
An Adaptive Admission Control Algorithm for Bandwidth Brokers

Ch. Bouras, K. Stamos
Research Academic Computer Technology Institute, Riga Feraiou 61, GR-26221 Patras, Greece and

Computer Engineering and Informatics Dept., Univ. of Patras, GR-26500 Patras, Greece
Tel:+30-2610-{960375, 960316}
Fax:+30-2610-{969016, 960358}
e-mail: {bouras, stamos}@cti.gr

Abstract

This paper focuses on the operation of the Bandwidth
Broker, an entity that is responsible for managing the
bandwidth within a network domain and for the
communication with Bandwidth Brokers of neighboring
domains. A very important aspect of the Bandwidth
Broker is its admission control module that determines
whether the bandwidth reservation requests are going to
be accepted or not. We summarize the status of the
current research in this field and propose a novel
architecture for the admission control module that aims
at achieving a satisfactory balance between maximizing
the resource utilization for the network provider and
minimizing the overhead of the module. This is achieved
by gathering and examining sets of book-ahead requests
and by adapting the size of the set to be examined so that
the network utilization and the computation overhead are
appropriately balanced.

1. Introduction

The Differentiated Services (DiffServ) framework [1] is
one of the basic architectures that have been proposed for
QoS provision in the Internet. Because the Internet
consists of numerous network domains with each one
acting as an autonomous system, just using the current
DiffServ framework does not solve the problem of
providing end-to-end QoS, since each domain may be
incompatibly configured. One entity that has been
proposed in order to overcome this problem and provide
end-to-end QoS across network domains is the
Bandwidth Broker.
A Bandwidth Broker [2] is an entity responsible for
providing QoS within a network domain. The Bandwidth

Broker manages the resources within the specific domain
by controlling the network load and by accepting or
rejecting bandwidth requests. Every user (service
operator) who is willing to use an amount of the network
resources, between its node and a destination, sends a
request to the Bandwidth Broker. The choice of the
Bandwidth Broker to either accept or reject a request is
based on the network load and on the Service Level
Agreement (SLA) [4]. The SLA is the service contract
between the service provider and every customer that
indicates the service that the customer is going to receive.
The decision to accept or reject a request is made by a
module called admission control that takes into account
the above data (the network condition and the SLA). A
Bandwidth Broker is also responsible for the inter-
domain communication with Bandwidth Brokers of
adjacent domains. This procedure requires direct
communication between the two adjacent Bandwidth
Brokers and also a special agreement between the two
domains that should be considered on the decision
mechanism.
The operation of a Bandwidth Broker depends on the
cooperation of a number of modules which include its
inter-domain interface, the intra-domain interface, a
routing table interface, a user/application interface, a
policy manager interface and a network management
interface.
Users request network resources from the Bandwidth
Broker that manages their local domain by using
Resource Allocation Request (RAR) messages. When the
Bandwidth Broker receives the request message, it uses
the admission control module to determine whether the
requested resources can be allocated to the user and
whether the SLA requirements are met. If the request is
accepted, the Bandwidth Broker uses its intra-domain
interface in order to properly configure the routers
belonging to the managed domain and notifies the user
with a Request Allocation Answer (RAA) message. If the

request is rejected, the answer message informs the user
about the rejection.
The resource management in each domain is
accomplished mostly via the DiffServ architecture. The
DiffServ architecture proposes the provision of service
differentiation to the traffic in a scalable manner by
suggesting the aggregation of individual application
flows with similar quality needs. These aggregations are
appointed to different classes of service and the network
treats the packets that belong to each class differently.
The Differentiated Services Code Point (DSCP) is a field
in the IP header that specifies the class of service each
packet belongs to. The network classifies and marks the
packets in order to provide them differential per hop
behavior (PHB) according to the class of service they
belong to. The PHB is specified on all the network nodes
and includes functions that implement resource allocation
and packet drop policy.
In this paper we deal with the admission control part of
the Bandwidth Broker’s operations. We propose an
adaptive algorithm for resource reservation requests that
arrive ahead of the actual time for which they request the
resource reservation. This allows our algorithm to gather
a set of multiple requests and examine them in order to
make the best utilization of the network. Our algorithm
makes use of the existing literature on scheduling
problems where a satisfactory solution can be obtained
using approximation algorithms. The algorithm then
attempts to balance the calculation of the optimal solution
with a limitation on the computation overhead that the
algorithm itself incurs at the Bandwidth Broker operation.
We have designed the architecture so that it can be
configured according to the specific parameters of each
deployment (processing power of the Bandwidth Broker
module, acceptable delays for notification from the
Bandwidth Broker), so that the proposed solution is
suitable for a multitude of real-world cases.
The rest of the paper is organized as follows: Section 2
describes in more detail the admission control module of
a Bandwidth Broker and the related work in this area.
Section 3 presents our proposed algorithm for the
admission control architecture. Section 4 presents some
initial performance measurements, while section 5
describes our conclusions as well as the future work that
we intend to do on this area.

2. Admission Control Module

Among its tasks, a Bandwidth Broker has to perform
admission control for the incoming requests, which
means that it has to define whether the resource
reservation request will be accepted or not. Once the
request has been accepted, the Bandwidth Broker has to
make sure that it will be met by the network. Admission

control is a very important part of the Bandwidth Broker
operation, because it determines the fairness between the
requests and the degree of network utilization that the
Bandwidth Broker will achieve for the managed domain.
An improperly designed admission control module can
lead to low network utilization, unfairness and therefore
frustration to the users that request resources or it can
also impose an unacceptable overhead to the Bandwidth
Broker’s operation. However, since the operating
circumstances can vary widely from one case to another,
it is improbable that a single solution will fit all operating
requirements. Our approach tries to tackle this problem
by incorporating an adaptive mechanism with the intent
to converge to the suitable level for each deployment
scenario.
In general, we can separate the types of reservation
requests depending on the actual time period for which
they request resources.
Immediate requests: When an immediate request is
accepted, it is immediately effective, which means that
the requested resources are reserved right away. This type
of request leaves little room to the Bandwidth Broker for
implementing a strategy that maximizes the network
utilization.
Book-ahead (or advance) requests: A book-ahead request
specifies the resources that will be needed at some later
point in time, which has to be specifically defined. The
authors in [12] give a thorough presentation of the
concept of book-ahead reservations, while a detailed
discussion on the benefits and potential problems with
book-ahead requests can be found in [13]. In general,
book-ahead requests allow for better solutions to the
admission control problem, and there are a lot of actual
cases in the real world where a book-ahead request meets
the requirements of an application, like for example pre-
arranged video conferences.
Researchers have dealt with both types of admission
requests. An approach that deals with both types of
incoming requests is the resource partitioning proposed in
[8], which separates the admission decision for immediate
and book-ahead requests. Immediate requests that were
rejected can be reconsidered for a book-ahead
reservation. In order to avoid wasting of resources
because of fragmentation, the authors propose a moving
boundary between the two partitions. The most common
mechanism for admitting book-ahead requests is to divide
time in intervals (slots), and calculate the resources
requested by a new reservation for the time slots that it
overlaps [8], [9].
For both immediate and book-ahead requests, it may be
possible to either specifically declare the ending time of
the reservation, or not. An intermediate case is when a
reservation request has to provide both its starting and

ending times, but can make new additional requests that
extend its initial reservation period.
In some cases, a book-ahead request may have a
flexibility of allowing the Bandwidth Broker to answer
the request by either accepting it or rejecting it not
immediately, but after a period of time (which can be
specified). Our algorithm takes advantage of this
flexibility, in order to calculate the most efficient
admission decisions that maximize the network utilization
and subsequently the network provider’s profit. The
provider may choose to allow requests that demand an
immediate answer, balancing perhaps this capability with
additional cost.
Admission control can be done either on a hop-by-hop
basis [3], [6] or on a per-flow basis [11]. The former case
can be implemented by first calculating the path for an
end-to-end reservation through a routing protocol like
RIP or OSPF, and then run the admission control
algorithm for each link in the calculated path.
A number of data structures have been proposed for
efficiently implementing an admission control algorithm.
The most common are the simple implementation using
an array, and various variations using trees like segment
trees and binary search trees [3].
In the more general case, time is considered continuous
and therefore reservations can start and end at any time. It
is also very common however, to use slotted time, so that
reservations are considered using a predefined
granularity. Algorithms may either benefit from this
granularity or completely depend on it for their operation
[3].
Most related work for Bandwidth Brokers examines a
request as soon as it arrives and accepts it if the
reservation does not exceed the unreserved link capacity
[10]. This approach has benefits in terms of speed and
efficiency, but it can lead to low network utilization. In
[7], the authors show how the general admission control
problem can be formulated as an optimization problem,
with the goal of maximizing the net revenue. The
network utilization can improve drastically if we allow
the Bandwidth Broker’s admission control to gather a
number of requests and compute a better allocation of
resources. This is the approach we have taken in this
paper. Also [5] deals with price-based admission control,
studying both online (when answers to requests have to
be issued immediately) and offline (when requests can be
gathered and evaluated) versions of the problem are
discussed. Our work combines the above approaches with
an adaptive scheme that attempts to achieve a preferable
balance between optimal utilization of the network and
minimal overhead for the Bandwidth Broker operation.
An adaptive scheme designed for the scheduling of
popular video on demand that also uses delayed
notification is presented in [14].

3. Description of Algorithm

We define standby requests as requests that have not yet
received an answer (either confirmation or rejection).
Confirmed is a book-ahead request that has received an
affirmative answer but waits to be activated. These states
are shown in figure 1.
After receiving a request, a routing algorithm has to be
invoked in order to determine the path that the requested
flow will follow. Admission control is done on a hop-by-
hop basis, so for each of the links that the flow will have
to traverse, it has to be determined whether there is
available bandwidth and whether admitting the flow will
increase the utilization of the network.

idle

standby

active

confirmed

requestreject
tstart

accepted

tend

Figure 1. Request states

We suppose a new request has the form of

r(tstart,tend,b,w)

where tstart and tend are the starting and finishing times for
the reservation, b is the requested bandwidth and w is the
period for which the request can wait until it receives
either a confirmation or a rejection of the reservation. The
Bandwidth Broker’s admission control module keeps a
list of unanswered requests, which we call waiting queue
Wq, sorted by their waiting time w.
As soon as the first item, say r1 (with the closest w to the
current time) is about to expire, the admission control
module calculates the answers that it will provide to this
and a number of other requests, essentially by solving an
offline scheduling problem [15]:
Suppose n is the cardinality of Wq. We define

R={r1, r2,…, rm}⊆ Wq

and we want to find a subset Rc⊆R such that Σri∈Rcbi ≤ B
at any time point where B is the total available bandwidth
for the link and try to maximize Σri∈Rcbi throughout the
period from the earliest tstart to the latest tend in the R set.
An approximation algorithm for this problem can be used
solving the following linear programming relaxation in
polynomial time [5] and then making the solution discrete
regarding the variables xi, which represent whether ri is
accepted or not:

max Σi∈Rbi(tend-tstart)xi

Σi∈R(t)bixi ≤ B, for all t in the period
from the earliest tstart to the latest
tend in the R set

0 ≤ xi ≤ 1, i∈R

time

bandwidth

r1

r2

r4

r3

r5
r6

bandwidth limit

Figure 2. Reservation requests

The important point is how to select the R set. A simple
approach would be to simply set R=Wq. This solution
leads to low network utilization, because requests that
have been made very far in advance will probably have
little competition, and will therefore be most likely
accepted. In the example in figure 2, this can be
demonstrated by request r6. If r6 is included in the R set
as soon as r1, it will certainly be accepted, since there it
has no other competition. It would be better though to
delay the decision for r6, since by that time other requests
(more profitable than r6) could have arrived.
Including in R only requests that overlap with tend for r1
may also not be an attractive solution, because it might
require the algorithm to be invoked too frequently, and
that could introduce an unacceptable overhead. In figure
2, the algorithm will have to separately be invoked for r1,
r3, r5 and r6. As our algorithm does not provide for
overbookings, we have also drawn a line that shows the
maximum bandwidth that can be allocated to the requests.

In order to combine the benefits of both these extremes
and reduce their shortcomings, our solution is to have an
adaptive parameter for the size of R, which will increase
if the number of requests in Wq increases or if the
algorithm was very time-consuming, and decrease
otherwise, according to:

if (Ck-1-T>T)

 Rsize(k) = 1

else if (Ck-1-T>0)

 Rsize(k) = (1-(Ck-1-T)/T) Rsize(k-1)

else

 Rsize(k) = Rsize(k-1) + (Wq-Rsize(k-1))*a

Ck-1 is the duration of the previous computation of the
requests to be accepted, a is a parameter that determines
the increase rate of Rsize and T is a threshold value of the
maximum allowable time for a computation. Configuring
parameter a determines how close to Wq we want the size
of the R set to become after an increase, so a is essentially
the adaptation factor of the algorithm’s operation. The
above pseudocode guarantees that the algorithm will not
last more than an accepted threshold, otherwise it will be
simplified to admission control for a single request. In
general, an adaptive scheme can have problems of
oscillation between extreme values, so we have
considered the above scheme that does not sharply
increase or decrease the size of the R set, except for the
case that for some reason the computation time far
exceeds the acceptable threshold.
As an example, if the last computation lasted more than
twice the predefined threshold, then the size of the subset
R that will be examined for the current computation is
reduced to 1, and therefore the computation is simplified
to examine whether accepting the next request violates
the resource restrictions or not, using a data structure as
in [6]. The assumption is that in that case the computation
of an optimal solution is adding a large overhead to the
Bandwidth Broker’s operation, and we therefore simplify
the computation as much as possible. In the case that the
computation time exceeds the threshold but not twice its
value, we assume that the overhead is significant and
must be reduced (but is not unacceptable as in the
previous case). We reduce it by a factor of 1-(Ck-1-T)/T,
so that the reduction becomes more aggressive as Ck-1
becomes larger. Finally, if the computation time is still
below the threshold, we assume that there is space for
increasing the computation overhead by increasing the
size of the subset R, and this is done using a factor
a∈(0,1). The closest to 1 this factor is chosen, the more

aggressive the increase is, with the obvious limit of the
size of the whole Wq.
In general, finding an optimal solution to the problem of
optimally scheduling the requests is NP-complete, since
the Knapsack problem, which is known to be NP-
complete [15], is equivalent to a simpler version of our
scheduling problem where all tstart and tend times are
equal. Because however it is not critical to have the
optimal solution, we can use an approximation scheme
that runs in polynomial time and approximates the
optimal solution with the desired accuracy.
Following is a summary of the algorithm for calculating
the accepted requests on a link:

while (Wq not empty)

 while (next request has not
expired)

 forall i where (bi > B)

 xi = 0 // reject
overbooking requests

 Solve LP maximization:

 max Σi∈Rbi(tend-tstart)xi

 Σi∈R(t)bixi ≤ B, forall t ∈
(earliest tstart, latest tend) in R

 0 ≤ xi ≤ 1, i∈R

 Discretize solution for xi

 exit loop

 end while

 if ((C-T)>=T)

 Rsize = 1

 else if ((C-T)>0)

 Rsize = (1-(C-T)/T)* Rsize

 else

 Rsize = Rsize + (Wq-Rsize)*a

end while

If the current computation takes too long and w1 is about
to expire, the computation is ignored and a simpler fall-

back mechanism is used which will individually examine
r1 and then restart the computation for R-{r1}.
Instead of rejecting an end-to-end request that was not
admitted, the algorithm returns to the routing phase and
chooses a different path that does not include the rejected
link, if available.
Because of the way the algorithm is constructed, it is not
generally optimal on network utilization. As we have
mentioned, we make this trade-off in order to reduce the
computation overhead for the Bandwidth Broker module.
A very fast processing module (or conversely a low rate
of admission requests) lead the algorithm to quickly
converge to the best approximation of the optimal
solution.
Thus, assuming that the computation time does not reach
or exceed the threshold, we have that

Rsize(t) = Rsize(t-1) + (Wq- Rsize(t-1))*a

Solving the recursive function gives

Rsize(t) = (1-a)t-1Rsizeinit + (1+(1-a)+…+(1-a)t-2)Wq*a

and therefore

Rsize(t) = (1-a)t-1Rsizeinit + (1+(1-a)
a

a t 2)1(1 −−−
)Wq*a

where Rsizeinit is the initial size of R.
Therefore, Rsize converges to the size of Wq as quickly as
(1-a)t converges to near-zero values, which happens quite
rapidly, especially if a has been chosen close to 1, which
means a very high adaptation capability.
The algorithm is also not fair with respect to maintaining
a First Come-First Served order (since an earlier request
might be rejected in favor of a later request that will
better utilize the network), but it achieves fairness with
respect to the response to requests (it assures that all
requests will be answered on time, either positively or
negatively) and it respects each request’s maximum
waiting time w.
A very long queue Wq indicates that a specific link is
excessively utilized, and we can add a checking
mechanism that monitors the length of Wq, and compares
it with the corresponding queues for other links. If Wq,
exceeds the average queue size by more than a specified
threshold, then the routing procedure can be re-invoked
and the request rerouted via other links.

4. Performance Evaluation

An important aspect in examining the performance of an
admission control architecture is the worst-case

behaviour of the algorithm. In particular, it is not enough
to study the behaviour in a normal situation, but we have
to examine cases where there is an adversary user issuing
requests in a way that tries to minimize the performance
of the algorithm. Although in that case our algorithm
chooses to sacrifice the optimal network utilization, it
does so in order to make sure that the computation
overhead will not exceed some acceptable limit. Our
intention is to enable the network administrator that
configures the Bandwidth Broker operation to specify the
acceptable threshold for the overhead due to complexity,
and then the algorithm can adapt in order to improve the
network utilization under the circumstances.
We experimented with the algorithm using a simulated
system that accepted random requests (requests that did
not follow a specific pattern in terms of their arrival time
or reservation requests), in order to study the
performance of the algorithm and the effect of the
computation time threshold and adaptation parameter a
on the behavior of the algorithm.

threshold=3, a=0.1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

time

re
qu

es
ts

 e
xa

m
in

ed

Figure 3. Examined requests for smaller threshold

threshold=4, a=0.1

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

time

re
qu

es
ts

 e
xa

m
in

ed

Figure 4. Examined requests for medium threshold

Figures 3 through 5 display the adaptive operation of the
algorithm. In figure 3 where a smaller threshold has been
defined, we can see that in no case are more than 4
requests examined simultaneously, and therefore the

computation time for approximating the integer linear
programming solution is bounded on this threshold of the
size of the input. Similarly, in figure 4 where the
threshold has increased, the algorithm can gather more
requests and therefore achieve better network utilization.
Figure 5 displays the examined requests for an even
largest threshold, that still does not permit examining
more than 8 simultaneous requests. In all cases the
algorithm probes for larger sizes of the R set, until the
point where the computation time threshold is reached. At
that point the algorithm retreats, as can be seen in figures
3, 4 and 5.

threshold=5, a=0.1

0

1

2
3

4

5

6
7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

time
re

qu
es

ts
 e

xa
m

in
ed

Figure 5. Examined requests for larger threshold

In the presented simulations the value of adaptation
parameter a was identical at 0.1, which produces a
cautious behaviour of the algorithm. The size if the
examined set R is adapted gradually. Larger values of a
produce sharper increases and reductions of the R set.
This can be observed in figures 6 through 8, which
display the adaptive behaviour of the algorithm when the
a value is doubled at 0.2. The algorithm tends to examine
a larger number of requests (using a larger R set), but the
threshold is also exceeded more often and the algorithm
has to adapt to smaller sets of examined reservation.
Requests. This behaviour is magnified depending on the
adaptation parameter. As figure 9 illustrates, our
simulations showed that larger values for the adaptation
parameter are not suitable for the proposed algorithm. We
therefore determined that in order to avoid an oscillatory
behaviour it is better to keep the adaptive parameter a
around the 0.1 range of values.

threshold=3, a=0.2

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

time

re
qu

es
ts

 e
xa

m
in

ed

Figure 6. Examined requests with smaller threshold

and aggressive adaptation

threshold=4, a=0.2

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

time

re
qu

es
ts

 e
xa

m
in

ed

Figure 7. Examined requests with medium

threshold and aggressive adaptation

threshold=5, a=0.2

0

1

2
3

4

5

6
7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

time

re
qu

es
ts

 e
xa

m
in

ed

Figure 8. Examined requests with larger threshold

and aggressive adaptation

threshold=3, a=0.5

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

time

re
qu

es
ts

 e
xa

m
in

ed

Figure 9. Examined requests with very aggressive

adaptation

5. Conclusions - Future work

Our proposed algorithm improves on the common
admission control modules of Bandwidth Brokers on a
number of aspects. It offers better utilization of the
network resources, while keeping a balance between
simplicity and functionality. It automatically falls back to
a simpler model without trying to optimize the network
utilization, if its operating environment indicates that the
algorithm is too complex for the circumstances.
While we have studied the operation of the algorithm and
admission control on a hop by hop basis, it can easily be
extended and formulated in order to operate on a per flow
basis, a variation of the basic algorithm that we intend to
simulate and compare with the presented architecture.
Our future work includes the integration of the proposed
algorithm in the well-known ns-2 simulator architecture
evaluation. Furthermore we intend to compare the
proposed architecture with alternative schemes in terms
of efficiency, resource consumption and network
utilization. A number of improvements can be made to
the basic algorithm, depending among other things on the
implementation environment, the formulation and the
specific circumstances of the admission control problem
that we face. For example, in some case it might be
allowed for some requests to not specify their ending
time. The Bandwidth Broker algorithm can easily be
extended to take into account such requests, by making
the conservative assumption that they will reserve the
requested bandwidth indefinitely. This flexibility of
course can be offered at a higher than normal cost,
possibly determined by the SLA parameters. Another idea
that we plan to integrate into the basic algorithm is of
requests that have been overall rejected, nut which can be
notified at a later time when they will have better success
chances. This can be achieved by keeping a tentative list
of the total bandwidth requested at any time, for both
admitted and pending requests.

Finally, we intend to further analyze and document the
proper configuration of the operation parameters of the
described architecture.

6. References

[1]. RFC 2475 “An Architecture for Differentiated Services”,

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W.
Weiss, December 1998

[2]. RFC 2638 “An Two-bit Differentiated Services
Architecture for the Internet”, K. Nichols, V. Jackobson, L.
Zhang, July 1999

[3]. Olov Schelén, Andreas Nilsson, Joakim Norrgård, Stephen
Pink “Performance of QoS Agents for Provisioning
Network Resources”. In Proceedings of IFIP Seventh
International Workshop on Quality of Service (IWQoS'99),
London, UK, June 1999

[4]. G. Fankhauser, D. Schweikert, and B. Plattner, “Service
Level Agreement Trading for the Differentiated Services
Architecture”, Tech. Rep. 59, TIK, 1999

[5]. C. Chhabra, T. Erlebach, B.Stiller, D. Vukadinovic “Price-
based Call Admission Control in a Single DiffServ
Domain”, TIK-Report Nr. 135, May 2002

[6]. L. Burchard, H. Heiss, “Performance Evaluation of Data
Structures for Admission Control in Bandwidth Brokers”,
April 2002

[7]. A. Greenberg, R. Srikant, W. Whitt, “Resource Sharing for
Book-Ahead and Instantaneous-Request Calls”,
IEEE/ACM Transactions on Networking, February 1999

[8]. D. Ferrari, A. Gupta, G. Ventre, “Distributed advance
reservation of real-time connections”, 1995

[9]. M. Degermark, T. Kohler, S. Pink, O. Schelen, “Advance
Reservations for Predictive Service, 1995

[10]. S. Machiraju, M. Seshadri, I. Stoica, “A Scalable and
Robust Solution for Bandwidth Allocation”, 2002

[11]. Z. Zhang, Z. Duan, Y. Hou, L. Gao, “Decoupling QoS
Control from Core Routers: A Novel Bandwidth Broker
Architecture for Scalable Support of Guaranteed Services”,
SIGCOMM 2000

[12]. L. Wolf, R. Steinmetz, “Concepts for Resource
Reservation in Advance”, The Journal of Multimedia Tools
and Applications, May 1997

[13]. A. Gupta, “Advance reservations in real-time
communication services”

[14]. C. Bouras, V. Kapoulas, G. Pantziou, P. Spirakis,
“Competitive Video On Demand Schedulers for Popular
Movies”, Discrete Applied Mathematics 129 (2003) pp.
49-61

[15]. V. Vazirani, “Approximation Algorithms”, 1997

