
Efficient extraction of news articles
based on RSS crawling

George Adam, Christos Bouras and Vassilis Poulopoulos
Research Academic Computer Technology Institute, and

Computer and Informatics Engineer Department, University of Patras
Rion, Greece, GR26500

adam@cti.gr, bouras@cti.gr and poulop@cti.gr

Abstract

The expansion of the World Wide Web has led to a state where a vast amount of Internet users
face and have to overcome the major problem of discovering desired information. It is inevitable
that hundreds of web pages and weblogs are generated daily or changing on a daily basis. The
main problem that arises from the continuous generation and alteration of web pages is the discovery
of useful information, a task that becomes difficult even for the experienced internet users. Many
mechanisms have been constructed and presented in order to overcome the puzzle of information
discovery on the Internet and they are mostly based on crawlers which are browsing the WWW,
downloading pages and collect the information that might be of user interest. In this manuscript we
describe a mechanism that fetches web pages that include news articles from major news portals and
blogs. This mechanism is constructed in order to support tools that are used to acquire news articles
from all over the world, process them and present them back to the end users in a personalized
manner.

1 Introduction

The World Wide Web has grown from a few thousand pages in 1993 to more than billions of pages
at present. Moreover, all these pages that exist on the WWW are neither static nor stable, but they
form a continuously changing system. The results from the studies of Cho and Garcia - Molina [7] and
Fetterly et al. [8] prove that a huge number of web pages change on a weekly or even on a daily base.
The mechanisms that were invented to make Web seem less chaotic need information and waste a great
amount of time in order to collect it. These mechanisms are defined as Web Crawlers, bots or spiders,
and their main scope is to create an offline copy of the web pages in order to support engines that need
these pages as feeds. Web crawlers are an essential component of all search engines and are increasingly
becoming more and more important in data mining and other indexing applications.
Much research has been done for constructing crawlers that will have ”fresh” collection of web pages.
The basic algorithm of most of the existing crawlers is; keep a collection of uniform resource locators
(URLs) and, starting from a root page (starting point), they begin to visit and download all the pages
that derive from the root page in a periodical manner. However, web pages are changing at different
rates which mean that an intelligent crawler should be able to decide how often and which pages of the
collection have to be revisited by using an efficient method [9]. This leads to creation of crawlers that
have at least two basic modules, one for periodical crawling (scheduled) and another for incremental
crawling (update the most frequent changing pages). In [2] and [3] is denoted that most web pages in
the US are modified during the US working hours a statement that is extremely logical and useful for
crawling mechanisms. In [7], Cho and Garcia-Molina introduce the extreme difference in ”page change”
rates for each unique domain. Arasu et al. in [1] report a half-life of 10 days for web pages in order to
create an algorithm for maintaining the freshness of the ”offline collection” of the WWW.
In [12], [13], [17] and [10] some specific strategies are introduced for effective crawling and for parallel
crawling. The basic idea that lies behind parallel crawling is a manager which is assigned with the task of

1

adam@cti.gr
bouras@cti.gr
poulop@cti.gr

Efficient extraction of news articles based on RSS crawling Adam, Bouras and Poulopoulos

organizing the set of terminals-crawlers that access and download pages. The manager should read and
update accordingly the distributed databases with data collected from every terminal-crawler in order to
prevent situations of duplicate entries.
In this manuscript we describe advaRSS, a crawling mechanism, which is created in order to support
”peRSSonal” [5] [4], a mechanism that produces personalized RSS feeds. As the mechanism intends to
be base utility for systems offering collections of news articles in real time to internet users, it has to
maintain a fresh collection of the latest news. In order to achieve this we utilize the RSS feeds which
are widely known and supported by almost every news portal and weblog. In contrast to the common
crawling mechanisms our system is focused on fetching only news articles from the major and minor
portals worldwide (multilingual), in order to deliver personalized content to users. The news is produced
in a random order any time of the day and thus the crawling mechanism must periodically poll the
sources and check for changes many times per day. To make this resource intensive task more efficient,
the system has to learn to predict the rate that an RSS is publishing articles, based both on the static
features and the complete posting history. Finally, the system is able to adapt its internal procedure to the
time that an RSS changes and thus it is possible to learn the temporal behaviour of a feed. The system
consists of two phases, a training phase and the normal execution phase. When a new RSS is added
to the feed URLs of advaRSS the system is running in training phase for the specific RSS. During the
training phase we utilize simple algorithms for fetching the articles from the RSS feed and in parallel we
construct the posting history of the RSS per hour and per day. After four weeks, the system has enough
information about the RSS in order to start the normal execution phase. During the normal execution
phase the posting history of the RSS and by applying advanced algorithms we are able to fetch articles
more efficiently.
A large body of related work in crawling, content identification and information retrieval that attempts
to solve similar problems using various techniques exists and we will present the most representative of
it. The crawlers are widely used today and as it was expected, the last few years, many crawlers were
designed and constructed. Ubicrawler [14] is a distributed crawler written in Java, and it has no central
process. It is composed of a number of identical ”agents”; and the assignment function is calculated
using consistent hashing of the host names. The crawler is designed to achieve high scalability and to be
tolerant to failures. WebRACE [18] is a crawling and caching module implemented in Java. The system
receives requests from users for downloading Web pages. The most outstanding feature of WebRACE is
that it is continuously receiving new starting URLs to crawl from (”seed”). PolyBot [15] is a distributed
crawler written in C++ and Python. It is composed of a ”crawl manager”, one or more ”downloaders” and
one or more ”DNS resolvers”. Collected URLs are added to a queue on disk, and processed later to search
for seen URLs in batch mode. In contrast to the common crawling mechanisms, advaRSS is focused on
fetching only news articles from the major and minor portals and blogs worldwide (multilingual). The
difference between advaRSS and a usual crawler is the fact that the news is produced in a random
order any time of the day and thus the crawling mechanism has to be efficient in order to obtain each
news article that occurs in a portal immediately after its publishing. Another difference is that advaRSS
intends to feed peRSSonal with information and thus its output should be ”easily readable” and accessed.
Another approach utilizes the fact that different domains have very different ”page change” rates and
consists of a scheduling mechanism which estimates the next update timing of web pages based on their
update history using the Poisson process [16]. In [6] is proposed an additional feature, which includes the
politeness constraint which indicates that we may only probe the source at most n times and that no two
probes may be spaced less than delta time units apart. This policy is intended to minimize the required
bandwidth and to prevent the crawler from being blocked from the source. Finally, in [11] Sia et al.
study how the RSS aggregation services should monitor the data sources to retrieve new content quickly
using minimal resources and to provide its subscribers with fast news alerts. Their experiments prove
that, with proper resource allocation and scheduling, an ”RSS aggregator” can provide useful content

2

Efficient extraction of news articles based on RSS crawling Adam, Bouras and Poulopoulos

significantly fast. The rest of the manuscript is structured as follows. In the next section we present the
architecture of advaRSS and then the flow of information. In the fourth section we analyze the algorithms
and following we present some experimental evaluation that was done in order to present the accuracy
of the sub-systems. We conclude with remarks and future work.

2 Architecture

The architecture of the advaRSS, consists of multiple sub-systems which are assigned with specific roles
in order to achieve high speeds of between them and between the crawling sub-system and the peRSSonal
mechanism. The basic parts of the system are (a) the centralized database (using peRSSonal’s database),
(b) the crawler’s controller and (c) the terminals that execute the fetching and analysis. The database
is used for storing permanent information, the controller is used in order to organize and distribute the
procedure and finally the terminals are used in order to fetch the HTML pages from the internet. A

Figure 1: advaRSS’s Architecture

single database is used in order to store the starting URL, which is links to XML files, and the results
of the parsing procedure. The XML files are RSS feeds which means communication channels provided
by news portals. Additionally, the database stores information concerning the articles that are fetched
from the advaRSS crawler. The information that is needed about an RSS feed is its URL and some
meta-data while for an article we need information like the title, the HTML code, its URL, the language
in which it is written, the date that it was fetched and the category (business, entertainment, politics, etc)
in which it is pre-classified by the website from which it derives. The second sub-system of the RSS
crawler mechanism is the controller of the whole procedure. The controller is assigned with two major
tasks. The first is the direct communication with the database (only the controller can interact with the
database) and the second is the job assignment and checking of the terminals. The controller is the part
of the mechanism that includes the main procedures and feeds the terminals with URLs from which to
download information. Two kinds of information are usually forwarded for download: (a) URL to XML
file and (b) URL to plain HTML file which has to be downloaded. In parallel, the controller examines
the outputs of the terminals’ analysis and stores any information to the database.

3 Algorithm Analysis

The algorithmic procedure is divided into two phases. The first phase is the training phase of the system
which utilizes simple metrics in order to fetch articles from an RSS but in parallel it construct a change

3

Efficient extraction of news articles based on RSS crawling Adam, Bouras and Poulopoulos

rate history of each article per hour and per day.

3.1 Training Phase

For every new RSS in the database the system maintains three different variables, which are stored to a
central database and two files that are stored locally to each terminal. The variables are used in order
to create a system that is able to adapt on the RSS changing behavior. By changing behavior we define
the time period which implies changes to an RSS (added articles). The files are used in order to quickly
check if an RSS had changed since the last time it was parsed. The first file includes the hash code of the
XML file and the date that was fetched in the last execution while the second file includes all the titles of
the articles that were added in the latest fetched XML file (RSS feed).
The hash code is sensitive to minor changes to the file and thus we can easily obtain information if the file
has changed while the second file includes all the titles of the articles contained in the last downloaded
RSS and help us realize if the new RSS file that is fetched includes any new articles. This prevents
communicating with the database in order to check for any minor or major RSS change. We utilize both
hash codes and dates in order to check if an RSS has changed as both of them are needed to cover all the
possible situations of a changing web files. The possible situations are: a) a file has not changed and its
modification date has not changed, b) a file is unchanged but for a reason its modification date is changed
and c) a file is changed and thus its modification date is changed.
It is inevitable that the state of unchanged modification date and changed hash code cannot possibly
occur unless somebody is changing the date of the file manually which is not supposed to be done when
dealing with web files. By utilizing the modification date we are able to understand if a file has changed
without even downloading it. If the modification date is changed we need to download it in order to
check its hash code.
An algorithm is utilized in order to update the execution time of an RSS in order not to check every RSS
in every execution of the system. This algorithm is applied as the peRSSonal system, which is supported
by the crawler, can have hundreds of RSSs to be parsed and it is not possible to check every single RSS
every ten minutes that is the time limit of the system’s execution.

feeds[]=Fetch_rss_having_zero_ToE();
Foreach(feeds[] as url)
If(not modified)
newTimer=T+M;
M = M + 30%T
T = newTimer
Else
T=1
M = 20%M+80%T
End If
ToE = M
End For

Where: M (median): a number that indicates how often an RSS has to be parsed. T (timer): a number
representing how many executions, at least, have passed since the RSS was last changed. ToE : a counter
that is reduced in every execution of the system. When it reaches the value zero, the RSS has to be
parsed.
This algorithm is utilized in order to change the ToE of each RSS according to its rate of change which is
represented by the timer (T). The median (M) variable is used in order to store the rate of change, which
is a value that changes according to the rate of change of an RSS and can learn the behavior of an article.

4

Efficient extraction of news articles based on RSS crawling Adam, Bouras and Poulopoulos

One of the most basic parts of the system is the execution time updater. It is a subsystem of the mecha-
nism that is able to change the execution time of each RSS which indicates how often an RSS has to be
parsed. We have designed this algorithm by observing how an RSS changed during the 24 hours of a day.
The following diagram shows the number of the articles published in an RSS at a given hour, divided by
the overall number of articles published by this RSS during the whole day.

Figure 2: Percentage of articles published by a specific RSS per hour

As it is obvious from Figure 2 the system should check the specific RSS very frequently between 11
and 14 o’clock as almost 30 percent of the articles of the specific RSS are published during these hours
while advaRSS should not check very frequently this RSS from 1 to 6 o’clock as less than 2 percent of
the articles are published during these hours. We should find thus a way in order to change the time an
RSS is processed by the system. We define the ToE, M and T variables already mentioned in the previous
paragraphs. We follow the next equations in order to change their values. If ToE greater than 0

ToE = ToE −1 (1)

If ToE = 0, there are two different cases which are: (a) no new articles occur in the RSS feed compared
to the latest time the RSS was parsed and (b) new articles (one or more) occur. In the first case we apply
the next equations in the presented order:

Temp = T +M

M = M +0.3T

T = Temp

(2)

In the second case we apply the following equations:

T = 1

M = 0.2M +0.8T = 0.2M +0.8(becauseT = 1)
(3)

After each execution (ToE = 0) we set the value of ToE to M:

ToE = ceil[M] (4)

From eq. 1 it is obvious that for every execution of the system the ToE is decreased in order to reach
the value 0, which indicates that the RSS has to be parsed. When the ToE is zero, then we check the
current RSS feed for changes. If no changes are observed then the T variable is increased by M (the
times that the RSS was unchanged) and the M variable is changed according to Eq. 3. If the file has not
changed (no fresh articles) then M increases slightly, while when the file has changed (indicating fresh
articles) M decreases dramatically. We concluded to these changes to the Median (M variable) in order to

5

Efficient extraction of news articles based on RSS crawling Adam, Bouras and Poulopoulos

achieve two basic goals: (a) when an RSS is not changing it is checked fewer times per day and (b) when
an RSS starts to be updated the Median variable is rapidly decreasing and we manage to adapt the ToE to
the rate of change of the article. The maximum value for M is 80. Using this value, if we check the RSSs
every X minutes then the RSS will be checked every 80*x minutes which means at least 18/x times per
day in the worst case. This seems to be quite a lot for RSSs that change once a week but still, we have
to maintain a fresh collection. On the other hand, the minimum value for M could be 1 indicating check
for fresh articles every X minutes.
The initial values of M and T are 4 and 1 consequently. T is set to 1 in order to point an initial unchanged
state for each RSS. We set the value of M to 4 in order to pre-set a small rate of change of the page and
then adapt to the actual temporal behavior of the page. ToE is set with an integer random value between
0 and 3 for each RSS in the database. This is translated to: when the system begins its first execution,
it checks every RSS with ToE equal to zero and processes it. The RSSs will be found to be changed
(as we do not have any previous instance of the RSS during the first execution of the system) and thus
the median will be set directly to 1.6 (M=0.2M+0.8T). While all the ToEs of the RSSs will be already
reduced, the ToE of the RSS that were just checked will have the value 2 (ceil[M] where M is set to 1.6).
By doing this we assure that the first time that the RSSs are going to be parsed they will be checked at
least one time in subsets and after that they will start to adapt on their rate of change.
The basic part of the algorithm is eq. 2 and eq. 3 which update the M variable that represents the rate of
change of an RSS within a specific time limit. As the rate of change of an RSS may vary during the day
we maintain a history of M and we base our system on a specific pattern.

3.2 Crawling using the posting history

During the normal execution phase advaRSS can retrieve the posting history of an RSS by utilizing the
information that was recorded during the training phase and, more specifically, the hourly posting rate
of the articles. One of the most basic parts of the system is the scheduling mechanism. It is a subsystem
of the crawler that, by using the aforementioned posting pattern, manages to schedule the next visit to
the RSS feed. During each subsequently visit, the historic information is updated and new predictions
are made, leading to a system that is able to adapt on the RSS updating behavior. We concluded to
this algorithm by observing how new articles are published by an RSS during the 24 hours of a day.
The following diagram shows the average number of articles posted per hour, for a random RSS in our
database.

Figure 3: average number of new published articles per hour for a specific RSS

As it is obvious from Figure 3, the mechanism should schedule more frequent visits at hours with
high posting rate. Having the hourly past posting pattern of an RSS and the last time that it was retrieved,

6

Efficient extraction of news articles based on RSS crawling Adam, Bouras and Poulopoulos

we can use the following equation to estimate the expected number of new posted articles since the last
retrieval, using the precision of 1 second:

articles(tnow) =
∫ tnow

last

postingRate(tnow − t)
3600

(5)

The above equation utilizes posting rate per second by dividing the hourly rate by the total number
of seconds in one hour. It is obvious that we expect a high number of new articles from an RSS feed with
high posting rate. Due to resource constraints, the mechanism is able to perform only limited retrievals
per time period. Thus, the crawler has to decide which RSS sources to contact in order to fetch as many
articles as it can. A simple monitoring algorithm that utilizes 5 to schedule a total of k retrievals for
each execution should estimate the expected new articles and select the first k with the higher number of
articles. Utilizing the fact that the advaRSS crawler can be used as a part of a system offering collections
of news in real time to internet users, we can increase its efficiency by including information about the
users. The number of subscribers of each feed and their activity on the system can be used in order to
modify the above monitoring algorithm. We assume that if a source has more subscribers than others, it
should be retrieved with higher priority, in case that all of them have similar posting rates. Putting the
above together on a unique ranking metric, we have for an RSS feed f:

rank(f , t) = articles f (t) · (1+ c · subscribers(f)) (6)

Parameter c in the eq. 6 can be adjusted to reflect how important the information about the number of
subscribers is. In systems that the number of subscribers for each source is unknown, this constant must
be set to zero, which means that the ranking metric will not use this information at all. Additionally, the
scheduling mechanism that we present, takes into account the politeness constraint, which means that
no two subsequent retrievals may be performed in less than x time units apart. We assume that a user
can tolerate a delay of 10 minutes for an article, thus we set the minimum time between two subsequent
retrievals to this time period. Finally, the mechanism is be able to update the posting pattern for each RSS
based on the result of the next retrieval, which is the number of new articles that have been published.
The updating process of the posting rates, distributes the number of new articles to each hourly rate,
making the mechanism able to adapt to each source. However, a source may have not published a new
article for a day, which means that it’s posting pattern and ranking metric will be equal to zero. Thus the
above algorithm will not retrieve this source ever again. To overcome this problem, the mechanism uses
a minimum value greater than zero for the posting rates.

4 Experimental Evaluation

In this section we provide experimental evaluation of the advaRSS crawler performing with or without
the posting rate history.

4.1 Evaluation during the training phase

According to our opinion, a crawler has to be adaptive on each URL that it is searching and the work-
load has to be distributed in order to access parallel a huge amount of data. In that means we have
conducted experiments in order to observe the different possible solutions for our crawler and select the
most suitable for our case. It is expected that a crawler that is processing multiple RSS at the same
time (parallelism) will be faster than a crawler that is accessing its feed URL in a serial manner, though
we have to observe if the adaptation algorithmic procedure (file checking for duplicate entries and RSS

7

Efficient extraction of news articles based on RSS crawling Adam, Bouras and Poulopoulos

changes) consumes too much time. We conducted an experiment with three different systems and mea-
sured the execution time for each of them. The first system was without any adaptation (files) and run on
a single computer. The second system distributed the procedure over multiple computers, without any
adaptation while the third system was utilizing the adaptation algorithm with multiple terminals.
The time of execution by utilizing files for duplicate entries or RSS changes with distributed procedure
is the most suitable for our system as it takes only 10 seconds to search for new articles in the RSSs and
add the new articles in the database for every time the crawler is running. In other cases the Time of
Execution is more than 2 minutes in average. The time measured is the average time needed for each
time the system is executed on hundreds of RSS feeds in order to analyze them and fetch all the new
articles that occur. In average the system is able to add more than 2500 articles daily to its database.

The second adaptation of the system is on the rate of change of each RSS. It is expecting that thou-
sands of RSS URLs will be added on the database when in production. This means that the system will
have to check every ten minutes thousands of URLs for new articles (hundreds of RSS X ¿10 URLs in
each RSS feed) every time the crawler is executed. By adapting on each RSS feed rate of change we are
able to access the RSS feeds not every time that the crawler is running but every time that the system
”believes” that there may be a change to the RSS’s content.

Figure 4: Adaptation of the variable M, ToE and T on Time (1)

As it is obvious from the experiments an RSS is not checked every six to ten minutes that the crawler
is executed but it is checked every time that the system ”believes” that a change may have occurred.

By applying the adaptation we check an RSS according to the learning algorithm for the system,
which is in average 20 times per day for the RSSs that change too much in a day and less than 10 times
per day for RSSs that do not change frequently. An issue that arises from the previous adaptation is how
fresh the articles that are entering the system are. This could be translated into a simple assumption: if
we are not checking the RSSs periodically for new articles, then there is a possibility to ”lose a change”.
As long as we want to provide a real time service to the end users, this means that we must have a new
article added to the database within a time limit if this article is published within the same time limit.
The time limit that we would like to achieve is at most 30 minutes. We conducted a simple experiment
in order to observe how ”fresh” are the articles in our database which means that we have cross-checked
the time that the articles were added in our database compared to the time they were published on their
original website. The latency of fetching the articles compared to the original time that they were posted
on their official website is 35 minutes in the worst case and 27 in the best of the worst cases. It is expected
that the time difference of the rest of the articles will be less than 27 minutes as we are investigating the

8

Efficient extraction of news articles based on RSS crawling Adam, Bouras and Poulopoulos

Figure 5: Adaptation of the variable M, ToE and T on Time (2)

10 worst cases. The system has an average of 14 minutes latency which is acceptable compared to the
rate that internet users are checking for news.

4.2 Crawling using the posting history

In this section, we compare the proposed monitoring algorithm that utilizes the posting rate history, to
other retrieval policies. The experiment procedure lasted 90 days and was conducted using RSS feeds
from major and minor portals and weblogs. At the first experiment we put focus on the maximum number
of pending articles that a source can have. As pending articles we define the articles that are published
but have not been retrieved. The comparison is made using other two monitoring policies. The first is
a round-robin policy, which places the RSS feeds in a queue and schedule the retrievals using the FIFO
method which means that a source will be revisited after all others have been processed. The second
policy uses the posting pattern in order to minimize the total delay of the fetched articles. The delay is
defined as the time period between the publishing and the retrieval time.

Figure 6: average number of articles, of the RSS with the maximum pending articles

As it is obvious from Figure 10, the policy that minimizes the total delay increases by 11.2 percent
the maximum pending articles on the source. Using the round-robin policy we notice an increment of
33.4 percent. The number of articles is an average of the daily measurements. Apart from the above
metric, it is interesting to estimate the total pending articles on the system. Thus, the second experiment
was conducted using 460 sources and the objective was to calculate the summary of the articles that have

9

Efficient extraction of news articles based on RSS crawling Adam, Bouras and Poulopoulos

not been retrieved yet, for all RSS sources. Both experiments were made by collecting information about
these feeds for a period of three months and applying the aforementioned policies.

Figure 7: : total pending articles on system, per hour

Figure 11 shows that the pending articles are depending on the posting rate for each hour. We can see
that with the ”minimum-delay” policy, the total number of pending articles is 7.5 percent more than the
proposed policy. Finally, the result of the round-robin policy is approximately 8.5 percent more articles.
For the experiments, the average retrieval rate is 15

5 Conclusion and Future Work

In this paper, we described the architecture and implementation details of our crawling system, and also
presented some experiments. We showed the importance of adaptation on each domain as it is obvious
that the web pages of different domains have different behaviour (change in a different manner). We
also highlighted the importance of utilizing RSS feeds in order to retrieve useful content from the Web
and how this can be efficiently implemented on a system even with limited resources. In a World Wide
Web that has grown enough from the time of its invention, the personalization issue seems to make the
difference, and seems to be one of the most important of our era. The advaRSS intends to be the base
utility for systems offering collections of news in real time to internet user such as peRSSonal [5], [4]
which is a single web place that offers, in a unified way, personalized and dynamically created views of
news deriving from RSS feeds. There are obviously many improvements to the system that can be made.
A major open issue for future work is a detailed study of how the advaRSS mechanism could become
even more distributed, retaining though quality of the content of the crawled pages. When a system is
distributed, it is possible to use only one of its components or easily add a new one to it. Additionally
what we have to do is to compare the results of our crawler with the implementations of other incremental
crawlers that selectively chose which pages to crawl. Though, we believe that our system consists of
something more than just a crawler. Our intention is to create a clever system that would be able to
collect ”fresh” content from the web in order to support, with data, mechanisms specialized on data
mining, information extraction and categorization.

References
[1] A. Arasu, J. Cho, H. Garcia-Molina, A Paepcke, and S. Raghavan. The evolution of the Web and implications

for an incremental crawler. ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.
[2] B. E. Brewington and G. Cybenko. How dynamic is the web? Computer Networks, Volume 33, Issues 1-6,

June 2000.

10

Efficient extraction of news articles based on RSS crawling Adam, Bouras and Poulopoulos

[3] B. E. Brewington and G. Cybenko. Keeping up with the Changing Web. IEEE Computer, vol. 33, no. 5, May
2000.

[4] V. Poulopoulos C. Bouras and V. Tsogkas. Efficient Summarization Based On Categorized Keywords. The
2007 International Conference on Data Mining DMIN07, Las Vegas, Nevada, USA, June 2007.

[5] V. Poulopoulos C. Bouras and V. Tsogkas. PeRSSonal’s core functionality evaluation: Enhancing text label-
ing through personalized summaries. Data and Knowledge Engineering Journal, Elsevier Science, Vol. 64,
Issue 1, 2008.

[6] C. Valentim C. Souza, E. Laber and E. Cardoso. A Polite Policy for Revisiting Web Pages. Latin American
Web Conference (LA-WEB 2007), 2007.

[7] J. Cho and H. Garcia-Molina. The evolution of the Web and implications for an incremental crawler. Pro-
ceedings of the 26th International Conference on Very Large Databases, Morgan Kaufmann 2000, September
2000.

[8] M. Najork D. Fetterly, M. Manasse and J. L. Wiener. A large-scale study of the evolution of Web pages.
Software: Practice and Experience, Special Issue: Web Technologies, Wiley Interscience, Volume 34 Issue
2, June 2004.

[9] S. K. Gupta H. Bullot and M. K. Mohania. A Data-Mining Approach for Optimizing Performance of an
Incremental Crawler. In Proceedings of the IEEE/WIC International Conference on Web Intelligence, 2003.

[10] H. Garcia-Molina J. Cho and L. Page. Efficient Crawling through URL ordering. Computer Networks and
ISDN Systems, Volume 30, Number 1, April 1998.

[11] H.-K. Cho K. Cheung Sia, J. Cho. Efficient Monitoring Algorithm for Fast News Alerts. IEEE Transactions
on Knowledge and Data Engineering, vol. 19, no. 7, July 2007.

[12] M. Najork and J. L. Wiener. Breadth-first search crawling yields high quality pages. In Proceedings of the
10th World Wide Web Conference (WWW10), 2001.

[13] M. Najork and J. L. Wiener. High-Performance web crawling. SRC Research Report 173, Compaq Systems
Research, Compaq Systems Research Center, 2001.

[14] M. Santini P. Boldi, B. Codenotti and S. Vigna. UbiCrawler: a scalable fully distributed Web crawler.
Software: Practice and Experience, Wiley Interscience, 2004.

[15] V. Shkapenyuk and T. Suel. Design and Implementation of a High-Performance Distributed Web Crawler.
Data Engineering, 2002. Proceedings. 18th International Conference, 2002.

[16] T. Tamura and M. Kitsuregawad. Evaluation of Scheduling Methods of an Incremental Crawler for Large
Scale Web Archives. Abstracts of IEICE transactions on Information and Systems (Japanese) Vol.J91-D No.3,
2008.

[17] J. Wolf, M. Squillante, P. Yu, J. Sethuraman, and L. Ozsen. Optimal Crawling strategies for web search
engines. Proceedings of the 11th international conference on World Wide Web, 2002.

[18] D. Zeinalipour-Yatzi and M. Dikaiakos. Design and Implementation of a Distributed Crawler and Filtering
Processor. Lecture Notes In Computer Science. Vol. 2382, Proceedings of the 5th International Workshop
on Next Generation Information Technologies and Systems, 2002.

11

	Introduction
	Architecture
	Algorithm Analysis
	Training Phase
	Crawling using the posting history

	Experimental Evaluation
	Evaluation during the training phase
	Crawling using the posting history

	Conclusion and Future Work

