
 
 
Abstract - In this paper we use the well known network 
simulator ns-2 in order to study the performance 
characteristics of various alternatives for the admission 
control module of a Bandwidth Broker. In particular, we 
present the modifications that have to be made at the ns-2 
architecture in order to simulate these architectures, the 
metrics such as acceptance rate, fairness towards requests 
and computation overhead and how they are affected 
when comparing a simple admission control module and 
more sophisticated ones. Furthermore, we examine the 
benefits that can arise under various circumstances 
through usage of enhancements such as the ability to 
handle the resubmission of previously rejected requests. 

I. INTRODUCTION 
The growing trend towards provisioning of Quality of Service 
(QoS) in the Internet has led to the development of several 
frameworks, among which DiffServ (Differentiated Services) 
is probably the most widely deployed one. The Bandwidth 
Broker [1] is an entity that manages the resources within a 
specific DiffServ domain by controlling the network load and 
by accepting or rejecting bandwidth requests. Every user 
(service operator) who is willing to use an amount of the 
network resources, between its node and a destination, sends 
a request to the Bandwidth Broker. For requests that span 
multiple domains (inter-domain requests), the Bandwidth 
Broker will have to communicate with Bandwidth Brokers in 
the adjacent domains that are traversed by the requested flow. 
The Bandwidth Broker architecture makes it possible to keep 
state on an administrative domain basis, rather than at every 
router and the DiffServ architecture makes it possible to 
confine per flow state to just the leaf routers. Bandwidth 
Brokers are an intensely studied field and a number of 
architectures have been proposed for the various aspects of its 
operation ([2], [3], [4], [5]). 
Despite the large amount of related work that contains initial 
evaluations of the proposed architectures, there is a lack of 
thorough comparative investigations of the relative 
performance and benefits of adaptive admission control 

architectures, in a simulated environment with low-level 
networking details. This is the focus of our work in this paper. 
The simulator within which we implemented a Bandwidth 
Broker is the Network Simulator (ns-2) [6], which is a free 
and widely used open-source simulator. 
The rest of the paper is organized as follows: Section II 
describes the problem related to the admission control module 
of the Bandwidth Broker. Section III provides a brief 
description of the algorithms evaluated in this paper, while 
section IV presents the simulation setup and the topologies 
that were used for the ns-2 simulator. Section V contains the 
results of the evaluations, and section VI presents our 
conclusions from the evaluations and the future work that we 
intend to do in this area. 

II. PROBLEM DESCRIPTION 
In order for the Bandwidth Broker to decide whether an 
incoming resource reservation request will be accepted or not 
it has to perform some sort of admission control. This 
function can be performed using straightforward algorithms 
or using more sophisticated architectures. Generally, the 
problem of deciding which requests should be satisfied in the 
context of limited resources has been widely investigated by 
researchers and similar ideas can be adapted and applied to 
the DiffServ environment and the Bandwidth Broker entity. 
Once a request has been accepted, the Bandwidth Broker has 
to make sure that its requirements will be met by the network. 
Admission control is very important because it determines the 
fairness between the requests and the degree of network 
utilization that will be achieved. An improperly designed 
admission control module can lead to low network utilization, 
unfairness and frustration to the users or it can also impose an 
unacceptable overhead to the system operation. 
In general, we can categorize the reservation requests as 
follows: 
Immediate requests: When an immediate request is accepted, 
it is immediately effective and the requested resources are 
reserved right away. This type of request leaves little room 
for implementing a strategy maximizing network utilization. 

Evaluating Admission Control Modules for 
Bandwidth Brokers in DiffServ Networks Using 

ns-2 
Ch. Bouras K. Stamos 

Research Academic Computer Technology Institute, PO Box 1382, Patras, Greece and 
Computer Engineering and Informatics Dept., Univ. of Patras, GR-26500 Patras, Greece 

Tel:+30-2610-{960375, 990316} 
Fax:+30-2610-{969016, 960358} 
e-mail: {bouras, stamos}@cti.gr 



Book-ahead (or advance) requests: A book-ahead request 
specifies the resources that will be needed at some later point 
in time, which has to be specifically defined. A thorough 
presentation of the concept of book-ahead reservations can be 
found in [7]. Book-ahead requests allow for better solutions 
to the admission control problem, and there are a lot of real 
world cases where a book-ahead type of request is suitable, 
like for example pre-arranged video conferences. 
For both immediate and book-ahead requests, it may be 
possible to either specifically declare the ending time of the 
reservation, or not. An intermediate case is when a 
reservation request has to provide both its starting and ending 
times, but can make new additional requests that extend its 
initial reservation period. 
In some cases, a book-ahead request may have a flexibility of 
allowing the Bandwidth Broker to answer the request by 
either accepting it or rejecting it not immediately, but after a 
period of time (which can be specified). 
For the purposes of our evaluations, we have made the 
assumption that time is comprised of distinct slots and 
reservations are processed using a predefined granularity. 
Also, we have assumed that the network has provisioned in 
such a way that the hose model [8] can be applied in order to 
determine the accepted flows at an ingress point of the 
network, as described in section IV (simulation setup). 

III. DESCRIPTION OF ALGORITHMS 
In this paragraph we briefly introduce the algorithms that 
were evaluated through our experiments. The algorithms are 
explained in detail in the corresponding references. 
The first algorithm is Simple admission control and has easy 
implementation and low complexity. Each incoming request 
is examined alone, and is accepted if there is still available 
(non reserved) bandwidth for the service. Therefore, this 
algorithm displays identical behaviour each time it is 
presented with the same reservation request instance set. This 
algorithm has the advantage of simple implementation and 
management, since only the most basic constraints (such as 
the available resources for the premium service) need to be 
configured by some administrative entity. For convenience, 
this algorithm is labeled from now on as SAC. 
Another approach to the admission control issue is taken by 
the Price-based admission control without adaptation. This 
type of admission control is similar to the offline version of 
the algorithm presented in [9]. The algorithm tries to optimize 
the network utilization by gathering and evaluating multiple 
requests together. In order to solve the resulting NP-complete 
problem, an approximation algorithm is used which can 
approximate the optimal solution within a specified range. 
This algorithm is labeled from now on as PBAC. 
The Adaptive admission control [10] is an algorithm that 
gathers multiple requests and evaluates them together for 
purposes of increasing the resource utilization, but also uses 
an adaptation module in order to keep processing 
requirements low. The adaptation module is responsible for 
interrupting the process of solving the scheduling problem 
and for adjusting the size of subsequent instances of the 

scheduling problem based on constant monitoring of 
computation time. Because the adaptation module takes into 
account the computational overhead of the Bandwidth 
Broker, the output of the algorithm may in theory vary 
slightly if an experiment is repeated with exactly the same set 
of requests. In practice however, each time we repeated an 
experiment we describe in this paper, the output of the 
algorithm was identical (i.e. the same requests were 
accepted). Also, the algorithm defines parameters that can 
influence its behaviour. The first parameter is the adaptation 
parameter a, which takes values in the range from 0 to 1 and 
determines the aggressiveness of the adaptation (values closer 
to 1 define more aggressive adaptive behaviour). The second 
parameter is the threshold, which roughly determines the limit 
of the computational overhead that the algorithm incurs to the 
system. These parameters can be defined by the architecture’s 
administrative entity, and in the experiments described in this 
paper we have used predefined values for these parameters 
[10], in order not to assume an additional burden for the 
administrator. This algorithm is labeled from now on as AAC. 
Adaptive admission control with resubmissions [11] is a 
variation of the AAC algorithm. It is enhanced with the 
capability to recognize previously rejected requests and 
increase their priority. Other than that, this algorithm is very 
similar to AAC. The basic idea is that the client will resubmit 
a rejected request only if the Bandwidth Broker has indicated 
that the request should indeed be resubmitted, and in addition 
if the user is willing to compromise for a delayed reservation. 
In order for the Bandwidth Broker to utilize resubmitted 
requests, it keeps a list of the standby requests. It will actively 
prioritize such requests in expense of newly received 
requests, and the prioritization will depend on the duration 
that a specific user has been waiting and resubmitting a 
request. This algorithm is labeled from now on as AACR. 

IV. SIMULATION SETUP AND TOPOLOGIES 
The simulator was running on an Intel-based Linux PC with 
288 MB of main RAM memory available and a Pentium III 
Coppermine with 256 KB cache memory on the processor 
chip, which operated at the frequency of 700MHz. The ns-2 
software was enhanced in order to simulate QoS-configured 
networks and specifically to simulate the Bandwidth Broker 
entities. The patches and instructions for enhancing the 
standard ns-2 simulator with the required functionality and 
replicating our results can be found in [12]. 
For all algorithms compared in this paper we have assumed 
that the hose model [8], which has been proposed for VPN 
provisioning, is being used by the domain in order to 
provision the network resources. Its basic idea is that 
bandwidth management is simplified by assigning a limit at 
the bandwidth that each edge router is allowed to accept in 
the domain. Its operation assumes that proper dimensioning 
of the network has taken place and that part of the available 
bandwidth for the links has been assigned to the management 
of the Bandwidth Broker for the DiffServ service. 
The parameters for each request were randomly produced 
within suitable boundaries (regarding the total duration of 



each simulation, the total available bandwidth, the minimum 
and maximum reservation requests) for each situation that we 
wanted to simulate, and each set of requests designated a 
specific ingress point at the network (so all requests competed 
for the same resource limit at the ingress point of the 
simulated network). We simulated a scenario where every 
request had to specify a steady amount of bandwidth for a 
specific duration with specific time bounds (there was no 
possibility for a request to specify a variable bandwidth rate). 
Randomness was obtained by using the ns-2 RNG class. This 
class contains an implementation of the combined multiple 
recursive generator MRG32k3a [13]. The period of the 
generator is 3.1x1057, thus more than adequate for generating 
randomness for our purposes. 
The main metrics that we are interested in, in order to 
evaluate the algorithms are: 
• The acceptance rate, which shows the percentage of 

requests accepted out of the total number of submitted 
requests. In case that a flat pricing model is followed 
(where there is a standard profit per reservation) this 
metric also shows the network provider’s revenue. 

• The generated profit for the provider, which is calculated 
as the product of the bandwidth consumption of each 
reservation times its duration. Although the pricing 
model can vary, we believe though that such a metric is 
representative, since it can be understood as the amount 
of resources that is consumed by a reservation and the 
sum for all reservations shows the achieved network 
utilization. We are also interested in the average profit 
achieved per request, which can be in several 
environments an additional indicator of the effectiveness 
of the algorithm. For example, when there is an 
additional overhead to the provider for signaling and 
allocating a new reservation, it would be beneficial to 
achieve better network utilization per individual request. 

• The delay of being able to deliver either positive or 
negative answers to the submitted requests. 

• The average size of the set of requests examined 
together, which is a measure of the complexity of the 
optimization problem solved, and therefore of the 
overhead to the system. 

Maximum available bandwidth for the service was set at 100 
Mbps, while the duration of each simulation was set at 50 
time slots. For algorithms AAC and AACR, the results were 
obtained setting the adaptation parameter a at a value of 0.5 
(moderate adaptation) and a computational threshold of 5 
time slots for AACR and both 5 and 10 time slots for AAC. 
The used topology was a simple star network, with the 
Bandwidth Broker module being located in the centre and 
requests originating from one leaf node towards another leaf 
node of the network. 

V. EVALUATION RESULTS 
For each experiment we have measured the percentage of 
accepted requests, the delay that was required before the 
Bandwidth Broker would reply to a request and the 
percentage of network utilization achieved by each algorithm. 

These results are summarized in Table 1. 
Table 1. Summary of results 

Algorithm 
(averages) 

Acceptance 
rate 

Delay 
(time 
slots) 

Network 
utilization (bytes 
x time slots) 

SAC 29.60% 0 3920014 
PBAC 21.79% 7.08 5243307 
AAC thr=5 25.72% 5.44 4532672 
AAC thr=10 24.77% 5.48 4780385 
AACR 42.56% 5.58 5594577 

As Figure 1 demonstrates, the acceptance ratio of all 
algorithms except AACR remains fairly similar throughout 
the experiments. SAC is the algorithm that slightly achieves 
the highest acceptance rate, while PBAC is the one with the 
lowest, with AAC variations covering the middle. This is not 
a surprising result, since SAC will always accept a request if 
there are enough resources available, while PBAC is more 
oriented towards generating the maximum amount of resource 
utilization, rather than treating all requests alike. Because of 
the resubmission capability, AACR displays clearly better 
performance with regard to this metric. This result leads us to 
the conclusion that in environments where the most 
significant factor is the satisfaction of the maximum amount 
of users regardless of their relative weight, the good 
performance of the SAC algorithm combined with its 
simplicity make it the most suitable choice. If resubmissions 
are desirable and supported, AACR can be preferred. 

Acceptance rate

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

0 10 20 30 40

requests per time slot

ac
ce

pt
an

ce
 ra

te PBAC
AAC thr=5
SAC
AAC thr=10
AACR, thr=5, 50%

 
Figure 1. Acceptance rate 

Network utilization (total profit)

75

80

85

90

95

0 5 10 15 20 25 30 35

M
ill

io
ns

requests per time slot

pr
of

it 
/ r

eq
ue

st
 (b

yt
es

 x
 

tim
e)

PBAC
AAC thr=5
SAC
AAC thr=10
AACR, thr=5, 50%

 
Figure 2. Network utilization 

In most cases however, all users will not generate the same 
revenue for the network provider and a cost scheme will most 
probably have to take into account both the relative weight of 
each request, and the effort to maximize the efficiency and 
utilization of currently available resources. We have tried to 
cover this aspect with Figure 2 and Figure 3, which display 
the total absolute profit generated for each experiment and the 
profit per request respectively. We have chosen to measure 
the provider’s profit by calculating the product of a request’s 



duration (in time slots used by the ns-2 simulator) times the 
resource allocation that a reservation requires. 
We have to mention that in Figure 2 AACR results are not 
displayed because they are far larger than all other results, in 
order to have better distinguishing capability for the rest of 
the algorithms. These results demonstrate the relative 
strengths of the price-based approaches, since PBAC is the 
most efficient algorithm in this regard, followed by AAC, 
with SAC displaying the worst performance. AAC even 
surpasses the PBAC performance in several cases when the 
request arrival ratio increases. The most plausible explanation 
for this result is that the increased arrival rate of new requests 
makes the larger size of the set examined by the PBAC 
algorithm unnecessary. Increasing the threshold for the AAC 
algorithm seems to have a positive effect on its performance, 
but comparison with PBAC shows that a restrained increase 
in the threshold value is enough for obtaining equal or 
superior results. Therefore, the recommendation for fine-
tuning the AAC algorithm is that it is beneficial to increase 
the threshold value as soon as the arrival rate of request 
increases. As expected, AACR again displays the best overall 
performance, which on the case of total profit exceeds several 
times the results of other algorithms. 

Network utilization

2000000

3000000

4000000

5000000

6000000

7000000

0 10 20 30 40

requests per time slot

pr
of

it 
/ r

eq
ue

st
 (b

yt
es

 x
 

tim
e)

PBAC
AAC thr=5
SAC
AAC thr=10
AACR, thr=5, 50%

 
Figure 3. Network utilization per request 

Average waiting time

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40

requests per time slot

w
ai

tin
g 

tim
e 

(ti
m

e 
sl

ot
s)

PBAC
AAC thr=5
SAC
AAC thr=10
AACR, thr=5, 50%

 
Figure 4. Average waiting time 

In most real environments it is expected that a relatively 
quick response to a request will be essential. As Figure 4 
demonstrates, SAC is extremely responsive. This suggests 
that there is room for a trade-off to improve performance in 
other areas such as the utilization of the network resources. 
PBAC is not efficient in that regard, as it demands the most 
time in order to respond to the reservation requests, a 
situation that in many real-world scenarios is unattainable. 
The adaptive variations prove to be attractive trade-offs, since 
for most of the experiments the additional delay they incur is 
minimal, while at the same time they manage to improve the 
utilization of the provider’s resources, as demonstrated above. 

VI. CONCLUSIONS – FUTURE WORK 
We believe that the results presented in this paper offer a 
strong case for the adaptive algorithms (AAC and AACR) in 
cases where more efficiency in the utilization of the network 
resources is required, since their adaptive nature incurs 
minimal overhead and very small delays to the request 
responses. In that sense, they offer useful alternatives for real 
world situations by combining the benefits of the simple SAC 
and the more complicated PBAC algorithm, without 
introducing any significant drawback of their own. 
However, the nature of the studied environments and the 
multiplicity of factors that affect the outcome of the 
experiments encourages us to investigate more scenarios that 
simulate several discrete actual cases and circumstances. Our 
plans for future work also include the examination and 
comparative evaluation of the advantages of distributed 
designs, as well as their impact and overhead for the network. 

REFERENCES 
[1] RFC 2638 “A Two-bit Differentiated Services Architecture for the 
Internet”, K. Nichols, V. Jackobson, L. Zhang, July 1999 

[2] S. Sohail, S. Jha, “The Survey of Bandwidth Broker”, Technical Report 
UNSW CSE TR 0206, School of Computer Science and Engineering, 
University of New South Wales, Sydney 2052, Australia, May 2002 

[3] J. Ogawa, A. Terzis, S. Tsui, L. Wang, L. Zhang. “A Prototype 
Implementation of the Two-Tier Architecture for Differentiated Services”, 
RTAS99 Vancouver, Canada 

[4] C. Brandauer, W. Burakowski, M. Dabrowski, B, Koch, H. Tarasiuk, 
“AC algorithms in Aquila QoS IP network”, 2nd Polish-German Teletraffic 
Symposium PGTS 2002, Gdansk, Poland, September 2002 

[5] C. P. W. Kulatunga , J. Kielthy, P. Malone, M. Ófoghlú, 
“Implementation of a simple Bandwidth Broker for DiffServ networks”, IPS 
2004, Budapest, Hungary, March 2004 

[6] The Network Simulator - ns-2, http://www.isi.edu/nsnam/ns/ 

[7] A. Greenberg, R. Srikant, W. Whitt, “Resource Sharing for Book-
Ahead and Instantaneous-Request Calls”, IEEE/ACM Transactions on 
Networking, February 1999 

[8] N. Duffield and P. Goyal and A. Greenberg and P. P. Mishra and K. K. 
Ramakrishnan and J. E. van der Merive, “Flexible Model for Resource 
Management in Virtual Private Networks”, SIGCOMM 1999, pp. 95-108 

[9] C. Chhabra, T. Erlebach, B. Stiller, D. Vukadinovic “Price-based Call 
Admission Control in a Single DiffServ Domain”, TIK-Report Nr. 135, May 
2002 

[10] C. Bouras, K. Stamos, “An Adaptive Admission Control Algorithm for 
Bandwidth Brokers”, IEEE NCA 2004, Cambridge, MA, USA, pp. 243-250 

[11] C. Bouras, K. Stamos, “Resubmissions and Partly Defined Requests in 
an Adaptive Admission Control Algorithm for Bandwidth Brokers”, 5th 
International Conference on Networking (ICN 2006), 23-26 April (to appear) 

[12] http://ouranos.ceid.upatras.gr/diffserv-ns/intro.htm 

[13] Pierre L’Ecuyer. Good parameters and implementations for combined 
multiple recursive random number generators. Operations Research, 
47(1):159–164, 1999. 


