
Using the ns-2 simulation environment to implement
and evaluate Bandwidth Broker models

Christos Bouras, Ioannis Pappas, Dimitris Primpas and Kostas Stamos
Research Academic Computer Technology Institute, N. Kazantzaki Str., University of Patras, 26500 Rion, Greece &

Department of Computer Engineering and Informatics, University of Patras, 26500 Rion, Patras, Greece
Tel: +30 2610 {960375, 996954, 960316, 960316}

Fax: +30 2610 960358
email: bouras@cti.gr, pappasj@ceid.upatras.gr, primpas@cti.gr, stamos@cti.gr

Abstract-- In this paper we present and compare four different
models of implementing a Bandwidth Broker in a DiffServ
network. We describe the relevant implementation aspects in the
well-known ns-2 simulator and present a number of experiments
that were conducted in order to verify our implementation,
analyze the performance characteristics of the various
alternatives and evaluate the usefulness of the ns-2 simulation
environment for similar purposes. We present our experiments
that aim at investigating a number of issues related to the
operation of Bandwidth Broker modules, and in particular how
the acceptance rate, the network overhead and the response time
for each Bandwidth Broker model are affected by the network
topology, the available buffers for incoming requests and the
advance time from the moment a request is submitted to the
moment the reservation should take place.

Keywords—bandwidth broker; QoS; dimensioning; ns-2
simulator

I. INTRODUCTION
In order to improve over the traditional best-effort service

that is typically offered today for all kinds of Internet traffic, a
number of Quality of Service (QoS) architectures have been
proposed. The most widely used architecture is DiffServ [1],
which minimizes the number of actions to be performed on
every packet at each node and builds a configuration that,
unlike the alternative IntServ architecture, does not use a
signaling protocol. Individual DiffServ mechanisms are
applied on traffic aggregates rather than individual flows. The
operation of the DiffServ architecture is based on several
mechanisms. The first mechanism is the classifier that tries to
classify the whole traffic into aggregates of flows (traffic
classes), mainly using the DSCP field (Differentiated Service
CodePoint [15]). This field exists in both the IPv4 and IPv6
packet headers, as part of the Type of Service (ToS) field and
as part of the Traffic Class field, respectively. The operation
of services based on DiffServ architecture uses also several
additional mechanisms (packet marking, metering and
shaping) that act on every aggregate of flows. In addition, in
order to provide QoS guarantees it is necessary to properly
configure the queue management and the time
routing/scheduling mechanism. The most common queue

management approaches use the Priority Queue, Weighted
Fair Queue or Modified Deficit Round Robin mechanisms.

The Bandwidth Broker [5] is an entity that manages the
resources within a specific DiffServ domain by controlling the
network load and by accepting or rejecting bandwidth
requests. Every user (service operator) who is willing to use
an amount of the network resources, between its node and a
destination, sends a request to the Bandwidth Broker. For
requests that span multiple domains (inter-domain requests),
the Bandwidth Broker will have to communicate with
Bandwidth Brokers in the adjacent domains that are traversed
by the requested flow. Bandwidth Brokers only need to
establish relationships of limited trust with their peers in
adjacent domains, unlike schemes that require the setting of
flow specifications in routers throughout an end-to-end path.
Therefore, the Bandwidth Broker architecture makes it
possible to keep state on an administrative domain basis,
rather than at every router and the DiffServ architecture makes
it possible to confine per flow state to just the leaf routers.
Bandwidth Brokers are an intensely studied field and a
number of architectures have been proposed for the various
aspects of its operation ([9], [10], [11], [12], [13], [14]).

In order to study the Bandwidth Broker operation and the
possible choices in terms of deployment and network
management, we have used the ns-2 simulation environment
[6] and implemented four variations of Bandwidth Broker
architectural models. These models have been used in order to
extensively test a number of aspects of their operation and
isolate the architectural choices that influence in a specific
way the efficiency of each model. The rest of the paper is
structured as follows: Section 2 describes our ns-2
implementation and gives an overview of the Bandwidth
Broker models that we have tested, while section 3 presents
the setup of the experiments. Section 4 deals with the effect
and importance of buffer usage for storage of incoming
requests and section 5 presents our results throughout a
number of different network topologies. Finally, section 6
presents our conclusions and the future work that we intend to
do in this area.

II. BANDWIDTH BROKER IMPLEMENTATION IN NS-2
The four architectural models that have been developed,

implemented and tested in the ns-2 simulator environment are
the following:

Serial Distributed Bandwidth Broker model (SDBB
model)

Parallel Distributed Bandwidth Broker model (PDBB
model)

Centralized Bandwidth Broker model (CBB model)

Centralized Fault-tolerant Bandwidth Broker model
(CFBB model)

In every implementation, two kinds of agents exist, the
Edge Bandwidth Broker (BBedgeAgent) and the Base
Bandwidth Broker (BBbaseAgent). An agent in ns-2 is an
endpoint where packets are consumed and constructed using a
specific protocol. A BBedge agent is a simple module located
at each node (router) of the network that represents a client (a
user or an application) and its function is to send requests for
traffic with specific profile for a specific time period. Such a
request is received by the BBbase agent, which represents a
server, and added as a request with specific parameters
(sender, end node, bandwidth, time limit and status, which at
this stage is set to pending) at a local database. When the
processing of the request finishes, the status request changes
according to the result of the processing, either to “satisfied”
or to “rejected”. The answer is then sent back to the BBedge
agent.

Another common element of the BBbase agents for all
models is the request buffer. The BBbase agents are
processing one request at a time so if two requests arrive
closely to each other, the first one is going to be served and
the other one is going to be added at a buffer that exists at the
BBbase agents. If a request arrives and the buffer is empty, the
request is immediately processed. Otherwise, if the buffer
contains previous requests but is not full yet, the request is
added at the end of the buffer in order to be processed in the
future. Finally, if the buffer is full, the request is rejected. The
length of the buffer is configurable and it is a point of
investigation for the efficient operation of a bandwidth broker.

Although the structure of the BBedge agents is the same
for all four models that have been implemented, each one
operates in its own fashion when various packets are received
during the simulation. The differences between the four
architectures have mainly to do with the structure and the
implemented behavior protocols. The different models use
different methods to process the requests (admission control)
and to store the necessary information. The request processing
methods are described in detail in the next section, while the
remainder of this section deals with the storage of
information.

The SDBB and PDBB models store the information about
the state of each link (reserved bandwidth for existing

requests, remaining bandwidth) at the corresponding BBedge
agents. On the contrary, the CBB model stores this
information at the BBbase agent and the CFBB model stores
the information both at the BBedge agents and at the BBbase
agent. The format of this information is the following:
Consider for example node 1 that is connected with node 2
and node 2 is connected with node 1. The relevant information
for node 1 is that “The available bandwidth from node 1 to
node 2 is b for the time period t2-t1”, where t2, t1 are points in
time, and b is the bandwidth metric that arises from
dimensioning of the network and the service. The relevant
information for node 2 is that “The available bandwidth from
node 2 to node 1 is b’ for the time period t’2-t’1”, where t’2,
t’1 are points in time, and b’ is the bandwidth metric that also
arises from dimensioning of the network and the service. In
our simulation model we make the assumption that b’ equals
b, t’2 equals t2 and t’1 equals t1 between two nodes, in other
words that all requests and reservations are bi-directional. For
the CBB and CFBB models, the BBbase agent’s local
database has, per each node it manages, the complete
information of available bandwidth for every link to a
neighbouring node for all time moments.

A. The supported QoS service
The Bandwidth Broker provides a QoS service with the

characteristics of bandwidth guarantee as well as minimum
delay and jitter. This service is the IP Premium and is
currently supported by many network providers. The main
characteristic of this service is that it follows the classic
DiffServ architecture. It classifies the packets using the DSCP
values for admitted and downgraded packets. The policing is
performed at the edge of the network and high priority
queuing is applied in the core and access routers at the
outgoing interfaces.

The original ns-2.26 functionality supports packet
classification at the edge routers using the source-destination
pair of the IP header. We have already enhanced the simulator
so that the classification is done using the DSCP field of the
IP header [7]. This enables packets that have the same source
and destination nodes but belong to different applications to
belong to different classes as well, and packets with different
source and destination nodes to belong to the same class.

The QoS service has the responsibility of packet
classification and policing. If the BBedge agent receives a
positive answer about a request it has submitted, it configures
through tcl code all the edges that exist on the request path.
After the configuration process has been completed, the
BBedge agent can start using the requested and allocated
network resources.

The QoS implementation starts with the insertion of the
DSCP value into the packet headers for packets that use the
requested service. When these packets are inserted into the
network with the proper DSCP value, strict token bucket
policy is applied to them, when they are in the first BBedge
agent. This action guarantees that the transmitted rate matches

the requested (admitted) rate. Next, the queue management
mechanism is properly configured. The used queue
management mechanism is a high priority queue on every
node, which is used for all the admitted traffic classes.

B. Description of the implemented models
In each one of the implemented models, we use a different

communication protocol in order to complete the processing
of requests. Our purpose is to simulate, as accurately as
possible, a network that is managed by a Bandwidth Broker.
Communication between a BBbase agent and a BBedge agent
is achieved with the use of messages that are always sent
either from a BBedge to a BBbase or from a BBbase to a
BBedge agent. Two BBedge agents never communicate by
sending messages to each other, since the BBbase agent
always intervenes in the communication.

For the SDBB model the processing takes place as
follows. In this model, all the information about the status of
links regarding available bandwidth is stored locally at the
BBedge agents, as has already been mentioned. At the
beginning, the BBedge sends a bandwidth request to the
BBbase agent. When the BBbase receives the request, it stores
the address of the sender. Then, using an ns-2 simulator’s tcl
command (“lookup”), it finds the neighbor node of the request
sender. In particular, by inserting the start and the end node of
the path, ns-2 simulator uses the OSFP protocol to find the
shortest path between these two nodes and then returns to the
user the first node of this path that is located next to the
request sender. So, at first, the BBbase sends a packet to the
BBedge agent that initiated the bandwidth request, querying
whether there is available bandwidth from itself till its next
neighbor node. If the BBbase receives a positive answer from
the first BBedge agent of the path, then the BBbase asks the
neighbor of the first node for bandwidth and so on, until the
BBbase receives a negative answer, in which case it stops the
processing of the request, sends negative answer to the request
sender and goes on with the next request, or until the BBbase
gets positive answers from all the nodes which are located on
the request path, in which case it sends positive answer to the
request sender and a packet to each node on the request path,
in order to update their information about bandwidth
availability. After that, the BBbase moves on to process the
next request (if any). A positive answer means that the
BBbase agent allows the request sender to use the requested
bandwidth by guaranteeing the appropriate resource
reservation and a negative answer means that the request was
rejected because of lack of bandwidth.

The PDBB model, similarly to the SDBB model, stores
information at the BBedge agents too but it has a different
way of retrieving this information in the course of processing
a request. When the request arrives, the BBbase agent sends a
packet to each one of the nodes that are located on the request
path querying them for bandwidth at a particular time period.
If it receives even a single negative answer, it does not wait
for any further response by BBedge agents, but rather it stops
the request process, sends a negative answer to the request

sender and moves on to another request. If the BBbase agent
keeps getting positive answers from the nodes, it waits until
all the nodes respond to its query. If all the nodes have
answered positively, then the rest of the request process is
identical as for the SDBB model. The main difference from
SDBB is therefore that now the BBbase agent doesn’t
sequentially query the nodes, but concurrently (sort of
flooding the query messages) and waits until all the BBedge
agents respond. The PDBB model aims at reducing response
times for requests over the SDBB model by parallelizing the
queries over the network.

The CBB model is a centralized model compared to the
distributed nature of previous models. The BBbase agent
stores all information about the status and availability of the
links at a local database, which it consults in order to process a
request. The response time is therefore reduced by eliminating
much of the network communication, but the CBB model also
has reduced resiliency because of its dependence on a single
node.

The CFBB model combines the advantages of the CBB
model and adds some information redundancy for the purpose
of increased resilience to node failures. Data regarding the
link status and availability is stored both at BBedge and
BBbase agents. An incoming request is processed exactly as
in the CBB model, but upon a positive answer, the BBbase
agent not only updates its local data base, but it also sends a
packet to each node on the request path to update their
relevant information. This information is not retrieved during
the request processing, but it can be used in the case of a
failure at the node hosting the BBbase agent. Another node
can then run a new BBbase agent that is brought up-to-date by
all the BBedge agents (each sending a single message to the
new BBbase agent with the relevant information) about the
availability of bandwidth and the current reservations. The
trade-off for the CFBB model is the generation of some
additional network overhead over the CBB model.

III. EXPERIMENTAL SETUP
The Bandwidth Broker models’ performance was

compared in a number of different network topologies using
several criteria and metrics. An important metric is the ratio of
positive answers (the requests that were accepted and the
appropriate resources were reserved) relative to the total
number of submitted requests for each experiment. We also
studied the response time (the time from the moment a request
is submitted to the BBbase agent until the moment the BBbase
agent responds either by accepting or rejecting it) and the
network overhead caused by the control messages exchanged
between the BBbase and BBedge agents.

Requests in our experiments were randomly generated by
an ns-2 simulator’s tcl script that was using the rqst variable to
determine the number of requests to be generated. The
parameters for each request were randomly produced within
suitable boundaries (regarding the total duration of each
simulation, the total available bandwidth, the minimum and

the maximum reservation requests) for each situation that we
wanted to simulate. Specifically, we produced random
requests with random request send time, start time, stop time,
bandwidth and neighbor id. The requests had specific time
limits regarding their duration (stop time minus start time),
much smaller than the total duration of each experiment, in
order to offset any initialization effects.

Randomness was obtained by using the ns-2 RNG class.
This class contains an implementation of the combined
multiple recursive generator MRG32k3a [8]. The MRG32k3a
generator provides 1.8x1019 independent streams of random
numbers, each of which consists of 2.3x1015 substreams.
Each substream has a period (i.e., the number of random
numbers before overlap) of 7.6x1022. The period of the entire
generator is 3.1x1057, thus more than adequate for generating
randomness for our purposes. The random generator was
independently generating numbers that were then assigned to
each of the attributes for a new request. If the random
combination of attributes was valid (e.g. the stop time was not
earlier than the start time), the request was generated by the
node and sent to the Bandwidth Broker for processing.

IV. STUDYING THE EFFECT OF BUFFER SIZE
In our first experiment, we studied how the buffer

requirements of the BBbase agent affect the overall
performance and in particular how they are related to the
percentage of accepted requests. We only tested the SDBB
and PDBB models since they are the only ones that have to
use the network in order to complete the processing of a
request, while the centralized models (CBB, CFBB) perform
the request processing internally and as a result much faster
and therefore have much lower need for buffering. The

network topology used for this experiment was a serial one
with the BBbase agent located at the middle, as shown in
Figure 1.

The request buffer for the SDBB and the PDBB models
stores requests that cannot be immediately processed. If, as
soon as the request is processed, its start time has passed, the
request is rejected.

The horizontal axis in Figure 2 displays the size of the
buffer in logarithmic (ln) scale and the vertical axis measures
the percentage of accepted requests. When there is no buffer
(zero size), there is a large performance hit, especially for the
SDBB model, but using a buffer size of ten or greater, the
negative effect is greatly reduced. For the PDBB model this
means that with the addition of a very small buffer to the
agents, no requests are lost due to unavailability. This
conclusion can also be reinforced by the fact that at similar
experiments, the CBB/CFBB models also displayed similar
performance (20% accepted requests). For the SDBB model,
although the buffer improves the situation, the performance
never quite reaches the acceptance rate of the rest of the
models, because of the linear and therefore slow nature of the
SDBB model. Even when the buffer practically becomes
infinite (i.e. no requests are dropped because of lack of buffer
space), the slow operation of SDBB forces many requests to
be dropped simply because their start time has expired by the
time they get to be processed.

It has to be noted that the links in the network were
simulated with a latency of 1ms, which is a typical to
relatively low value for non-local networks. Larger latency
values would obviously have further detrimental effect to the
performance of SDBB.

Figure 1. Serial topology

0 1 2 3 4 5 6 7 8 9 10
6

8

10

12

14

16

18

20

22

magnitude of buffer (ln(buffer))

pe
rc

en
ta

ge
 o

f s
at

is
fie

d
re

qu
es

ts
 %

SDBB
PDBB

Figure 2. Acceptance rate vs. the size of request buffer (link latency 1ms)

star topology tree topology random topology
Figure 3. Additional topologies used for experiments

V. EVALUATION OF ARCHITECTURES USING VARIOUS
TOPOLOGIES

For our main set of experiments we used a number of
different topologies in addition to the basic topology of Figure
1.The additional topologies are displayed in Figure 3, and they
were designed so that many possible characteristics of the
network topology can be compared and taken into account.
For example, while the star topology minimizes the distance
between the BBbase and the BBedge agents, the tree and
serial topologies maximize it and magnify its effect on the
Bandwidth Broker performance. The tree and serial (which is
typically also a tree) topologies’ main difference is that the
serial topology has more potential bottlenecks than any other

topology, since most requests are probably going to request
part of the resources of the middle links. Finally, the random
topology combines characteristics of both the star and the
serial and tree topologies in order to also have a more
balanced set of results. For all experiments, unless otherwise
noted, the latency of all links was set at 1ms.

C. Network overhead
In Table I we have summarized the network overhead

caused by each Bandwidth Broker model for each topology,
measured by the average number of packets exchanged per
each request.

Because of their distributed nature, there is much more
network overhead for the SDBB, PDBB compared to the CBB
and CFBB models, especially for the serial and tree

topologies. This difference is significantly reduced for the star
topology, because the star topology fits better to the
implementation algorithm of the SDBB, PDBB models. In all
cases the CFBB model represents a “middle of the road”
alternative between the SDBB/PDBB and CBB models.

Also, those experiments show that the overall network
overhead is affected by the topology and the location of the
BBbase agent combined with the distribution of the QoS
requests across the network nodes. It is a well known problem
that is addressed by studying the topology, the distribution of
the QoS usage and therefore applying periodic optimal
selection of host node for the BBbase agent.

TABLE I. NETWORK OVERHEAD (AVERAGE NUMBER OF PACKETS PER
REQUEST)

Model \
Topology

Serial Star Tree Random

SDBB 7.65 4.76 7.39 5.99

PDBB 9.68 4.92 9.92 6.61

CBB 2.01 1.70 1.94 1.90

CFBB 3.66 2.44 3.63 3.01

D. Acceptance rate
Table II shows the acceptance rate per model for each

topology. All models benefit from the star topology and
produce better results. The reason is that the links are on the
average less loaded at the star topology than the rest
topologies, where bottleneck links appear.

TABLE II. ACCEPTANCE RATE (RATIO OF ACCEPTED TO SUBMITTED
REQUESTS)

Model \
Topology

Serial Star Tree Random

SDBB 0.1514 0.2216 0.1699 0.2012

PDBB 0.2029 0.2227 0.2171 0.2130

CBB 0.2035 0.2259 0.2088 0.2106

CFBB 0.2060 0.2323 0.2083 0.2118

Generally the differences between the models are rather
small, except for the SDBB model which, especially for the
topologies with larger average distances displays significantly
worse behavior than the rest. Its very large delays in
responding to requests cause a lot of them to have expired by
the time they are processed. This is also made clear by the
average response times which are provided in Table IV.
During our experimentation we decided to investigate whether
forcing the users to submit requests with a minimum of
advance time (a minimum time period from the time a request
is submitted to the time the requested resources should be
reserved) would help SDBB overcome the problem of reduced
acceptance rate. However, because of its very large response
times compared to the rest of the models, the arrival rate of

requests at the SDBB buffer is faster than the processing rate
(given a steady rate of incoming requests, as in our
experiments). Therefore, the SDBB model will always
eventually fail to process some requests on time (before the
moment their reservation should start).

Because of the lack of potential bottleneck links, the star
topology allows the largest percent of requests to be accepted.
Since in general the topology is typically going to be fixed and
the only realistic choice is going to be between the Bandwidth
Broker models, Table II suggests that for a random topology
the SDBB model is the only one that seems inefficient, while
the rest display similar behavior, which hints that this is
probably the best behavior one can expect, short of using
more sophisticated admission control algorithms [3] or more
sophisticated positioning of the BBbase agent [2].

In order to further study the effect of latency, we have
repeated the experiments for the SDBB\PDBB models with
10ms latency. Such latency could simulate a Bandwidth
Broker operating at a domain that spans remote areas, such as
a national network. As can be seen in Table III, such increase
of the latency has very detrimental effects to the performance
of the distributed models. This leads us to the conclusion that
for Bandwidth Brokers operating at wide area domains, the
centralized approach is advantageous to the distributed one, at
least with the admission control procedures used by the
models described in this paper.

TABLE III. ACCEPTANCE RATE FOR LATENCY 10MS

Model \
Topology

Serial Star Tree Random

SDBB 0.0201 0.1263 0.0265 0.0366

PDBB 0.0515 0.2099 0.0714 0.0861

E. Model response time
Table IV presents the average response times for all

models in the examined topologies. The response times for the
SDBB model are orders of magnitude larger than the rest,
which explains it inferior performance in the acceptance rate
metric and its unsuitability for all but the most convenient
cases (e.g. star topology).

TABLE IV. RESPONSE TIME (AVERAGE TIME PASSED UNTIL THE ANSWER
RETURNS TO THE REQUEST SENDER)(MSEC)

Model \
Topology

Serial Star Tree Random

SDBB 1919 4.077 1325 314.3

PDBB 22.19 2.520 9.382 6.041

CBB 5.502 1.597 4.097 2.879

CFBB 5.502 1.597 4.097 2.879

In order to better understand the actual impact of the
numbers in Table IV, we have also calculated the standard
deviation for the response times, which is presented in Table
V. These results show that the SDBB response times not only
are much higher than for the rest of the models in average, but
that they also fluctuate much more widely. In all cases, the
CBB and CFBB models are identical as expected, since their
request processing procedures are exactly the same.

TABLE V. STANDARD DEVIATION OF THE RESPONSE TIME (10)-3

Model \
Topology

Serial Star Tree Random

SDBB 757 2.180 591.7 224.1

PDBB 19.83 1.485 6.404 4.726

CBB 2.576 0.8128 2.176 1.770

CFBB 2.576 0.8128 2.176 1.770

The close proximity of the nodes to the BBbase agent in
the star topology favor the PDBB distributed model which
closes the gap to the CBB\CFBB centralized models. But also
for the rest of the topologies the response time remains within
2-4 times the time for the CBB\CFBB models, which can be a
reasonable trade-off for the distributed advantages of the
PDBB model.

VI. CONCLUSIONS – FUTURE WORK
Our main work focused on the implementation and the

comparison of four different Bandwidth Broker models using
ns-2. The Bandwidth Brokers provide a QoS service to the
admitted traffic using well-known DiffServ functionality. The
tests that were described above, demonstrate the differences
among the Bandwidth Broker agents. Our results clarified the
trade-offs that are made between a centralized and a
distributed approach, a fault-tolerant and a simple centralized
version, and between a serial and a parallelized distributed
request processing method. Additionally we saw that with the
use of a small buffer at the BBbase agent, we can significantly
increase the percentage of positive requests.

In our future work we intend to expand the scope and
variety of our implementations, as well as the resulting
experimentation. In particular, we intend to enhance the
CFBB model with adaptive capabilities that will allow it to be
able to relocate the position of the Base Bandwidth Broker
agent. This functionality can be useful both in overcoming a
failure of the node that hosts the Base Bandwidth Broker
agent, and also in relocating the BBbase agent according to its
optimal (or approximately optimal) positioning that can be
computed as demonstrated in [2]. Furthermore, we intend to
analyze more sophisticated admission control algorithms that
take into account the network’s utilization and achieved
acceptance rate [3]. Finally, we intend to study and implement
functionality to simulate inter-domain operation, which poses
additional challenges, such as the peering model, the

pathfinding procedures and their effectiveness, and the SLAs
between domains and their dynamic negotiations.

VII. REFERENCES
[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, “RFC

2475: An Architecture for Differentiated Services”, December 1998
[2] C. Bouras, D. Primpas, “An admission control and deployment

optimization algorithm for an implemented distributed Bandwidth
Broker in a simulation environment”, 4th International Conference on
Networking – ICN 2005, Reunion Island, France, 17 - 21 April 2005, pp.
766 - 773

[3] C. Bouras, K. Stamos, “An Adaptive Admission Control Algorithm for
Bandwidth Brokers”, 3rd IEEE International Symposium on Network
Computing and Applications (NCA04), Cambridge, MA, USA, 30
August - 1 September 2004, pp. 243 - 250

[4] N. Duffield, P. Goyal, A. Greenberg, “A flexible model for resource
management in virtual private networks”, ACM SIGCOMM 1999”

[5] K. Nichols, V. Jackobson, L. Zhang, “RFC 2638: A Two-bit
Differentiated Services Architecture for the Internet”, July 1999

[6] The Network Simulator - ns-2, http://www.isi.edu/nsnam/ns/ (Accessed
February 2006)

[7] http://ru6.cti.gr/diffserv-ns/intro.htm (Accessed February 2006)
[8] Pierre L’Ecuyer. Good parameters and implementations for combined

multiple recursive random number generators. Operations Research,
47(1):159–164, 1999.

[9] S. Sohail, S. Jha, “The Survey of Bandwidth Broker”, Technical Report
UNSW CSE TR 0206, School of Computer Science and Engineering,
University of New South Wales, Sydney 2052, Australia, May 2002

[10] “QBone Bandwidth Broker Architecture”, QBone Signaling Design
Team, http://qbone.internet2.edu/bb/bboutline2.html

[11] T. Braun, G. Stattenberger, “Performance of a Bandwidth Broker for
DiffServ Networks”, Kommunikation in verteilten Systemen (KiVS03),
Leipzig, Germany, March 25-28, 2003

[12] J. Ogawa, A. Terzis, S. Tsui, L. Wang, L. Zhang. “A Prototype
Implementation of the Two-Tier Architecture for Differentiated
Services”, RTAS99 Vancouver, Canada

[13] C. Brandauer, W. Burakowski, M. Dabrowski, B, Koch, H. Tarasiuk,
“AC algorithms in Aquila QoS IP network”, 2nd Polish-German
Teletraffic Symposium PGTS 2002, Gdansk, Poland, September 2002

[14] C. P. W. Kulatunga , J. Kielthy, P. Malone, M. Ófoghlú,
“Implementation of a simple Bandwidth Broker for DiffServ networks”,
Inter-Domain Performance and Simulation IPS 2004, Budapest,
Hungary, March 2004

[15] Nichols K. and Carpenter B., “Definition of Differentiated Services Per
Domain Behaviors and Rules for their Specification” IETF RFC 3086,
April 2001

	I. INTRODUCTION
	II. Bandwidth Broker implementation in ns-2
	A. The supported QoS service
	B. Description of the implemented models
	III. Experimental setup
	IV. Studying the effect of buffer size
	V. Evaluation of architectures using various topologies
	C. Network overhead
	D. Acceptance rate
	E. Model response time

	VI. Conclusions – Future Work
	VII. References

