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Abstract 
 
This paper focuses on the operation of the Bandwidth 
Broker, an entity that is responsible for managing the 
bandwidth within a network domain and for the 
communication with Bandwidth Brokers of neighboring 
domains. A very important aspect of the Bandwidth 
Broker is its admission control module that determines 
whether the bandwidth reservation requests are going to 
be accepted or not. We summarize the status of the 
current research in this field and propose a novel 
architecture for the admission control module that aims 
at achieving a satisfactory balance between maximizing 
the resource utilization for the network provider and 
minimizing the overhead of the module. This is achieved 
by gathering and examining sets of book-ahead requests 
and by adapting the size of the set to be examined so that 
the network utilization and the computation overhead are 
appropriately balanced. 
 
 
1. Introduction 
 
The Differentiated Services (DiffServ) framework [1] is 
one of the basic architectures that have been proposed for 
QoS provision in the Internet. Because the Internet 
consists of numerous network domains with each one 
acting as an autonomous system, just using the current 
DiffServ framework does not solve the problem of 
providing end-to-end QoS, since each domain may be 
incompatibly configured. One entity that has been 
proposed in order to overcome this problem and provide 
end-to-end QoS across network domains is the 
Bandwidth Broker. 
A Bandwidth Broker [2] is an entity responsible for 
providing QoS within a network domain. The Bandwidth 

Broker manages the resources within the specific domain 
by controlling the network load and by accepting or 
rejecting bandwidth requests. Every user (service 
operator) who is willing to use an amount of the network 
resources, between its node and a destination, sends a 
request to the Bandwidth Broker. The choice of the 
Bandwidth Broker to either accept or reject a request is 
based on the network load and on the Service Level 
Agreement (SLA) [4]. The SLA is the service contract 
between the service provider and every customer that 
indicates the service that the customer is going to receive. 
The decision to accept or reject a request is made by a 
module called admission control that takes into account 
the above data (the network condition and the SLA). A 
Bandwidth Broker is also responsible for the inter-
domain communication with Bandwidth Brokers of 
adjacent domains. This procedure requires direct 
communication between the two adjacent Bandwidth 
Brokers and also a special agreement between the two 
domains that should be considered on the decision 
mechanism. 
The operation of a Bandwidth Broker depends on the 
cooperation of a number of modules which include its 
inter-domain interface, the intra-domain interface, a 
routing table interface, a user/application interface, a 
policy manager interface and a network management 
interface. 
Users request network resources from the Bandwidth 
Broker that manages their local domain by using 
Resource Allocation Request (RAR) messages. When the 
Bandwidth Broker receives the request message, it uses 
the admission control module to determine whether the 
requested resources can be allocated to the user and 
whether the SLA requirements are met. If the request is 
accepted, the Bandwidth Broker uses its intra-domain 
interface in order to properly configure the routers 
belonging to the managed domain and notifies the user 
with a Request Allocation Answer (RAA) message. If the 



request is rejected, the answer message informs the user 
about the rejection. 
The resource management in each domain is 
accomplished mostly via the DiffServ architecture. The 
DiffServ architecture proposes the provision of service 
differentiation to the traffic in a scalable manner by 
suggesting the aggregation of individual application 
flows with similar quality needs. These aggregations are 
appointed to different classes of service and the network 
treats the packets that belong to each class differently. 
The Differentiated Services Code Point (DSCP) is a field 
in the IP header that specifies the class of service each 
packet belongs to. The network classifies and marks the 
packets in order to provide them differential per hop 
behavior (PHB) according to the class of service they 
belong to. The PHB is specified on all the network nodes 
and includes functions that implement resource allocation 
and packet drop policy. 
In this paper we deal with the admission control part of 
the Bandwidth Broker’s operations. We propose an 
adaptive algorithm for resource reservation requests that 
arrive ahead of the actual time for which they request the 
resource reservation. This allows our algorithm to gather 
a set of multiple requests and examine them in order to 
make the best utilization of the network. Our algorithm 
makes use of the existing literature on scheduling 
problems where a satisfactory solution can be obtained 
using approximation algorithms. The algorithm then 
attempts to balance the calculation of the optimal solution 
with a limitation on the computation overhead that the 
algorithm itself incurs at the Bandwidth Broker operation. 
We have designed the architecture so that it can be 
configured according to the specific parameters of each 
deployment (processing power of the Bandwidth Broker 
module, acceptable delays for notification from the 
Bandwidth Broker), so that the proposed solution is 
suitable for a multitude of real-world cases. 
The rest of the paper is organized as follows: Section 2 
describes in more detail the admission control module of 
a Bandwidth Broker and the related work in this area. 
Section 3 presents our proposed algorithm for the 
admission control architecture. Section 4 presents some 
initial performance measurements, while section 5 
describes our conclusions as well as the future work that 
we intend to do on this area. 
 
2. Admission Control Module 
 
Among its tasks, a Bandwidth Broker has to perform 
admission control for the incoming requests, which 
means that it has to define whether the resource 
reservation request will be accepted or not. Once the 
request has been accepted, the Bandwidth Broker has to 
make sure that it will be met by the network. Admission 

control is a very important part of the Bandwidth Broker 
operation, because it determines the fairness between the 
requests and the degree of network utilization that the 
Bandwidth Broker will achieve for the managed domain. 
An improperly designed admission control module can 
lead to low network utilization, unfairness and therefore 
frustration to the users that request resources or it can 
also impose an unacceptable overhead to the Bandwidth 
Broker’s operation. However, since the operating 
circumstances can vary widely from one case to another, 
it is improbable that a single solution will fit all operating 
requirements. Our approach tries to tackle this problem 
by incorporating an adaptive mechanism with the intent 
to converge to the suitable level for each deployment 
scenario. 
In general, we can separate the types of reservation 
requests depending on the actual time period for which 
they request resources. 
Immediate requests: When an immediate request is 
accepted, it is immediately effective, which means that 
the requested resources are reserved right away. This type 
of request leaves little room to the Bandwidth Broker for 
implementing a strategy that maximizes the network 
utilization. 
Book-ahead (or advance) requests: A book-ahead request 
specifies the resources that will be needed at some later 
point in time, which has to be specifically defined. The 
authors in [12] give a thorough presentation of the 
concept of book-ahead reservations, while a detailed 
discussion on the benefits and potential problems with 
book-ahead requests can be found in [13]. In general, 
book-ahead requests allow for better solutions to the 
admission control problem, and there are a lot of actual 
cases in the real world where a book-ahead request meets 
the requirements of an application, like for example pre-
arranged video conferences. 
Researchers have dealt with both types of admission 
requests. An approach that deals with both types of 
incoming requests is the resource partitioning proposed in 
[8], which separates the admission decision for immediate 
and book-ahead requests. Immediate requests that were 
rejected can be reconsidered for a book-ahead 
reservation. In order to avoid wasting of resources 
because of fragmentation, the authors propose a moving 
boundary between the two partitions. The most common 
mechanism for admitting book-ahead requests is to divide 
time in intervals (slots), and calculate the resources 
requested by a new reservation for the time slots that it 
overlaps [8], [9]. 
For both immediate and book-ahead requests, it may be 
possible to either specifically declare the ending time of 
the reservation, or not. An intermediate case is when a 
reservation request has to provide both its starting and 



ending times, but can make new additional requests that 
extend its initial reservation period. 
In some cases, a book-ahead request may have a 
flexibility of allowing the Bandwidth Broker to answer 
the request by either accepting it or rejecting it not 
immediately, but after a period of time (which can be 
specified). Our algorithm takes advantage of this 
flexibility, in order to calculate the most efficient 
admission decisions that maximize the network utilization 
and subsequently the network provider’s profit. The 
provider may choose to allow requests that demand an 
immediate answer, balancing perhaps this capability with 
additional cost. 
Admission control can be done either on a hop-by-hop 
basis [3], [6] or on a per-flow basis [11]. The former case 
can be implemented by first calculating the path for an 
end-to-end reservation through a routing protocol like 
RIP or OSPF, and then run the admission control 
algorithm for each link in the calculated path. 
A number of data structures have been proposed for 
efficiently implementing an admission control algorithm. 
The most common are the simple implementation using 
an array, and various variations using trees like segment 
trees and binary search trees [3]. 
In the more general case, time is considered continuous 
and therefore reservations can start and end at any time. It 
is also very common however, to use slotted time, so that 
reservations are considered using a predefined 
granularity. Algorithms may either benefit from this 
granularity or completely depend on it for their operation 
[3]. 
Most related work for Bandwidth Brokers examines a 
request as soon as it arrives and accepts it if the 
reservation does not exceed the unreserved link capacity 
[10]. This approach has benefits in terms of speed and 
efficiency, but it can lead to low network utilization. In 
[7], the authors show how the general admission control 
problem can be formulated as an optimization problem, 
with the goal of maximizing the net revenue. The 
network utilization can improve drastically if we allow 
the Bandwidth Broker’s admission control to gather a 
number of requests and compute a better allocation of 
resources. This is the approach we have taken in this 
paper. Also [5] deals with price-based admission control, 
studying both online (when answers to requests have to 
be issued immediately) and offline (when requests can be 
gathered and evaluated) versions of the problem are 
discussed. Our work combines the above approaches with 
an adaptive scheme that attempts to achieve a preferable 
balance between optimal utilization of the network and 
minimal overhead for the Bandwidth Broker operation. 
An adaptive scheme designed for the scheduling of 
popular video on demand that also uses delayed 
notification is presented in [14]. 

 
3. Description of Algorithm 
 
We define standby requests as requests that have not yet 
received an answer (either confirmation or rejection). 
Confirmed is a book-ahead request that has received an 
affirmative answer but waits to be activated. These states 
are shown in figure 1. 
After receiving a request, a routing algorithm has to be 
invoked in order to determine the path that the requested 
flow will follow. Admission control is done on a hop-by-
hop basis, so for each of the links that the flow will have 
to traverse, it has to be determined whether there is 
available bandwidth and whether admitting the flow will 
increase the utilization of the network. 
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Figure 1. Request states 

 
We suppose a new request has the form of  
 

r(tstart,tend,b,w) 
 
where tstart and tend are the starting and finishing times for 
the reservation, b is the requested bandwidth and w is the 
period for which the request can wait until it receives 
either a confirmation or a rejection of the reservation. The 
Bandwidth Broker’s admission control module keeps a 
list of unanswered requests, which we call waiting queue 
Wq, sorted by their waiting time w. 
As soon as the first item, say r1 (with the closest w to the 
current time) is about to expire, the admission control 
module calculates the answers that it will provide to this 
and a number of other requests, essentially by solving an 
offline scheduling problem [15]: 
Suppose n is the cardinality of Wq. We define 



 
R={r1, r2,…, rm}⊆ Wq

 
and we want to find a subset Rc⊆R such that Σri∈Rcbi ≤ B 
at any time point where B is the total available bandwidth 
for the link and try to maximize Σri∈Rcbi throughout the 
period from the earliest tstart to the latest tend in the R set. 
An approximation algorithm for this problem can be used 
solving the following linear programming relaxation in 
polynomial time [5] and then making the solution discrete 
regarding the variables xi, which represent whether ri is 
accepted or not: 
 
max Σi∈Rbi(tend-tstart)xi
 
Σi∈R(t)bixi ≤ B, for all t in the period 
from the earliest tstart to the latest 
tend in the R set 
 
0 ≤ xi ≤ 1, i∈R 
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Figure 2. Reservation requests 

 
The important point is how to select the R set. A simple 
approach would be to simply set R=Wq. This solution 
leads to low network utilization, because requests that 
have been made very far in advance will probably have 
little competition, and will therefore be most likely 
accepted. In the example in figure 2, this can be 
demonstrated by request r6. If r6 is included in the R set 
as soon as r1, it will certainly be accepted, since there it 
has no other competition. It would be better though to 
delay the decision for r6, since by that time other requests 
(more profitable than r6) could have arrived. 
Including in R only requests that overlap with tend for r1 
may also not be an attractive solution, because it might 
require the algorithm to be invoked too frequently, and 
that could introduce an unacceptable overhead. In figure 
2, the algorithm will have to separately be invoked for r1, 
r3, r5 and r6. As our algorithm does not provide for 
overbookings, we have also drawn a line that shows the 
maximum bandwidth that can be allocated to the requests. 

In order to combine the benefits of both these extremes 
and reduce their shortcomings, our solution is to have an 
adaptive parameter for the size of R, which will increase 
if the number of requests in Wq increases or if the 
algorithm was very time-consuming, and decrease 
otherwise, according to: 
 
if (Ck-1-T>T) 
 
  Rsize(k) = 1 
 
else if (Ck-1-T>0) 
 
  Rsize(k) = (1-(Ck-1-T)/T) Rsize(k-1) 
 
else 
 
  Rsize(k) = Rsize(k-1) + (Wq-Rsize(k-1))*a 
 
Ck-1 is the duration of the previous computation of the 
requests to be accepted, a is a parameter that determines 
the increase rate of Rsize and T is a threshold value of the 
maximum allowable time for a computation. Configuring 
parameter a determines how close to Wq we want the size 
of the R set to become after an increase, so a is essentially 
the adaptation factor of the algorithm’s operation. The 
above pseudocode guarantees that the algorithm will not 
last more than an accepted threshold, otherwise it will be 
simplified to admission control for a single request. In 
general, an adaptive scheme can have problems of 
oscillation between extreme values, so we have 
considered the above scheme that does not sharply 
increase or decrease the size of the R set, except for the 
case that for some reason the computation time far 
exceeds the acceptable threshold. 
As an example, if the last computation lasted more than 
twice the predefined threshold, then the size of the subset 
R that will be examined for the current computation is 
reduced to 1, and therefore the computation is simplified 
to examine whether accepting the next request violates 
the resource restrictions or not, using a data structure as 
in [6]. The assumption is that in that case the computation 
of an optimal solution is adding a large overhead to the 
Bandwidth Broker’s operation, and we therefore simplify 
the computation as much as possible. In the case that the 
computation time exceeds the threshold but not twice its 
value, we assume that the overhead is significant and 
must be reduced (but is not unacceptable as in the 
previous case). We reduce it by a factor of 1-(Ck-1-T)/T, 
so that the reduction becomes more aggressive as Ck-1 
becomes larger. Finally, if the computation time is still 
below the threshold, we assume that there is space for 
increasing the computation overhead by increasing the 
size of the subset R, and this is done using a factor 
a∈(0,1). The closest to 1 this factor is chosen, the more 



aggressive the increase is, with the obvious limit of the 
size of the whole Wq. 
In general, finding an optimal solution to the problem of 
optimally scheduling the requests is NP-complete, since 
the Knapsack problem, which is known to be NP-
complete [15], is equivalent to a simpler version of our 
scheduling problem where all tstart and tend times are 
equal. Because however it is not critical to have the 
optimal solution, we can use an approximation scheme 
that runs in polynomial time and approximates the 
optimal solution with the desired accuracy. 
Following is a summary of the algorithm for calculating 
the accepted requests on a link: 
 

while (Wq not empty) 
 
  while (next request has not 
expired) 
 
    forall i where (bi > B) 
 
      xi = 0    // reject 
overbooking requests 
 
    Solve LP maximization: 
 
    max Σi∈Rbi(tend-tstart)xi
 
    Σi∈R(t)bixi ≤ B, forall t ∈ 
(earliest tstart, latest tend) in R 
 
    0 ≤ xi ≤ 1, i∈R 
 
    Discretize solution for xi 
 
    exit loop 
 
  end while 
 
  if ((C-T)>=T) 
 
    Rsize = 1 
 
  else if ((C-T)>0) 
 
    Rsize = (1-(C-T)/T)* Rsize
 
  else 
 
    Rsize = Rsize + (Wq-Rsize)*a 
 
end while 
 

 
If the current computation takes too long and w1 is about 
to expire, the computation is ignored and a simpler fall-

back mechanism is used which will individually examine 
r1 and then restart the computation for R-{r1}. 
Instead of rejecting an end-to-end request that was not 
admitted, the algorithm returns to the routing phase and 
chooses a different path that does not include the rejected 
link, if available. 
Because of the way the algorithm is constructed, it is not 
generally optimal on network utilization. As we have 
mentioned, we make this trade-off in order to reduce the 
computation overhead for the Bandwidth Broker module. 
A very fast processing module (or conversely a low rate 
of admission requests) lead the algorithm to quickly 
converge to the best approximation of the optimal 
solution. 
Thus, assuming that the computation time does not reach 
or exceed the threshold, we have that 
 

Rsize(t) = Rsize(t-1) + (Wq- Rsize(t-1))*a 
 
Solving the recursive function gives 
 

Rsize(t) = (1-a)t-1Rsizeinit + (1+(1-a)+…+(1-a)t-2)Wq*a 
 
and therefore 
 

Rsize(t) = (1-a)t-1Rsizeinit + (1+(1-a)
a

a t 2)1(1 −−−
)Wq*a 

 
where Rsizeinit is the initial size of R. 
Therefore, Rsize converges to the size of Wq as quickly as 
(1-a)t converges to near-zero values, which happens quite 
rapidly, especially if a has been chosen close to 1, which 
means a very high adaptation capability. 
The algorithm is also not fair with respect to maintaining 
a First Come-First Served order (since an earlier request 
might be rejected in favor of a later request that will 
better utilize the network), but it achieves fairness with 
respect to the response to requests (it assures that all 
requests will be answered on time, either positively or 
negatively) and it respects each request’s maximum 
waiting time w. 
A very long queue Wq indicates that a specific link is 
excessively utilized, and we can add a checking 
mechanism that monitors the length of Wq, and compares 
it with the corresponding queues for other links. If Wq, 
exceeds the average queue size by more than a specified 
threshold, then the routing procedure can be re-invoked 
and the request rerouted via other links. 
 
4. Performance Evaluation 
 
An important aspect in examining the performance of an 
admission control architecture is the worst-case 



behaviour of the algorithm. In particular, it is not enough 
to study the behaviour in a normal situation, but we have 
to examine cases where there is an adversary user issuing 
requests in a way that tries to minimize the performance 
of the algorithm. Although in that case our algorithm 
chooses to sacrifice the optimal network utilization, it 
does so in order to make sure that the computation 
overhead will not exceed some acceptable limit. Our 
intention is to enable the network administrator that 
configures the Bandwidth Broker operation to specify the 
acceptable threshold for the overhead due to complexity, 
and then the algorithm can adapt in order to improve the 
network utilization under the circumstances. 
We experimented with the algorithm using a simulated 
system that accepted random requests (requests that did 
not follow a specific pattern in terms of their arrival time 
or reservation requests), in order to study the 
performance of the algorithm and the effect of the 
computation time threshold and adaptation parameter a 
on the behavior of the algorithm. 
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Figure 3. Examined requests for smaller threshold 
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Figure 4. Examined requests for medium threshold 

 
Figures 3 through 5 display the adaptive operation of the 
algorithm. In figure 3 where a smaller threshold has been 
defined, we can see that in no case are more than 4 
requests examined simultaneously, and therefore the 

computation time for approximating the integer linear 
programming solution is bounded on this threshold of the 
size of the input. Similarly, in figure 4 where the 
threshold has increased, the algorithm can gather more 
requests and therefore achieve better network utilization. 
Figure 5 displays the examined requests for an even 
largest threshold, that still does not permit examining 
more than 8 simultaneous requests. In all cases the 
algorithm probes for larger sizes of the R set, until the 
point where the computation time threshold is reached. At 
that point the algorithm retreats, as can be seen in figures 
3, 4 and 5. 
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Figure 5. Examined requests for larger threshold 

 
In the presented simulations the value of adaptation 
parameter a was identical at 0.1, which produces a 
cautious behaviour of the algorithm. The size if the 
examined set R is adapted gradually. Larger values of a 
produce sharper increases and reductions of the R set. 
This can be observed in figures 6 through 8, which 
display the adaptive behaviour of the algorithm when the 
a value is doubled at 0.2. The algorithm tends to examine 
a larger number of requests (using a larger R set), but the 
threshold is also exceeded more often and the algorithm 
has to adapt to smaller sets of examined reservation. 
Requests. This behaviour is magnified depending on the 
adaptation parameter. As figure 9 illustrates, our 
simulations showed that larger values for the adaptation 
parameter are not suitable for the proposed algorithm. We 
therefore determined that in order to avoid an oscillatory 
behaviour it is better to keep the adaptive parameter a 
around the 0.1 range of values. 
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Figure 6. Examined requests with smaller threshold 

and aggressive adaptation 
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Figure 7. Examined requests with medium 

threshold and aggressive adaptation 
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Figure 8. Examined requests with larger threshold 

and aggressive adaptation 
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Figure 9. Examined requests with very aggressive 

adaptation 

 
5. Conclusions - Future work 
 
Our proposed algorithm improves on the common 
admission control modules of Bandwidth Brokers on a 
number of aspects. It offers better utilization of the 
network resources, while keeping a balance between 
simplicity and functionality. It automatically falls back to 
a simpler model without trying to optimize the network 
utilization, if its operating environment indicates that the 
algorithm is too complex for the circumstances. 
While we have studied the operation of the algorithm and 
admission control on a hop by hop basis, it can easily be 
extended and formulated in order to operate on a per flow 
basis, a variation of the basic algorithm that we intend to 
simulate and compare with the presented architecture. 
Our future work includes the integration of the proposed 
algorithm in the well-known ns-2 simulator architecture 
evaluation. Furthermore we intend to compare the 
proposed architecture with alternative schemes in terms 
of efficiency, resource consumption and network 
utilization. A number of improvements can be made to 
the basic algorithm, depending among other things on the 
implementation environment, the formulation and the 
specific circumstances of the admission control problem 
that we face. For example, in some case it might be 
allowed for some requests to not specify their ending 
time. The Bandwidth Broker algorithm can easily be 
extended to take into account such requests, by making 
the conservative assumption that they will reserve the 
requested bandwidth indefinitely. This flexibility of 
course can be offered at a higher than normal cost, 
possibly determined by the SLA parameters. Another idea 
that we plan to integrate into the basic algorithm is of 
requests that have been overall rejected, nut which can be 
notified at a later time when they will have better success 
chances. This can be achieved by keeping a tentative list 
of the total bandwidth requested at any time, for both 
admitted and pending requests. 



Finally, we intend to further analyze and document the 
proper configuration of the operation parameters of the 
described architecture. 
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