
 1

Implementing spatio-temporal relations for hypermedia
presentations using an HTML-like language

C. Bouras1,2, V. Kapoulas1,2,D. Moiras3, V. Ouzounis4, P. Spirakis1,2, A. Tatakis2
1 Computer Technology Institute, Patras, Greece

2 Computer Engineering Dept., University of Patras, Greece
3 University College of London, London, UK

4 GMD Fokus, Berlin, Germany

E-mail: bouras@cti.gr

Abstract
Hypermedia is currently the trend in delivering information composed of various
forms of media. Up to now most systems lack the ability to present the user with
hypermedia information containing various media that have specific spatio-temporal
relations. In this paper we propose and describe a model that can describe such kinds
of hypermedia presentations. The core of the model is an HTML-like language that
supports tags for the description of timing relations between the information objects
that compose a hypermedia presentation.

Introduction
In our days multimedia tend to be a basic part of all software applications. The reasons for this trend in software,
stem from the need of being more natural and friendly to the end user. However the demands of the user are
getting higher and higher, thus making software developers produce high quality applications.
Developing a hypermedia application imposes several problems concerning the presentation of the hypermedia
information. The spatio-temporal relationships among the different media that comprise the presentation is the
most important aspect of a high quality presentation [3],[4],[5]. Synchronisation of all these media requires a
model for defining the exact place where these media will be presented and the exact time that their presentation
will start.
In this paper we propose a new model for structuring hypermedia documents. The core of this model is a
hypermedia mark-up language which supports tags for the synchronised presentation of the various multimedia
objects that comprise the hypermedia document. The need for a model meeting these requirements has been
mentioned early in this decade. As a result of this identification several standards, aiming in satisfying these
goals, have been proposed. (e.g. MHEG [11], Hytime [12]).
In the direction of incorporating hypermedia and especially continuous media, new transport protocols have been
developed. The most important of these protocols are the Real Time Protocol (RTP) [6], the Real Time
Streaming Protocol (RTSP) [7] and the Resource Reservation Protocol [8]. The basic idea behind these protocols
is the usage of a streaming client-server system. The difference between client side streaming and the Web
server, is that the last cannot control the rate at which a file is sent. The integration of these new protocols is
hoped that will give solutions for achieving real-time delivery of multimedia.
In the following sections we will present the language we propose and some of the implementation issues it
entails.

 2

Our proposal
In order to interchange multimedia objects in a distributed environment and provide a hypermedia document with
the ability to regain the original spatio-temporal presentation scenario of its components, there is the need for the
existence of a flexible model that should address basic features, which among others include the following:

• Association between the media contents (e.g. text’s content) and their presentational characteristics, like text
attributes (fonts, size, bold, italics, paragraphs, separators, etc.), colours (background, foreground), etc.

• Placement in space and time (spatio-temporal presentation) of the several media data that compose a
hypermedia document.

• Synchronisation in real time of media that should be presented/played together, following the presentation
scenario.

• Ability to link the hypermedia objects or the individual components of hypermedia documents, in order to
guide the presentation through the various objects.

We started designing a model that would be easier to implement and use than MHEG and which provides
modules for a synchronised presentation of hypermedia objects and would cooperate with protocols for real time
delivery of hypermedia objects. The first step in this attempt was to design a mark-up language that would
include support for timing features and would be capable of handling intermedia synchronisation (i.e.
synchronisation between different media).
This language is the core of the model and offers a simple yet flexible way to represent a pre-orchestrated
hypermedia presentation. This hypermedia mark-up language is influenced by HTML and follows its simplicity
in constructing documents. A hypermedia document, as described by the model, is a text file which contains
several tags and keywords to indicate the specific form of the document, such as media type (text, image, audio,
etc.), media placement and annotation, paragraph structuring, text form (fonts, size, alignment, headings, etc.)
and other presentation options.
Using this language it is possible to describe the exact place where all the multimedia objects that comprise the
presentation will appear, and the exact time that this will happen.
In traditional hypermedia systems, navigation is enabled via either a “sequential” way or an “explorational” way.
In sequential navigation, users have to follow the links defined by the creator of the hypermedia document in
order to maintain a logical sequence of the selected information topic. On the other side, “explorational”
navigation can be used to override the logical sequence.
In our language we include both of these methods and we expanded the notion of sequential navigation by
incorporating timing characteristics in the linking method. This means that a specific link may automatically be
followed after the expiration of a time period that is properly defined by the presentation scenario.

Description of the language
In the following paragraphs we give a presentation of the formal grammar that describes the language and a brief
discussion of the language itself.

Grammar of the language
We present the main parts of the language using the Backus-Naur Form (BNF), where terminal symbols appear in
capital letters and boldface, while non-terminals appear between < >.
<Hdocument> :: = TITLE STRING END_TITLE <HSentence>

<Hsentence> :: = /* empty */

| <Headings> <Main> <Separator> <Hsentence>

<Next> ::= /* empty */

 3

|<HyperLink>

<Headings> ::= /* empty */

| <Heading1>

| <Heading2>

| <Heading3>

<Heading1> ::= H1 STRING END_H1

<Heading2> ::= H2 STRING END_H2

<Heading3> ::= H3 STRING END_H3

<Main> ::= <Par> <Body>

<Separator> ::= /* empty */

| SEPARATOR

<Par> ::= /* empty */

| PARAGRAPH

<Body> ::= /* empty */

| <Document> <Body>

| <Image> <Body>

| <Audio> <Body>

| <Video> <Body>

| <Audio_Video> <Body>

| <HyperLink> <Body>

<Document> ::= TEXT <Text> END_TEXT

<Text> ::= /* empty */

|STRING <Text>

<Image> ::= IMG <ImgOptions> <Source> <Id> <Note> END_IMG

<Audio> ::= AU <AuOptions> <Source> <Id> <Note> END_AU

<Video> ::= VI <ViOptions> <Source> <Id> <Note> END_VI

<Audio_Video> ::= AU_VI <Au_ViOptions> <Au_ViSource> <Au_Vi_Id> <Note>

END_AU_VI

<HyperLink> ::=HLINK <to_HyperText> <TimeOption><Note> END_HLINK

|HLINK <to_OtherHost> <TimeOption><Note> END_HLINK

<ImgOptions> ::= <TimeOption>

|<TimeOption> <OtherImgOptions>

<AuOptions> ::= <TimeOption>

|<TimeOption> <OtherAuOptions>

<ViOptions> ::= <TimeOption>

|< TimeOption> <OtherViOptions>

<Au_ViOptions> ::= <SyncOption>

| <SyncOption> <OtherAu_ViOptions>

<TimeOption> ::= /*empty*/

|STARTIME STRING

|STARTIME STRING DURATION STRING

<SyncOption>::= STARTIME STRING STARTIME STRING

<OtherImgOptions>::= HEIGHT STRING WIDTH STRING

 4

<OtherAuOptions> ::= /* empty for the time being...*/

<OtherViOptions> ::= /* empty for the time being...*/

<OtherAu_ViOptions>::= /* empty for the time being...*/

<Source> ::= SOURCE <Filename>

<Au_ViSource> ::= SOURCE <Filename> SOURCE <Filename>

<Id> ::= ID STRING

<Au_Vi_Id> ::= ID STRING ID STRING

<to_HyperText> ::= <Filename>

<to_OtherHost> ::= STRING < HyperLink >

<Note> ::= NOTE STRING

<Filename> ::= STRING

Tags may include specific keywords, like TEXT, IMG, etc. to indicate the formation of a presentation
component. For example, whatever is included between IMG and END_IMG is the description of an image
component of the document.
To include another media type component in the presentation scenario, one can just append it in the document’s
mark-up, using one of the IMG (image), AU (audio), VI (video), AU_VI (audio & video). The timing
characteristics of these media can be described using the STARTIME and DURATION tags while for the AU_VI
media type it is also possible to define the synchronisation options with the use of the <SyncOption> rule.
The SOURCE tag defines the files that contain the media data. ID refers to the identification key of the specific
component media. It is used to distinguish the various media streams that arrive from the server and need to be
processed. Naturally, each component of a hypermedia object has a unique identification number. NOTE refers
to an annotation text.
Hyperlinks may also acquire time characteristics. This means that a specific link will be automatically followed
after the expiration of a time period that is properly defined by the presentation scenario. This feature, can
preserve the sequential nature or “writer’s way” of presentation, in the absence of user involvement. This
sequence may change if the user chooses another hyperlink at will. The timing characteristics of a link can be
defined using the <TimeOption> rule that can be used with the HLINK tag.
We also introduce the notion of media “relative playout start time” and “media playout duration”. These relative
start time instants represent the playout deadline for a specific stream that should be satisfied in order to achieve
a coherent synchronised presentation. We can include in the presentation scenario these set of time characteristics
for every media component. By extracting this information in the receiving edge, we can construct a playout
schedule of every media stream that follows the initial scenario, as designed by the author.

Discussion of use
In order to better explain what the language is supposed to do we will use the following scenario as an example.
A hypermedia document contains formatted text that is always shown throughout the presentation. At the start of
the presentation (relative time) the image I1 is shown having presentation duration di1. After the appearance of I1,
in the time instant ti2 after the presentation start, image I2 is shown and kept on the display for duration di2. At
time ta1 an audio segment A1 should be heard synchronised with a video V of duration dV. The two media should
start and stop playing at the same time. In the time ta2 an audio segment A2 plays out with duration da2. Figure 1
illustrates the graphical presentation of the scenario and its correspondence in term of playout timelines.

 5

 Video

Audio 1 Audio 2

 Image 1 Image 2

Document Text

τδ

τδ

tv

ta1

dv

da1

di1 ti2 di2

th

ta2 da2

dt

Figure 1: Graphical and timing illustration of a simple hypermedia scenario

Trying to transform the graphical notation of the scenario in terms of the described mark-up language, we result
to the following mark-up description:

TEXT text_body END_TEXT
IMG STARTIME=0 DURATION=dI1 SOURCE=I1 ID=... END_IMG
IMG STARTIME=tI2 DURATION=dI2 SOURCE=I2 ID=... END_IMG
AU STARTIME=tA1 DURATION=dA1 SOURCE=A1 ID=... END_AU
AU STARTIME=tA2 DURATION=dA2 SOURCE=A2 ID=... END_AU
VI STARTIME=tV DURATION=dV SOURCE=V ID=... END_VI

A client receiving this description, in order to extract all the necessary timing information for the determination
of the playout schedule, pre-processes the received presentation scenario. During this pre-processing, every
media stream Si is recognised by its corresponding language rule and a structure Ei is informed. This structure
contains stream's Si timing parameters like start time ti and duration di, corresponding data position in the
temporary storage mechanisms (media buffers), and other useful information. After acquiring this information,
the playout scheduler process can arrange the presentation of each media stream according to its playout
deadlines (that are expressed from the time instant ti). For each media stream Si, a concurrent presentation
process is created, to play Si when its deadline is arrived at.

Implementation issues
In order check the validity of the above described architecture we designed and implemented a prototype browser
for this language. We also developed a teletraining system which is based on this architecture and uses the Real
Time Protocol (RTP) for the delivery of continuous media.
The lessons are hypermedia documents and are constructed using the hypermedia mark-up language described
previously. To integrate the transfer of data and the application protocol, we use the Real-time Transfer Protocol
(RTP) as a transport mechanism. RTP is an Internet standard, and is used as an intermediate protocol that
provides end-to-end transport functions suitable for applications transmitting real-time data such as audio and
video. RTP is augmented by a control protocol (RTCP) to allow monitoring of the data delivery.
We use these mechanisms to gain intramedia and intermedia synchronisation using the timing information they
provide through packet timestamping, as well as calculating statistical measurements about network's parameters
like the transmission delay, jitter and packet loss. We use RTCP to send this feedback information to media
servers and to realise the service's application protocol.

Buffering Scheme
In the receiving edge of the service, the existence of a buffering mechanism is necessary. Incoming media data
are temporally stored in multi-thread buffers. Every buffer thread has a different size according to the stored data

 6

characteristics. Media data are temporarily stored in the buffer to pass through a decoding procedure before
being played. The main usage of a buffering scheme is to accommodate, using a statistical resource reservation
policy or by just upgrading or degrading queued media quality, measured or negotiated connection’s delay
invariant behaviour. Such variant delay may lead to synchronisation or media presentation anomalies (jerky
video, gaps in audio) due to buffer underflow.

Conclusions and Future Work
We proposed a model for hypermedia presentations whose core is an HTML-like language with extended timing
features, capable to manage the synchronisation between the objects that comprise it. In the future we are going
to extend the capabilities of the language with more presentation features concerning both static and continuous
media. Additionally, the structuring of presentations will be given in a more formal way, especially concerning
the distribution of multimedia objects and we will try to provide more interaction to the model. Complementary
to the augmentation of the language we are going to develop an authoring tool to facilitate the creation of
hypermedia presentations. Finally, we would like to gather statistical data about the performance of the RTP
layer in order to be able to evaluate its suitability to the task.

References
[1] C.Bouras, et. al. “An Interactive Cooperative Teleworking Environment: Telemathea”. In proceedings of

EF-96, Boston, Mass., USA, June 17-22,1996.
[2] C.Bouras, et. al. “An on-Demand Multimedia\Hypermedia Service over Broadband Networks”. In

proceedings of 5th IEEE International Conference on High Performance Distributed Computing, Syracuse,
N.Y., USA, 6-9 August,1996.

[3] R.Steinmetz “Synchronisation properties in a multimedia system”, IEEE Selected Areas In
Communications, vol8 ,no3, Apr.1990, pp.401-412.

[4] Chun-Chuan Yang and Jay-Hsiung Huang, “A Multimedia Synchronisation Model and its implementation
in Transport protocols”. IEEE J. Select. Areas on Communications, vol14 ,no1, pp 212-225, Jan 1996.

[5] Herng-Yow Chen & Ja-Ling Wu, “Multisync : A synchronisation model for multimedia systems,” IEEE
Journal on Selected Areas in Communications, vol 14, No.1 , January 1996.

[6] H.Schulzrinne and et. al. RTP: A Transport Protocol for Real-Time Applications, March 1995. Internet
Draft Internet Engineering Task Force.

[7] Real Time Streaming Protocol (RTSP). Internet Draft. Available at: http://www.prognet.com/prognet/
rt/protocol.txt

[8] Reservation Protocol (RSVP). Available at: http://www.isi.edu/div7/rsvp/rsvp-home.html
[9] T.Berners-Lee Hypertext Transfer Protocol (HTTP). Working Draft of the Internet Engineering Task

Force, 1993.
[10] T.Berners-Lee and Connolly. Hypertext Markup Language (HTML). Working Draft of the Internet

Engineering Task Force, 1993.
[11] Thomas Beyer-Boudnik. Wolfgang Effelsbberg. MHEG explained, IEEE Multimedia, Spring 1995, pp. 26-

38.
[12] Newcombet al., 1991. The HyTime Hypermedia/Time-based Document Structuring Language,

Communications of the ACM, November 1991.

	Abstract
	Introduction
	Our proposal
	Description of the language
	Grammar of the language
	Discussion of use

	Implementation issues
	Buffering Scheme

	Conclusions and Future Work
	References

