
Monitoring RSS Feeds

George Adam
(Research Academic Computer Technology Institute and

Computer Engineer and Informatics Department, University of Patras, Greece

adam@cti.gr)

Christos Bouras
(Research Academic Computer Technology Institute and

Computer Engineer and Informatics Department, University of Patras, Greece

bouras@cti.gr)

Vassilis Poulopoulos
(Research Academic Computer Technology Institute and

Computer Engineer and Informatics Department, University of Patras, Greece

poulop@cti.gr)

Abstract: The expansion of the World Wide Web has led to a chaotic state where the users of

the internet have to face and overcome the major problem of discovering information. For the

solution of this problem, many mechanisms were created based on crawlers who are browsing

the www and downloading pages. In this paper we describe “advaRSS” crawling mechanism

which intends to be the base utility for systems offering collections of news in real time to

internet user. In contrast to the common crawling mechanisms our system is focused on

fetching the latest news from the major and minor portals worldwide by utilizing their RSS

feeds. The news is produced in a random order any time of the day and thus the freshness of the

offline collection can be measured even in minutes. This means that the system has to be

updated with news every single time they occur. In order to achieve this we utilize the

communication channels that exist on the modern architecture of the WWW and more

specifically in the architecture of Web 2.0. As the RSS feeds are used by every major and

minor portal it is possible to keep our crawler up to date and retain a high freshness of the

“offline content” that is maintained in our system’s database.

Keywords: focused crawler, RSS, feed monitoring

Categories: H.3.3, I.7.1

1 Introduction

Web crawlers are an essential component of all search engines and are increasingly

becoming important in data mining and other indexing applications. They are

programs which browse the Web in a methodical, automated manner and are used to

create a copy of all the visited pages for future use by mechanisms which will index

the downloaded pages to provide fast searches and further processing.

Maintaining web archives requires an incremental crawler which is capable of

revisiting known URLs independently and adaptively to their estimated rate of

publishing new content. The goal is to keep the local repository as up to date as

possible. In [Brewington, 00a] and [Brewington, 00b] is denoted that most web pages

in the US are modified during the US working hours a statement that is extremely

logical and helpful. In [Cho, 99], Cho and Garcia-Molina show that different domains

have very different “page change” rates. An approach that utilizes this fact is a

scheduling mechanism which estimates the next update timing of web pages based on

their update history using the Poisson process [Tamura, 08]. In [Souza, 07] is

proposed an additional feature, which includes the politeness constraint which

indicates that we may only probe the source at most n times and that no two probes

may be spaced less than delta time units apart. This policy is intended to minimize the

required bandwidth and to prevent the crawler from being blocked from the source.

Finally, in [Sia, 07] Sia et al. study how the RSS aggregation services should monitor

the data sources to retrieve new content quickly using minimal resources and to

provide its subscribers with fast news alerts. Their experiments prove that, with

proper resource allocation and scheduling, an “RSS aggregator” can provide useful

content significantly fast.

Apart from the freshness other issues also occur when creating a distributed

crawler, either with use of terminals or multi-threaded. The distribution of resources

among the crawlers and the communication between them is a matter of discussion. In

[Najork, 01], [Wolf, 02] and [Cho, 98] some specific strategies are introduced for

effective crawling and parallel crawling. The basic idea that lies behind parallel

crawling is a manager which is assigned with the task of organizing the set of

terminals-crawlers that access and download pages. In some cases, the terminals

crawlers maintain their own database. This implies that the manager is assigned with

the task of getting data from the databases and committing the changes to the central

database. Additionally, the manager should read and update accordingly the

distributed databases with data collected from every terminal-crawler in order to

prevent situations of duplicate entries.

In this paper we describe advaRSS, a crawling mechanism that utilizes the

communication channels that exist on the architecture of Web which is nothing more

than RSS feeds. The idea is the same as a usual crawler with the starting feed URL

being the RSS feed (XML file) and the depth of search set to 1, which means follow

only the links found in the first page (feed URL). In contrast to the common crawling

mechanisms our system is focused on fetching only news articles from the major and

minor portals worldwide (multilingual), in order to deliver personalized content to

users. The news is produced in a random order any time of the day and thus the

crawling mechanism must periodically poll the sources and check for changes many

times per day. To make this resource intensive task more efficient, the system has to

learn to predict the rate that an RSS is publishing articles, based both on the static

features and the complete posting history.

The rest of the paper is structured as follows. In the following section we describe

the architecture of advaRSS while in the third section we display the flow of

information. In the fourth section, we discuss the algorithmic aspects of the system

and then we describe the experimental procedures that were conducted in order to

evaluate the crawling mechanism. This paper finishes with some discussion on the

mechanism and we conclude with remarks and future work on the system.

2 Architecture

The architecture of the mechanism consists of multiple sub-systems which are

assigned with specific roles in order to achieve scalability. The basic parts of the

system are (a) the centralized database, (b) the crawler’s controller and (c) the

terminals that execute the fetching and analysis.

The database is used for storing permanent information such as links to RSS and

news articles. Each RSS stored in the database is followed by 24 indicators, one for

each hour, which changes dynamically according to the rate that the RSS publishes

new articles. Additionally, the database stores information concerning the articles that

are fetched utilizing the RSS feeds like the title, the HTML code, the URL, the

language, the category and any other information that can be useful by the mechanism

that uses this data.

The controller is used in order to organize the whole procedure and is assigned

with two major tasks. The first is the direct communication with the database (only

the controller can interact with the database) and the second is the job assignment and

checking of the terminals. The controller is the part of the mechanism that includes

the main procedures and feeds the terminals with URLs from which to download

information. In parallel, the controller examines the outputs of the terminals’ analysis

and stores any information to the database.

The mechanism is utilizing a central MySQL
1
 database for permanent storage of

data. The system runs every few minutes and the controller is responsible to specify

which RSS feeds have to be revisited. This decision is made by estimating the number

of new articles that are expected to be published from the last time that the RSS was

retrieved. In order to estimate this number, the controller utilizes the hourly posting

rates that are stored in the database and the last retrieval time of each source.

Finally, the terminals are used in order to accelerate the crawling procedure. They

fetch and analyze the RSS files that the controller has indicated and download every

new article that will be found. Thus, the controller will not have to retrieve any RSS

feed and communicates only with the terminals that are supposed to send the new

articles without any delay. This parallel architecture utilizes the network connections

of the terminals to broaden the overall bandwidth of the mechanism. This means that

the resource constraints are lowered and the performance of the crawler is increased.

1
 http://www.mysql.com – MySQL DBMS

Figure 1: architecture of advaRSS

3 Flow of Information

The main procedure of the mechanism can be decomposed into multiple simple tasks.

Firstly, the controller gets a list with all the available RSS feeds that are stored in the

database. The list will be filtered in order to process only a small amount of feeds

each time. The filtering is done by applying the politeness constraint and estimating

the expected new articles from each feed. Afterwards, every RSS feed from the

aforementioned list will be processed by an available terminal or by the terminal with

the lower resource consumption.

The terminals have a local database in which they keep information about the

RSS feeds which is their MD5 hash, the last articles that they provided and their last

retrieval time. Thus, when a terminal receives a URL to parse, it requests from the

corresponding web server to receive the XML file, only if it has been modified since

the last date that was fetched. When the web server sends the file, the terminal checks

its hash code compared to the hash code that exists to the local database. We consider

that the same hash code indicates an unchanged XML file and thus an RSS that is not

updated with new articles.

A retrieved RSS file is examined using an XML parser by a terminal, in order to

extract the titles and URLs of the articles that are located into the feed. The terminal

checks if any of these titles can be found in its local database. We consider that

multiple same titles can be found across different RSS feeds but if the same title has

been provided by the same RSS at the previous retrieval, then we consider that we

already have the article in our repository. For every article that its title does not exist

in the database of the terminal, we fetch and send to the controller the following

information: title, url, date (of fetching), html and rss identifier from which it is

fetched. Finally, the controller stores this information to the central database and

updates the posting rate of the RSS that was examined. The tasks are depicted in

figure 2.

D
a
ta
b
a
s
e
 T
ra
n
s
a
c
ti
o
n
 L
a
y
e
r

W
e
b
 T
ra
n
s
a
c
ti
o
n
 L
a
y
e
r

Figure 2: flow of information

4 Algorithm description

As already mentioned in the previous paragraphs we intend to create a crawler that

will be able to receive the latest updates of news articles of communication channels

and store the information into a centralized database so as to be used from every

mechanism that supports presentation of news to Internet users. For every RSS in the

database, the system maintains an hourly posting rate history and the last retrieval

time. The history is used in order to present the posting activity of the source and to

predict the rate that the RSS is publishing new articles, based on the fact that an RSS

tends to have similar posting rate at a specific hour, each day.

One of the most basic parts of the system is the scheduling mechanism. It is a

subsystem of the crawler that, by using the aforementioned posting pattern, manages

to schedule the next visit to the RSS feed. During each subsequently visit, the historic

information is updated and new predictions are made, leading to a system that is able

to adapt on the RSS updating behavior. We concluded to this algorithm by observing

how new articles are published by an RSS during the 24 hours of a day. The following

diagram shows the average number of articles posted per hour, for a random RSS in

our database.

average posting rate

0

0.5

1

1.5

2

2.5

3

3.5

0:
00

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

hour

a
rt
ic
le
s

 .

Figure 3: average number of new published articles per hour, for a specific RSS

As it is obvious from Figure 3, the mechanism should schedule more frequent

visits at hours with high posting rate. Having the hourly past posting pattern of an

RSS and the last time that it was retrieved, we can use the following equation to

estimate the expected number of new posted articles since the last retrieval, using the

precision of 1 second:

dt
ttrateposting

tarticles
nowt

last

now
now ∫

−
=

3600

)(_
)(

(1)

The above equation utilizes posting rate per second by dividing the hourly rate by

the total number of seconds in one hour. It is obvious that we expect a high number of

new articles from an RSS feed with high posting rate. Due to resource constraints, the

mechanism is able to perform only limited retrievals per time period. Thus, the

crawler has to decide which RSS sources to contact in order to fetch as many articles

as it can. A simple monitoring algorithm that utilizes the Eq. 1 to schedule a total of k

retrievals for each execution should estimate the expected new articles and select the

first k with the higher number of articles. Utilizing the fact that the advaRSS crawler

can be used as a part of a system offering collections of news in real time to internet

users, we can increase its efficiency by including information about the users. The

number of subscribers of each feed and their activity on the system can be used in

order to modify the above monitoring algorithm. We assume that if a source has more

subscribers than others, it should be retrieved with higher priority, in case that all of

them have similar posting rates. Putting the above together on a unique ranking

metric, we have for an RSS feed f:

))(1()(),(fssubscriberctarticlestfrank f ⋅+⋅= (2)

The parameter c in the above metric can be adjusted to reflect how important the

information about the number of subscribers is. In systems that the number of

subscribers for each source is unknown, this constant must be set to zero, which

means that the ranking metric will not use this information at all. Additionally, the

scheduling mechanism that we present, takes into account the politeness constraint,

which means that no two subsequent retrievals may be performed in less than x time

units apart. We assume that a user can tolerate a delay of 10 minutes for an article,

thus we set the minimum time between two subsequent retrievals to this time period.

Finally, the mechanism is be able to update the posting pattern for each RSS based on

the result of the next retrieval, which is the number of new articles that have been

published.

Algorithm 1. Monitoring algorithm

feeds[] = Database_Query();
feeds[] = Apply_Politeness_Constraint(feeds[]);

Foreach(feeds[] as feed)
 ranks[feed] = rank(feed, now);

End For
feeds_sorted[] = descending_sort(ranks[]);

To_be_retrieved[] = feeds_sorted[1..k];

Foreach(To_be_retrieved[] as current_feed)
 Assign to terminal {

 XML_Code = fetch_Data(current_feed);

 Extracted_articles[] = Analyze(XML_Code);
 new_articles = find_new_articles(Extracted_articles[]);

 }
 update_DB(current_feed, new_articles);

End For

The system is initialized using an hourly posting rate that equals to a constant

value for each RSS feed. This assures that all feeds will be treated equally for the first

day. The updating process of the posting rates, distributes the number of new articles

to each hourly rate, making the mechanism able to adapt to each source. However, a

source may have not published a new article for a day, which means that it’s posting

pattern and ranking metric will be equal to zero. Thus the above algorithm will not

retrieve this source ever again. To overcome this problem, the mechanism uses a

minimum value greater than zero for the posting rates.

5 Experimental evaluation

In this section, we compare the proposed monitoring algorithm to other retrieval

policies. The experiment procedure lasted 90 days and was conducted using RSS

feeds from major and minor portals and weblogs.

At the first experiment we put focus on the maximum number of pending articles

that a source can have. As pending articles we define the articles that are published

but have not been retrieved. The comparison is made using other two monitoring

policies. The first is a round-robin policy, which places the RSS feeds in a queue and

schedule the retrievals using the FIFO method which means that a source will be

revisited after all others have been processed. The second policy uses the posting

pattern in order to minimize the total delay of the fetched articles. The delay is

defined as the time period between the publishing and the retrieval time.

maximum pending articles for an RSS feed

3

5

7

9

11

13

0:
00

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

hour

a
rt
ic
le
s

.

advaRSS minimum delay policy round-robin

Figure 4: average number of articles, of the RSS with the maximum pending articles.

As it is obvious from Figure 4, the policy that minimizes the total delay increases

by 11.2% the maximum pending articles on the source. Using the round-robin policy

we notice an increment of 33.4%. The number of articles is an average of the daily

measurements. Apart from the above metric, it is interesting to estimate the total

pending articles on the system. Thus, the second experiment was conducted using 460

sources and the objective was to calculate the summary of the articles that have not

been retrieved yet, for all RSS sources. Both experiments were made by collecting

information about these feeds for a period of three months and applying the

aforementioned policies.

total pending articles per hour

520

620

720

820

920

1020

1120

1220

0:
00

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

hour

a
rt
ic
le
s

.

advaRSS minimum delay policy round-robin

Figure 5: total pending articles on system, per hour.

Figure 5 shows that the pending articles are depending on the posting rate for

each hour. We can see that with the “minimum-delay” policy, the total number of

pending articles is 7.5% more than the proposed policy. Finally, the result of the

round-robin policy is approximately 8.5% more articles. For the experiments, the

average retrieval rate is 15% of total feeds per hour.

6 Conclusions

In this paper, we described the architecture and implementation details of our

crawling system and presented some preliminary experiments. We highlighted the

importance of utilizing RSS feeds in order to retrieve useful content from the Web

and how this can be efficiently implemented on a system that has limited resources.

In our mechanism the focus is put on the adaptation of the mechanism to each

RSS source, as it is obvious that different sources are publishing new content with

different rates. In a World Wide Web that has grown enough from the time of its

invention, the personalization issue seems to make the difference, and seems to be one

of the most important of our era. The advaRSS intends to be the base utility for

systems offering collections of news in real time to internet user such as peRSSonal
2

[Bouras, 07], [Bouras, 08] which is a single web place that offers, in a unified way,

personalized and dynamically created views of news deriving from RSS feeds.

7 Future Work

There are obviously many improvements to the system that can be made. A major

open issue for future work is a detailed study of how the system could become even

more distributed to minimize the resource constraints, retaining though quality of the

content of the crawled pages. When a system is distributed, it is possible to use only

one of its components or easily add a new one to it. Additionally what we have to do

is to compare the results of our crawler with more implementations of other

incremental crawlers that selectively chose which pages to crawl.

References

[Bouras, 07] Bouras, C., Poulopoulos, V., Tsogkas, V.: Efficient Summarization Based On

Categorized Keywords. The 2007 International Conference on Data Mining (DMIN07), Las

Vegas, Nevada, USA. 25 - 28 June 2007.

[Bouras, 08].Bouras, C., Poulopoulos, V. Tsogkas, V.: PeRSSonal's core functionality

evaluation: Enhancing text labeling through personalized summaries. Data and Knowledge

Engineering Journal, Elsevier Science, 2008, Vol. 64, Issue 1, pp. 330 – 345.

[Brewington, 00a] Brewington, B. E., Cybenko, G.: How dynamic is the web? In Proceedings

of the 9th World Wide Web Conference (WWW9). January 2000.

2
 http://perssonal.cti.gr/ - News indexing system

[Brewington, 00b] Brewington, B. E., Cybenko, G.: Keeping up with the Changing Web. In

Proceedings of the 9th World Wide Web Conference (WWW9). January 2000.

[Cho, 98] Cho, J., Garcia-Molina, H., Page, L.: Efficient Crawling through URL ordering. In

Proceedings of 7th World Wide Web Conference (WWW7), 1998.

[Cho, 99] Cho, J., Garcia-Molina, H.: The Evolution of the Web and Implications for an

Incremental Crawler. Department of Computer Science, Stanford, December 2, 1999.

[Najork, 01] Najork, M., Wiener, J. L.: Breadth-first search crawling yields high quality pages.

In Proceedings of the 10th World Wide Web Conference (WWW10), May 2001.

[Sia, 07].Cheung Sia K., Cho, J., Cho, H.-K.: "Efficient Monitoring Algorithm for Fast News

Alerts," IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 7, pp. 950-961,

July 2007

[Souza, 07].Souza, C., Laber, E., Valentim, C., Cardoso, E.: A Polite Policy for Revisiting Web

Pages, la-web,pp.128-135, Latin American Web Conference (LA-WEB 2007), 2007.

[Tamura, 08].Tamura, T., Kitsuregawad, M.: Evaluation of Scheduling Methods of an

Incremental Crawler for Large Scale Web Archives, Abstracts of IEICE transactions on

Information and Systems (Japanese) Vol.J91-D No.3, pp.551-559, 2008.

[Wolf, 02] Wolf, J., Squillante, M., Yu, P., Sethuraman J., Ozsen, L.: Optimal Crawling

strategies for web search engines. In WWW2002, 2002, ACM.

