the materialization frequencies must be reduced. This proce-
dure must also be reflected in the technique that we have presented since the Web server’s
utilization parameters are directly reflected in their total request and update frequencies.
Thus, if we select appropriate threshold values for the total request and update frequencies
for the Web server, we can reduce all the fragment materialization frequencies propor-
tionally when these values are passed at some point in time. A run-time materialization
must always keep track of server utilization parameters through the server’s monitoring
functions and adjust materialization accordingly.
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5. Cost models

The cost model of a run-time management policy is the basis of its performance evaluation.
In order to have a theoretical view on the efficiency of a policy, one must construct a cost
model corresponding to the policy. In this paragraph we construct four cost models that
correspond to the four experimental configurations that we will use in our performance
evaluation in the next paragraph. The four cost models correspond to the following config-
urations:

• A configuration where all pages in a Web site are static and consequently no policy is
implemented.

• A configuration where all pages in a Web site are dynamic and no policy is implemented.
• A configuration where a Web page-centric policy is implemented. This approach con-

siders that all Web pages in the Web site are materialized in frequent time intervals.
• A configuration where a Hybrid run-time management policy is implemented. This

approach considers that all fragments of the Web pages in a Web site are materialized in
frequent time intervals and it actually implements the proposed hybrid policy.

The parameters that we will use to construct the four cost models are the following:

• N : the number of pages in the Web site.
• L: the number of fragments contained in all Web pages.
• Fp-upi

and Ff-upi
: the update frequencies of Web page i and fragment i.

• Cp-geni
and Cf-geni

: the cost of generating Web page i and fragment i.
• Fp-aci

: the access frequency of Web page.
• Cp-dreadi

and Cf-dreadi
: the cost of reading page i and fragment i from the disk cache.

• Cp-mread and Cf-mread: the cost of reading page i and fragment i from the memory.
• Cp-dwrite and Cf-dwrite: the cost of writing page i and fragment i to the disk cache.

The cost models presented in this section will evaluate three types of server costs. These
are:

The Access cost. This cost represents the resources that the server must allocate to serve
Web pages to users. The notation used for this cost is CA.

The Construction cost. This cost represents resources that the server must allocate in
order to construct pages before serving them to users. Construction costs may apply
when considering dynamic pages that must be constructed with the inclusion of data
stored in databases or when fragments must be included in Web pages before they are
sent to users (e.g., a Server Side Includes approach). The notation used for this cost
is CC.

The Materialization cost. This cost represents the resources allocated by the server to the
materialization process. It is equivalent to the cost of constructing a page and saving it
to disk or memory cache. The notation used for this cost is CM.
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5.1. All-static pages cost model

The cost model presented in this paragraph evaluates the server cost when hosting a Web
site that consists of N static pages. The total server cost during a specific time interval is
the following:

Ctotal = CA =
N∑

i=1

fp-aci
· Cd-preadi

. (8)

In this approach the server uses resources only when users access the static ages already
stored on disk. Thus, the total cost is equal to the sum of the access costs to every static
page. This is simplest case and the obvious drawback is the staleness of the static Web
pages that are served to users.

5.2. All-dynamic pages cost model

The cost model presented in this paragraph evaluates the server cost when hosting a Web
site that consists of N dynamic Web pages and no materialization policy is applied. The
total server cost in this case is equal to the page construction cost plus the page access cost.

Thus,

Ctotal = CC + CA =
N∑

i=1

(fp-aci
· Cp-geni

) +
N∑

i=1

(fp-aci
· Cp-mreadi

). (9)

This approach introduces a page construction cost. This cost represents the server re-
sources that must be allocated in order to execute the database queries in a page and then
construct the corresponding HTML page that must be sent to the user. The constructed
HTML page usually resides in memory after its construction, thus the access cost of the
page is less than having the page on disk (Cp-mreadi

instead of Cp-dreadi
).

5.3. The Web page based policy

The cost model presented in this paragraph evaluates the server cost in the case of hosting
a Web site that consists of N frequently updated Web pages that are materialized with a
frequency equal to CF. The materialization policy follows the architecture presented in
Figure 1 and is executed with a frequency represented by CF (Compromise Factor):

CM =
N∑

i=1

(
CF · (Cp-geni

+ Cp-dwritei
)
)
. (10)

The cost of accessing a Web page CA is given by the following formula:

CA =
N∑

i=1

fp-aci
· Cp-dreadi

. (11)
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The total cost for materialization and accessing the Web page over a period of time is

Ctotal = CM + CA =
N∑

i=1

(
CF · (Cp-geni

+ Cp-dwritei

)+
N∑

i=1

fp-aci
· Cp-dreadi

. (12)

This policy can keep all Web pages consistent to database changes when

CF = max(Fp-up1
, . . . , Fp-upN

). (13)

When looking at Equation (13) on a page to page basis it implies that when the update
frequency of a page equals to its materialization frequency, the data contained in the page
is completely consistent to database changes. But can the value of CF be less than Fp-up
and at the same time keep Web pages consistent to database changes? We argue that this
can appear to be happening, from a user’s point of view. Let us consider a Web page
whose data is updated with a frequency of 9 changes/min (Fp-up = 9 changes/min). The
Web page is materialized with CF = 6 materializations/min. We consider the following
cases:

• The request frequency of the page Fp-ac is equal to 11 requests/min (CF < Fp-up <

Fp-ac). In this case the selected value of CF produces stale responses to user requests. In
order to keep the consistency between database changes and corresponding Web pages
we must increase the value of CF to be at least equal to the update frequency of the
pages.

• The request frequency of the page fri is equal to 5 requests/min (Fp-ac < CF < Fp-up).
In this case, even though the page’s data changes very frequently, users access the page
at a lower request rate on average. It is clear that the value of the CF does not have to be
equal to the frequency of data change since users can be satisfied by a value just bigger
than the request rate. Thus, when Fp-ac < Fp-up the value of CF can be a value between
Fp-ac and Fp-up, preferably (in terms of server cost reduction) closer to Fp-ac.

The example shows that the Web page materialization frequency does not have to be
equal to the Web page update frequency for all pages in a Web site. Some pages can be
materialized with a rate lower than the actual change rate. This is possible through the CF
concept. In following paragraphs we will present an algorithm that utilizes the CF concept
and relates the update, materialization and request frequencies of Web pages to current
server conditions. The outcome is a CF value for all Web pages in a Web site.

5.4. The Hybrid run-time management policy

In this paragraph we present the cost model of a Hybrid run-time management policy based
on Web page fragments. This policy does not consider Web pages at all. Its implementation
lies on the concept that Web pages are constructed by a number of Web fragments. Thus,
materialization is carried out on a fragment basis. The total server cost of this approach is
equal to the fragment materialization cost and the Web page access cost. The construction
cost is embedded in the access cost and is equal to the page generation cost at every access.
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The fragment materialization cost is

CM =
L∑

k=1

(
CF · (Cf-genk

+ Cf-dwritek )
)
. (14)

The access cost is equal to

CA =
N∑

i=1

(fp-aci
· Cp-geni

). (15)

The construction cost is

Cp-geni
=

j∑
k=1

Cf-mreadk
with 1 < j < k. (16)

The total cost for the implementation of the Hybrid policy is

Ctotal = CM + CA =
L∑

k=1

(
CF · (Cf-genk

+ Cf-dwritek )
)

+
N∑

i=1

(
fp-aci

·
j∑

k=1

Cf-readk

)
. (17)

The fragment based approach relies on the grouping of fragments with similar update
frequencies. It provides some basic advantages over the previous policies. The basic ad-
vantage is that a Web page is not either fresh or stale when requested. It can be partially
fresh. This means that some fragments can be fresh and some may be stale.

5.5. Cost models’ evaluation

The cost models that we have described in this section should be evaluated in terms of
performance. It is clear that the All-static model shows the minimum server costs. This is
expected since this model does not require any materialization at run-time.

The All-dynamic model incldes a page construction cost at every request. In order to
evaluate the All-dynamic model against the Web page based policy we must compare the
materialization frequency (= CF ) to the page access frequency (fp-ac). Usually the access
frequency is much larger than the materialization frequency, and thus, the All-dynamic
policy is expected to show worse results. One must note that if the value of CF approaches
the access frequency these two approaches will show similar results.

When comparing the Web page based policy to the Hybrid run-time management policy
we find that their efficiency is based on the appropriate selection of the CF. It is not clear
which will be better directly from the cost models. Their efficiency is shown in the follow-
ing paragraphs through experimental results. Their cost models, on the other hand, can be
very useful to evaluate their efficiency under specific circumstances.
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6. Methodology

In order to evaluate the Compromise Factor concept in the context of a hybrid run-time
management policy, we implemented four different experimental scenarios. Our primary
goal was to simulate real Web site conditions. We wanted to evaluate our proposal against
real Web conditions. We gave special attention to Web page construction techniques and
Web page request patterns. In the following paragraphs we describe our four different
experimental scenarios in detail. The scenarios that will be described below are experi-
mentally evaluated in the following section. They are directly related to the cost models
of the previous section and deal with the same Web site with the use of four management
approaches.

6.1. Scenario 1: Static Web pages

In this scenario we evaluated a Web site that consisted of static pages. The Web site
consisted of 30 static Web pages. No policy was implemented. The pages were requested
through 30 independent client processes with the use of a Zipf model [4,27]. Every page
was requested through a client process. The request intervals followed the Zipf model
which was used because it is the most popular request distribution model on the Web.

6.2. Scenario 2: Dynamic Web pages

In this scenario we evaluated a Web site that consisted of dynamic pages. The Web site con-
sisted of 30 dynamic Web pages. No policy was implemented. The pages were requested
through 30 independent client processes with the use of a Zipf model. The dynamic Web
pages contained a total of 40 queries to database tables. We assumed that all the data con-
tained in a Web page were the result of a database query. In order to be as consistent to
real Web site scenarios, we constructed the dynamic pages in a way that they all issued 10
specific queries to the same database tables and also 10 queries to other database tables.
This way we wanted to simulate the construction of real Web site pages, that usually con-
sist of standard (e.g., menus, headers, footers etc.) fragments that represent the Web page’s
template, and also fragments of data that change from page to page in the Web site.

6.3. Scenario 3: Use of the Compromise Factor

In this scenario we evaluated a Web site that consisted of frequently updated static Web
pages. The Web site consisted of 30 static Web pages. A run-time management policy
was applied. The run-time policy caused the materialization of all the Web pages in the
Web site at a certain frequency. This means that every static Web page also had a dynamic
equivalent. Every n seconds a request was issued for the dynamic equivalent page. This
caused the execution of the required database queries and the construction of the page.
The resulting HTML was saved as the static equivalent, overwriting the older copy. The



PERFORMANCE EVALUATION OF A HYBRID RUN-TIME MANAGEMENT POLICY 39

static pages were then requested by our 30 client processes. The request model was the
same Zipf model of scenario 1. This scenario was executed for three different values of the
Compromise Factor. The materialization policy was executed every 2, 5 and 10 s. We chose
to evaluate CF values less than 10 s because we wanted to simulate the materialization
needs of popular applications such as stock quotes and online athletic results.

6.4. Scenario 4: The Hybrid run-time management policy

In this scenario we evaluated a Web site that consisted of dynamic Web pages. The differ-
ence between the dynamic pages of this scenario and the dynamic pages of scenario 2 was
that this scenario included dynamic pages that did not execute the required database queries
every time they were requested. They were constructed with the use of the fragment ap-
proach that we have already described. We assumed that every database query represented
a Web page fragment. This means that every Web page consisted of 10 standard fragments
and 10 differentiating fragments. Every fragment was represented by a server side include
statement to a static txt file on the Web server. The static txt files represented Web page
fragments and contained the HTML of every fragment. In this scenario we executed the
materialization of the standard fragments every 10 s and the materialization of the differ-
entiating fragments every 2 s.

7. Performance evaluation of scenarios

The performance evaluation had three specific goals. These were:

The performance evaluation at the server. This evaluation step aimed at measuring
server parameters such as CPU utilization, available memory and throughput at the
server. We measured these server parameters during all the experiments that we imple-
mented.

The performance evaluation at the clients. This evaluation step aimed at measuring
mean response times at the clients for all the experimental configurations that we im-
plemented.

The evaluation of Web page freshness at the client. This evaluation step aimed at mea-
suring the degree of Web page freshness at the clients. We aimed at evaluating the per-
centage of fresh (and stale) data that reached the clients during different experiments.

7.1. Server performance

In this section of the performance evaluation, we evaluate the performance of the Web
server at the time of execution of every policy and technique. We focus on three basic
server parameters. The parameters are the following:

• the server’s memory utilization,
• the server’s CPU utilization,
• the server’s throughput.
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Figure 5. The server memory utilization graph for all approaches.

For every parameter we present the results through graphs and then present our conclu-
sions.

7.1.1. Memory utilization. Figure 5 shows the available kbytes of memory on server
at the time of the execution of the experiments. Higher bars represent better memory
utilization. The All-static technique shows the best memory utilization which was expected
since the technique demands only file retrievals from the server’s disk and their transfer to
the network. The worst memory utilization is shown by the All-dynamic policy. This was
also expected since this technique demands the execution of dynamic pages every time
they are requested. This procedure results in the extensive use of memory at run-time.
The CF = 2, CF = 5 and CF = 10 policies show very similar memory utilization. The
proposed Hybrid policy shows better memory utilization than the dynamic policy and on
average 6% worse utilization than the CF = 2, CF = 5 and CF = 10 policies.

7.1.2. Server CPU utilization. Figure 6 shows the server’s CPU utilization percentage
at the time of the experiment execution. Lower bars represent lower CPU usage, thus
better utilization. The best CPU utilization is shown by the All-static technique. Since the
technique involves only file read and file transfer functions, it is clear why the CPU does
not play a major role. The CF = 2, CF = 5 and CF = 10 policies show the worst CPU
utilization with the CF = 2 being the worst of all. The Hybrid policy shows excellent
CPU utilization since it comes in second place with better CPU utilization than all the CF
policies and the All-dynamic technique.

7.1.3. Server throughput. Figure 7 shows the Web server’s throughput by plotting the
bytes sent by the Web server/s. The All-static policy shows the smallest throughput values
and the CF = 2 policy shows the larger throughput values. The Hybrid policy shows the
second largest value for throughput.
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Figure 6. The server CPU utilization graph for all policies.

Figure 7. The Web server throughput graph for all the approaches.

7.2. Client response times evaluation

In this section we focus on mean response times measured at our experimental clients
during the execution of the experiments. First, we compare the Hybrid policy with all the
other policies and techniques and then show some interesting comparisons between the
other policies.

Figure 8 compares the Hybrid policy with the CF = 2, the CF = 5, the CF = 10
policies and the All-static pages and All-dynamic pages techniques. The basic conclusions
that may be extracted from the first set of graphs are the following:

• The Hybrid policy is clearly better than the CF = 2, the CF = 5 policies and the All-
dynamic pages technique.

• The Hybrid policy can be compared (in terms of performance) with the CF = 10 policy.
• The Hybrid policy is clearly worse than the All-static technique.

The set of graphs in Figure 9 compare the different CF policies, the CF = 2 policy
with the All-dynamic pages technique and the CF = 10 policy with the All-static pages
technique.
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Figure 8. A comparison of the Hybrid run-time management policy with all other approaches.
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Figure 8. (Continued)

Figure 9. A comparison of all the similar management approaches.
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The purpose of these graphs is to compare similar approaches. The first graph compares
all the CF policies. As expected the CF = 2 policy shows worst response time and the
CF = 10 policy shows the best response times. The second graph compares the CF = 2
and the All-dynamic pages technique. Although not very clear, the All-dynamic pages
technique shows worst response times. The third graph compares the CF = 10 policy with
the All-static technique. The CF = 10, as expected, shows worst response times.

Overall, the proposed hybrid policy shows excellent results both at the server and at
the clients. The policy was tested under real Web server conditions and in most of the
experiments was outscored only by the All-static approach, that cannot be considered an
actual alternative for the management of a data-intensive Web site.

7.3. Web page freshness evaluation

The hybrid fragment based policy performs well in terms of client response times and
server resource utilization as shown in the previous paragraphs. Another important pa-
rameter though, in order for the policy to be valuable, is related to its data consistency
capabilities. In other words, how fresh can we keep our Web pages when implementing
the proposed policy. The answer to this question is “As fresh as we want them to be.” In the
case of our experiments the change model was exactly the same as the update model. This
means that the standard components changed every 10 s and the differentiating components
changed every 2 s. Thus, the data sent to users were always updated when implementing
the hybrid policy.

A freshness study must always be carried out before the implementation and the set-up
of a policy. The CF concept enables this in a very easy way. The freshness study involves
three basic parameters. These parameters are:

• the update frequency of every fragment,
• the materialization frequency of every fragment,
• the request frequency of every fragment.

A freshness study must be carried out on a fragment basis. The goal is to come up with
a freshness metric in order to evaluate the CF s that we select in the hybrid policy. Let us
consider the following example.

Example 3. A Web site that consists of 5 pages and a total of 20 fragments (4 fragments
per page). The fragments all have different update frequencies (all values in the example
are random except the requests compromised that were calculated). The 5 pages also have
different request frequencies. The question is: “When selecting a CF for a fragment what
is the freshness compromise that we make on average?”.

In our evaluation:

• Total requests = 121.
• Total fragment compromise fraction = Total fragment requests compromised/total frag-

ment requests = 39/121 requests compromized (= 32%).
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Table 1. A CF freshness evaluation table

Update frequency Request frequency Materialization frequency = CF Requests compromised

4 6 4 0
10 2 7 0
12 3 22 0
22 22 8 14
3 7 9 0
4 6 24 0
7 2 5 0

25 3 30 0
20 22 9 13
11 7 5 2
3 6 7 0

30 2 14 0
42 3 18 0
6 22 11 0

27 7 7 0
23 6 25 0
5 2 20 0

26 3 13 0
22 22 12 10
17 8 8 0

In our example we found that 32% of the requests to the Web page fragments were
compromised (stale). This is not such a good result in terms of fragments. But this is
not necessarily so, when we transfer our study from the fragment level to the Web page
level. The best case scenario would be that all compromised fragments would be part
of the same Web page. In this case we would have to take into consideration the Web
page request frequency instead of the fragment request frequency. For example, if the
page that contained all the compromised fragments was requested with a request rate of
22 requests/min then the compromise frequency of the Web site would be 22/121 · 100 =
18%. This would mean that 18/100 requests to the Web site would return stale data.

From the example it is obvious that we can compute the freshness to requests by using
the concept of the CF. By changing the value of CF, one can change the freshness metric
values and come up with acceptable values of the CF. It is obvious that this freshness metric
must be recomputed at frequent time intervals. That is why it must be an integral procedure
of a run-time management policy.

8. Future work and conclusions

Our future work will aim at improving the hybrid run-time management policy described
in this paper. We believe that the policy that has been presented here can be improved much
further. First we aim at adding a fragment prioritization module before materialization is
executed. This module will be responsible of ranking fragments according to several para-
meters. There are several parameters that should play a role in materialization frequency
selection, such as server materialization costs and fragment usability or even administrator
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prediction. We are currently assembling an ISAPI filter for MS IIS that implements our
policy [3]. This filter will be able to receive specific server utilization parameters and ana-
lyze Web server log files at run-time. According to some initialization parameters, it will
be able to “intelligently” adapt to server conditions and request rates and execute a Web
site’s materialization policy. Finally, we aim at implementing transparent Web fragment
caching on the server’s memory, in order to abandon the requirement of creating Web sites
with the use of Server Side Includes, that our approach imposes.

In this paper we have proposed a hybrid run-time management policy for data intensive
Web sites. The necessity of such a policy is inherent in every data intensive Web site.
We then described the cost model of the hybrid policy and evaluated it. Our evaluation
consisted of three steps: the evaluation of server utilization parameters, the evaluation of
server response times (measured at the clients) and the evaluation of Web page freshness.
The results are very interesting, since it was shown that by adopting a hybrid policy, the
performance of the Web server can improve. The basic problem is to define the compro-
mise factor that we named CF. We believe that our hybrid policy may be enhanced much
further in order to reduce Web latency, caused on Web servers.
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