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Abstract

Our work deals with the analysis of the queueing delays of buffered multistage

Banyan networks of multiprocessors. We provide tight upper bounds on the mean delays

of the second stage and beyond, in the case of infinite buffers. Our results are va-

N
lidated by simulations performed on a network simulator constructed by us. The ana-"

lytic work for network stages beyond the first, provides a partial answer to open

problems posed by previous research.

1. Introduction

With the realistic appearance of low cost microprocessors, the multiprocessor

architectures became very attractive. The principal characteristics of such systems

are the massive parallelism and the ability of each processor to share a single main

memory or a set of memory modules. This sharing capacity is provided through an in-

terconmection network between the processors and the memory modules. Among the dif-

ferent physical forms available for the network are the time-shared bus, the cross-

bar switch and the multistage packet switching networks, such as the Banyan and Del
ta networks (see e.g. [GL, 73] and [P, 81]). The bus has a very limited transfer ra
te, especially in the case of machines with thousands of processors. The full cross

bar is not only very expensive but it also requires a tremendous amount of intercon

nections which clashes with engineering limitations. The multistage networks are in-

termediate cases, with small cost and good performance. They have been adopted re-
cently by the industry (e.g. the RP3 machine of IBM, [G, 84]). Since the network is

an important component of the multiprocessor machine, it is important to have a so-

lid understanding of its performance. In most of the proposed designs the network

supports dynamic access from each processor to each memory module, and the traffic

through the network consists of short items (requests to memory and replies). The

requests are being dynamically generated independently at each processor. The pat-
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tern of requests is essentially random and varies rapidly.

In this paper we analyze the queueing delays of buffered multistage intercon-
nection networks. Previous analyses have been reported in [KS, 83] and [Ksw, 84].
They mostly concentrate on the analysis of the delays in the first stage and provide
the delay distribution under uniform and nonuniform traffic. The delays at subse-
quent stages are estimated there by simulations and there are several conjectures
about them. The main obstacle is that the distribution of packet arrivals is not ti-
me-independent from the second stage on, even if such independence is assumed for

the first stage.

Our work provides analytical nearly tight upper bounds for the mean delays at
the second stage and beyond. It indicates that delays tend to increase from the
first to the successive stages. It also indicates that (for any fixed packet genera-
tion rate) after the second stage there is no notable difference between the delay
times, thus giving a partial positive answer to the conjecture and experimental re-
sults of [KS, 83]. Our results are backed up by the simulations we did on a self-

driverd network simulator. Al

2. Networks and modelling assumptions

The networks we consider are built of switches connected by unidirectional li-
nes. (In actual parallel computers it is necessary to send replies back through the
network. There are many ways to change definitions to allcw that). A k input, k out-
put switch can receive packets at each of its k input ports and send them through
each of its k output ports. A network (see [KS, 83]) is a labelled digraph where no-
des are of the following three types:

(1) source nodes (indegree 0, outdegree 1)
(ii) sink nodes (indegree 1, outdegree 0)

(iii) switches (positive indegree and outdegree).

Each edge represents one or more lines going from a node to its successor. A Banyan
network (see [GL, 73]) is a network with a unique path from each source to each sink
node. An n-stage banyan network is a banyan network whose nodes can be arranged in
stages, with all the source nodes connected to switches at the first stage, and all

the outputs at stage i connected to inputs at stage i+l. An n-stage rectangular ba-

nyan network of degree k is an n-stage banyan network built of kxk switches.

We restrict our analysis to oblivious routing algorithms, i.e. algorithms in

which the path of a packet through the network is fixed at the source node issuing
it. The path can be encoded as the sequence of labels of the successive switch out—
puts of the path (path descriptor).

Our modelling assumptions are those usually used in the literature ([KS, 83],
[P, B81]). Packets are generated at each source node by independent, identically dis-
tributed random processes. Each processor generates with probability p at each cycle
a packet, and sends a generated packet with equal probability’ to any sink node (uni-

form access). The network is assumed to be synchronous (discrete-time) so that pac-

kets can be sent only at times tc' 2tc, 3tc,... where tc is the network cycle time.
We assume that tC is also the cycle time of each switch. For the analysis, without

loss of generality, we will take tczl. The above assumptions imply the following

lemma.
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Lemma 1  [KS, 83]

Let packets be generated at the source nodes of a banyan network by indepen-
dent, identically distributed random processes, that uniformly distribute the pac-
kets over all of the sink nodes. Assume that the routing logic at each switch is
fair, i.e. that conflicts are randomly resolved. Then

(a) The patterns of packet arrivals at the inputs of the same switch are inde-

pendent.

(b) Packets arriving at an input of a switch are uniformly distributed over
the outputs of that switch.

(c) For uniform networks, for each stage, the pattern of packet arrivals at
the inputs of that stage have the same distribution. []

The uniform access assumption allows us to represent any kxk switch as a sy-
stem of k queues working in parallel, with a deterministic server each (of service
time equal to 1l). Any packet entering any of the k inputs of the switch, goes with
probability % to any of the (output) queues of the switch.
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Figure 1: A kxk switch model with buffer size b>0.

3. The isolated kxk switch and the B/D/1 queue

Definition A B/D/1 gqueue is a queue whose input (arrival) process is a Ber-
noulli process B(q,N) where N is the number of trials and g is the success probabi-
lity, i.e. where the Prob{x packets arrive at the queue at the next unit of time}-=
=(§)qx(l—q)N—x. The server of the queue is deterministic and the arrivals are con-

sidered to occur just before the end of the corresponding time unit. (Discrete time
queue) .

In the rest of the paper we assume that the service time of the B/D/1 queue is
equal to 1.

It is clear that any given output queue of the isolated kxk switch can be mo-
delled by a B(%,k) queue, since with probability p/k a packet both appears in a gi-
ven input and moves to the queue under discussion. In fact, if ‘we consider an iso-
lated kxk switch (or any switch of the first stage of the network) and if v, =number
of arrivals at (output) gqueue i of the switch, for i=1,2,...,k, then the total num-
ber of arrivals in the inputs of the switch during a cycle, is

13
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V=V._.+...+V and

1 k
Prob{v=n}=(1)p"(1-p)*" i o0cken
= 0 else

Since any assignment of n messages arriving concurrently to the output gueues has
probability (%)n (by the assumption of random resolution of conflicts), we conclude

that the joint arrival distribution at the k queues is

Prob {Vl:al' V2=az""'vk=ak/a1+'"+ak;n}=
n!
B or— (%)“ (EQ 1)
al!azl. ak!

It is easy to prove that

Lemma 2 (Due to M. Snir, proof in the full paper)

The marginal densities Prob{vi=ai} of (EQ 1) are the same with the Bernoulli
B(E,k), gssumed in the analysis of the B/D/1 gqueue.

k :

. _ ]

Definition Let qn be the number of packets in the B/D/1 queue with input
B(p/k,k) at the end of cycle n.

{n)

Definition Let v be the number of packets joining the B/D/1 queue of input
B(E,k} at cycle n.

Definition Let A(k)=0 if k<0 and A(k)=1 else.

L]

It is clear that

qn+l=qn~A(qn}+v(n+l} (EQ 2)

Assuming a steady state distribution g=1im g _ (which always exists if p<l) we have
I —w=

(by taking means)
E(Q)=E(qQ)-E(b8(§))+E(¥)
implying

E(A(Q))=E(V) (EQ 3)

But V has the same distribution with v(n) (since the arrival process is not

time-dependent) i.e.

B(#)=E(v!"))kBop (EQ 4)
However =
E(a(g)= = &(k)Prob(§=k1=Prob(ﬁ>0) (EQ 5)

k=0
Comparing EQ 3, EQ 4, EQ 5 we have

Lemma 3 The utilization of the B/D/1 queue of input B(p/k. k) is equal to p.

We can also easily prove that

Lemma 4 The steady state mean gueue length of the B/D/1 queue (i.e. of any outpu=<
o ta 12 Zoogs AU DR
gueue of the first stage of the network) is

p? (1-1/k)

E(q)=p+ 2(1-p) (EQ &°

(The above equation includes the packet in service).
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proof sketch
EQ 6 was derived in [KS, 83]. The crucial steps to get it is (1) the method of
moments of [KLEI, 75] which proceeds by squaring EQ 2 and then taking means and li-

mits, and (2) the fact that Vo'l is independent of Vi i<n+1l, (and thus of qn}t only

pecause of the assumption about packet generation in the processors.

Ol

It is an easy corollary of the above that the mean gueueing delay in the first
stage 1s
1
p(l- k}

W = —— i £ les.
queue 7(1-p) ' in number of cycles

4. The queueing delays of the second stage

By symmetry, it is enough to analyze the first output gueue, Ql’ of a particu-
lar switch S of the second stage.

Let B? be the number of customers in Ql at cycle n.

Let x?+l be the (possible) arrival of a packet from input 1 to Ql' during cy-
cle n+l.
Let q?l,...,q?k be the number of customers in the gueues (of the first stage)

which feed the switch S containing Ql’ during cycle n. (See Figure 2)

Sw'u‘tc.lq S

Figure 2: The second stage.

It is clear that

n+l ,n n n+l n+l
= - S Talte E 7
Bl Bl ﬁ(Bl}+(xl - +X) ) (EQ 7)
wher for each i
n+1 n ; , g 1
X5 -a(qli) with probability ¢
= 0 else
n+1

By Lemma 1, the X xn+l are independent of each other, also the q?l,...

l :""fk
,q?k are independent of each other.

However each x?+l depends on ezch cf qgj and thus the B? and x2+1 are not in-

dependent random variables.




n : g L
Let y;= the size of Bl given that xn+l=l.
Let wp(a)zprob{ AL

i yi_a]

We need a rather technical lemma:
Lemma 5 For each i,n we have:

+1 n+1

n_.n S n
E(Bl X4 )=Prob{xi =1} E(yi)
and

BLATE™) «x ™) cBrobx™ 1) « (2=0 (0
1 i i 1

E(BT x2+l}= 2 Aefde Prob{Bi:a and x2+l=B}

a>0,B>0
= I d-Prob{B?:u and x?+l:l}
a>0
. * =
% 3
= I G'Prob{x2+l=l}Prob{B?:d/x2+l=I}
a>0 QED
Similarly for the second equation rj
Let us also note that xi=lim x?=a~ with prob 1/k
n-o 13
=0 else,
hence E(xi}=Prob{xi>O}=E (by Lemma BJV(i and thus

E(xl+-..+xk)=p, implying that 1lim BT exists if p<l.

n-—+o

By taking, then, limits and expectations in (EQ 7) we conclude
E(&{Bl))=E(xl+...+xk}=p i.e.

Lemma 6

The utilization of the gueue Ql of S is p, at the steady state.

[

The above also implies that yi=lim y? exists if p<l. By squaring (EQ 7) (method
n—-w
of moments) and using Lemma 5 and then by taking expectations and limits, we get
p k 5 B k
2E(By)-2 - E(yiJ=p+E({xl+...+xk) )-2 I (1-9,(0)) (EQ 8)
ie=l i=1
2,40 n n n n )
(Note that one must use A (Bl}=&(Bl) and Bl-A(Bl]=Bl, also Lemma 1, to get (EQ 8)).

Since xf:xi \fi and xi,xj are independent for i#j from Lemma 1, we get

; 2 k(k-1) _2
E((xl+...+xk1 )=k E{xl)+2 ——— & (xl)
2 ,
—p+k(k-1) EE : (EQ 9)
k

By symmetry, E(yi) is the same \i:i and this also holds for Yi(O)' hence by (EQ 8):




Lemma 7

k-1 2
2 E(Bl)—ZpE(yl)= % b +2p wl(O) (EQ 10)

[

By noting that the L.V.y, is the distribution of the size of queue Q, as seen

by an arriving packet from input 1, we can get a worst case bound for this distri-

bution (leading to an upper bound for E(Bl)) by using the "bulk arrival" distribu-

tion

Yl= the size of Bl given that

xl=l or x2=l or ... or X, =1

and ®l(a}=Prob{Yl=a}
Clearly (as we will show immediately)

E(Y,)>E(y,)

leading to

k-1 2

2 E(B))< == p“+2p @, (0)+2pE(Y,) (EQ 11)

. L3

We are going to use an Operational Approach ([BD, 78]) argument to get an up-
per bound on E(Yl). Let us consider the case where ty, is an instant at which arri-
vals start to happen at Ql (no such arrivals happened at tovl}. Arrivals will con-

tinue to happen for, say, A cvcles and then no arrivals will happen at Q. for, say,

1
K cycles. If we assume that the number to arrivals per cycle is 1 for the interwval

of A cycles, then we get a worst case bound for Yl. (See Figure 3). Let 9y be the
queue size of Ql at to.

@ueut
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-t° "'.n*'.x ":‘*.)*'\'T—
- o~ cxsles
\ cTcies p cycles

Arr'\vﬁ.g—‘; "’“'—’L?FE“ No qrriva_‘es.

in cach of Aem .

Figure 3: Operational Approach argument.

= . | 5 .
Clearly E(Yl) 99~ 3,1 In the interval (to,t0+k+u]

while

A = -
ol s dgtHa = (1+2+. . . +1) o ulusl)
1 =90~ 20a+m)

A+
in the same interval.
. Moy, (Al b=l :
So E(Yl}_E(Bl}+(l+u} (l+l) ( > ) (EQ 12)
15 A-1
But ¥ <1, ATl <1, hence




u-1
E(Y))<E(B))+E(M2E)

)+

E(n)-1
E(Yl}iE{Bl e

(Note that the inequality %i%
of the inequality 1%;

Since the x_,..

1 18

Prob{no arrivals at a cycle}:(l——E]k

<1 is tight for moderately large A,
<1 depends on the value of p)

 are mutually independent and since Prob{x,
1

(EQ 13)

and the tightness

=0}=1-p/k we get

and, hence,
E(m)=(1- )% (EQ 14)
We conclude
Lemma 8
A E)_k—l

E{Yl) < E(Bl)+ >

By using EQ 11 then, we get
-;— pz+p(l~ E)‘k-mzp ®,(0) .

E(B. )< .
g ' 1= E(l_p)
But wl{O) < l-utilization of queue Ql’ since

E(Yl} > E(Bl}
So

Eilpz-rp(l— E)_k—p+2p(l~p}
E < l.e.
(Bl}_ 3 (T-p) i.e
Lemma 9
SRS 2, 1 By-k_;]
p(1- k) pl(1- k} -1
E(Bl} < p+ + (EQ 15)
2(1-p) 2(1-p)

i.e. the mean queue size at the second stage is upper bounded by the sum of the

mean queue size of the first s

_ by-k
pl(1 k)
2(1-p)

The result of Lemma 9 has

ves an excellent agreement.

5.

The gqueueing delays at subsequent stages

tage and the factor

-11

L]

been validated by our simulations. For p<0.2 it gi-

Let us now inductively as

sume that, for each output queue Q of stage m, we ha-

ve for the steady state queue

that queue. This holds for stage 2,
E(xi}z E for the corresponding X4

all stages and since the rest
13, 14)do not assume anything
conclude that we can validate

‘for any queue Q' of stage m+l

size 9, that E(a(qm})=p and that (EQ 15) holds for
as we showed in Chapter 4. This implies that
feeding the next stage. Since Lemma 1 holds for
of the analysis of Chapter 4 (especially EQ 11, 12,
else about the xl,...,xk except that of Lemma 1, we

the rest of the equations compietely and thus prove

that its steady state o
also (EQ 15). By induction then, we get:

| Satisfies E(a(qm+l))=P and




- zmma 10 (For traffic from processors to memories)

2] The mean size, E(R), of each output queue of any switch of any stage 1i>2, sa-
-1sfies
1 =
o?(1- & pl(1- By7*.1]

£ %
2(1-p) Z2(1-p)

E(B)< p+
5) The mean gueueing delay of a packet 1n any stage i>2 satisfies

1 py-k
p(1- 3 (- By

“
"queue & 2(1-p) N 2(1-p)

]

zemarks

Our simulations validate Lemma 10. Indeed mean dgueue sizes increase from the
first to the second stage and change insignificantly thereafter. 3ee tables of Ap-
pendix. The extention of our results to the case of queues of finite size is cur-
rently under investigation. Although researchers have argued that finite buffers
behave as in the case of infinite buffers when their size exceeds the mean gueue
1ength*{(sée [KS, 83]), it has been remarked (in the design of RP3) that this is

not the case for large p. We pose thils as an open problem-
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our self-driven simulator is written in Pascal and runs on a VAX/T750.
three-dimensional array to represent the network. The first dimension 1s the stage,
the second is the switch in the stage and the third is the input of the switch. For

the interccnnection between stages we use the formula derived in [p, 81]. Our ran-

APPENDIX

dom number generator is of the modulo type.

Note: The first 1000 steps of the simulation correspond to the transient behaviour

of the network and are not taken into account in the estimation of statistics.

TABLES

All simulations are based on the following:

Number of processors = 512 (9 stages)

2x2 switches

Steps of the simulation = 20,000

(probability p=0.2)

mean gueue Variance 95% confidence conditional mean
stage # length, E(Bl] of B, interval for B, queue length, E{V1}
1 0.214526 0.196238 0 <+ 1.08278 0.281809
2 0.21273% 0.192521 0+ 1.07273 0.282828
3 0.214211 0.196024 0 = 1.0819°% 0.298807
4 0.210158 0.192750 0 + 1.07066 0.304348
5 0.213579 0.194302 0 = 1.07754 0.286684
6 0.221105 0.206829 0 + 1.11248 0.310660
7 0.220895 0.204966 0 £ 1.10825 0.318565
8 0.213842 0.195063 0+ 1.07949 0.295929
9 0.214526 0.200345 0+ 1.09182 0.309284

120
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Table 2
(probability p=0.4)
stage # mean_queue _ﬂ_;ariance 95% confidence conditional mean
length, E(Bl) of B, interval for B, gueue length, 1)
1 0.465474 “-6.385126__ 0 = 1.68184 0.549832
2 . Otgg9263 0.397331 0 = 1.70473 0.590704 =
3 0.474368 0.413010 0 = 1.73398 0.615641
4 0.483526 0.427813 0 = 1.76551 0.638737
5 0.469368 0.40533%9 D = 1.71723 0.607494
6 0.471895 0.411060 0 &+ 1.72853 0.620289
7 0.498526 0.447916 0 =+ 1.81029 0.649687
8 0.489526 0.433353 0+ 1.77979 0.653954
9 0.489000 0.428973 0 = 1.77272 0.631481
Table 3
(probability p=0.6)
stage # mean gueue Variance _95% confidence conditional mean
length, E(Bl) of Bl interval for Bl gueue length, E(yl)
1 0.825684 0.702076 0 = 2.46797 0.956656
2 0.865684 0.811760 0 = 2.63160 1.061420
3 0.836053 0.774085 0 + 2.56050 1.034860
4 0.841895 0.823709 0 = 2.62076 1.056380
5 0.870158 0.898413 0 + 2.72794 1.083380
6 0.865526 0.841072 0 + 2.66304 1.086190
7 0.826526 0.744156 0 = 2,51731 1.011130
8 0.862105 0.824457 0 + 2.64178 1.051850
9 0.853368 0.807773 0 =+ 2.61494 1.047960
Table 4
Mean gueue lengths
(Comparisons)
Theoretical Theoretical Maximum % difference
2 15 stage bound for simulation (100 IESAR
stages>2 measurements X
(x) for stages >2
(y)
0.2 0.2125 0.241821 0.221105° B.57
0.4 0.4667 0.654167 0.498526 23,79
0.6 0.8250 1.60561 0.870158 45.80
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