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ABSTRACT

We analyze here a pure greedy hot-potato routing strategy on a two-dimensional
mesh of n2 nodes. We speci�cally study the case of n2 packets, originating one per
node, to be delivered at random uniform destinations. Each packet attempts to follow
the shortest path leading �rst to the destination row/column (whichever is closest) and

then to the actual destination node. A de
ection policy is adopted to solve con
icts. We
prove that all packets are delivered to the destinations in average time O(nlogn). The

average is taken over all possible destination functions. No average case analysis of pure
greedy hot-potato routing was known up to now.

Keywords: Hot-potato routing, Two-Dimensional Mesh, Greedy Algorithms, Random
Destinations

1. Introduction

In this work we propose a pure greedy algorithm for packet routing in a syn-

chronous 2-dimensional mesh of processors in which at most one packet can traverse

any directed link in each time step. We consider a class of algorithms known as

hot-potato (or de
ection routing algorithms (see e.g. [1], [2]) The important char-

acteristic of these algorithms is that they use no bu�er space for storing delayed

packets. Each packet, unless it has already arrived to its destination, must leave

the node (processor) at the step following its arrival. This may cause some packets

to be de
ected away from their preferred direction.

Variants of the hot potato routing are used by parallel machines such as the

HEP multiprocessor and the Connection Machine and by high speed communica-

tion networks [3]. In particular, hot potato routing is very important in �ne-grained
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massively-parallel computers, such as the Caltech Mosaic C [4]. For such machines

the addition of even a small sized storage bu�er at each processor will cause a

substantial increase in the cost of the machine. De
ection-type routing is highly

desirable in optical networks (see e.g. [2], [5]) or other very fast networks : this

is so because any intermediate storage must take an electronic form and then be

converted back to optical. This conversion is very slow compared to optical trans-

mission.

Most of the recent work on hot-potato routing focuses on structured routing. In

structured routing good behaviour is enforced by sending the packets in pre-speci�ed

directions. Structured routing was shown in [6] to be asymptotically optimal.

However, it penalizes packets which initially are very close to their destination, by

sending them to distant regions of the network due to the �xed, pre-speci�ed routes.

Also, long unnecessary routes are taken even when the actual number of packets is

much smaller than the number of nodes, because the algorithms are not sensitive

to the total network load.

In contrast, in greedy routings, a packet is bound to use an out-going link in the

direction of the destination, whenever such a link is available. Aside fron de
ections,

greediness helps packets to go to their destinations by following shortest paths.

Another practical aspect of greedy routing is its simplicity. The amount of hard-

ware and the cycle time of the routing mechanism (at every processor) depend to

large extent on the complexity of the routing algorithm. Structured algorithms are

often designed in phases, where the algorithm changes at each phase. Moreover, the

routing choices are usually complex, and might defer for di�erent processors dur-

ing the same phase. Thus structured algorithms typically rely on complex routing

mechanisms. Greedy algorithms, on the other hand, do not consist on phases. All

nodes perform the same (simple) routing policy at each step of the algorithm.

Although greediness might cause congestion in certain regions of the network,

de
ection is hoped to spread the load so that the total routing time is decreased.

Simulations of greedy hot potato routing algorithms show their superiority over

structured ones. Unfortunately the analysis of greedy hot potato routing algorithms

is considerably more di�cult than that of the structured ones. There is no bound

to the number of links that a packet may traverse before it arrives at its destination.

Certain chains of de
ections may eventually result back in the original con�guration,

thus raising the question whether the algorithm ever terminates. Such in�nite loops

are called livelock.

2. Related work and our results

The �rst greedy hot-potato algorithm was proposed by Baran [7]. Borodin and

Hopcroft in [8] suggested a greedy hot-potato algorithm for the hypercube. They

observed that "experimentally the algorithm appears promising". Since then, a

lot of experimental results on hot-potato greedy routing were published ( [9], [2],

[10], [3] etc.) all noticing that such routings perform very well in experiments or

simulations. Prager [10] showed that the Borodin-Hopcroft algorithm terminates



Pure Greedy Hot-Potato Routing in the 2-D Mesh with random destinations 3

in n steps on the 2n - nodes hypercube for a special class of permutations. Complete

analysis, however, exists merely for many-to-one routing problems, in which many

packets may be destined to reach the same target. Hajek [11] presented a simple

greedy algorithm for the hypercube that runs in 2k+n steps, where k is the number

of packets in the system. The work of Hajek was simpli�ed and generalized in a

work by Brassil and Cruz [12]. They showed a bound of diam + P + 2(k � 1) for

any network, where diam is the network diameter and P is the length of a walk

connecting all destinations in a certain order. Ben-Or, Halevi and Schuster in [13]

gave a potential function analysis of greedy routing algorithms on d dimensional

arrays. Their result yield, a 8
p
2
p
kn bound for routing k packets on the two

dimensional mesh.

Some recent results concern structured (non-greedy) hot potato permutation

routing. Feige and Raghavan [1] presented an algorithm for the 2-dimensional

mesh that routes most of the routing problems in no more than 2n+O(logn) steps.

Newman and Schuster [6] presented an algorithm that is based on sorting for per-

mutation routing in the 2-dimensional mash. Their algorithm routes every permu-

tation in 7n+o(n) steps, which was improved to 3:5n+o(n) by Kaufmann et.al [14].

Bar-Noy et.al. [15] presented a relatively simple algorithm for the 2-dimensional

mesh and torus that routes every routing problem in O(n
p
m) steps where m is

the maximumnumber of packets destined to a single column. Kaklamanis, Krizanc

and Rao [16] presented an algorithm for permutation routing in the d-dimensional

torus that routes most of the permutations within 2n+O(log2n) steps. Ben-Aroya

and Schuster [17] proved a lower bound for deterministic algorithms that "stick" to

the surrounding of the destination column or destination row once they get there.

Their result yield an 
(n2) lower bound for permutation routing by a large class of

algorithms. The algorithms in [1], [16] have some "greedy tendency" included. It

is easy to see that they loose it when routing some "worst case" instances, and in

those cases their performance degrades.

Ben-Aroya and Schuster, in [17], provided strongly greedy hot-potato routing

algorithms (in the sense that their algorithms attempt to send packets in good direc-

tions whenever possible) and gave a potential function analysis for their algorithms.

Their analysis gave the best evacuation time known for delivering all packets to

their destinations, when the destinations are arbitrary (A batch of k packets with

maximal source-to-destination distance dmax is delivered in 2(k � 1) + dmax. This

is, however, still �(n2) when each node of the mesh is the origin of a packet.

In this paper we analyse the pure greedy hot-potato routing under the assump-

tion of random packet destinations. We prove termination (of n2 packets, origi-

nating one per node) in O(nlogn) expected time, where the average is taken over

all possible destination functions. Feige and Raghavan [1] and Kaklamanis et.al.

[16] have shown that "greedy-like" routing strategies exhibit an O(n) average time

performance in our case, for most of the routing problems (destination sets). The

advantage of our paper is the use and analysis of a pure greedy strategy and that

our result holds for all possible destination functions.



4 P. Spirakis & V. Trianta�llou

Our extended simulations [18] indicate an O(n) expected time. Thus, we con-

jecture that the O(logn) slowdown is possibly due to some slack in the analysis.

3. Our model and de�nitions

The network we are dealing with is the n�n 2-dimensional mesh with n columns

and n rows and a node at each intersection point. The network edges are unidirec-

tional links between processors, where each pair of neighbouring processors has two

edges in opposite directions. The network is synchronous so that moving of packets

between neighbouring processors is done at discrete time steps. At each step, a

processor may receive up to one packet from each incoming edge and send up to

one packet along each outgoing edge. After sending and receiving of packets, some

pre-speci�ed, standard operations are performed by the processor on the headers

of the incoming packets. Our algorithm uses the ability to read and compare the

destination of two packets. There are no bu�ers at any node, and a packet is never

stored at any node, except for its destination node.

We consider the problem of many-to-one packet routing, or simple packet rout-

ing, in which each node has a (single) packet to be delivered to another node in the

mesh. The destinations are randomly uniformly chosen.

De�nition 1 : Given a n� n mesh containing n2 packets at n2 di�erent nodes, a

routing problem is a function f which assigns destinations to the packets.

De�nition 2 :

� Let f be a routing problem, A be a hot-potato algorithm, and let p be a packet.

Since A is a hot-potato algorithm, p goes forward towards its destination,

unless it cannot, in which case it goes backwards (away from it) at each step.

We call a packet that goes forward an advancing packet, and a packet that

goes backward is called a de
ected packet.

� Consider a node S in the mesh. We de�ne drow(p) as the distance between

the row of S and the destination row of p and dcol(p) as the distance between

the column of S and the destination column of p.

� For each packet p contained in S if drow(p) < dcol(p) then we can mark the

outgoing column from S leading towards p's destination as the good direction

for p. If drow(p) = 0 then p is travelling on the destination row (good direc-

tion). Otherwise drow(p) > dcol(p), we can mark the outgoing row from S

leading towards p's destination as the good direction for p. If dcol(p) = 0 then

p is on the destination column (good direction). If drow(p) = dcol(p) then both

the row and column of S leading towards the destination row or column can

be marked as good directions.

De�nition 3 : A hot potato algorithm is greedy if its decision rule has the property

that whenever a packet p is de
ected, then the good direction of p is used by an

advancing packet. We say that this advancing packet de
ects p.

De�nition 4 : Our algorithm obeys the following rules :
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� The algorithm is purely greedy

� When two or more packets share the same good direction, the algorithm gives

priority to the one that wants to proceed in the same direction it came from.

� De
ected packets go to random directions

� A packet always attempts to follow its good direction, unless it is de
ected.

4. The potential function

The potential function of a packet p at time t is denoted by �p(t). Every packet

has an initial potential equal to a � n (a > 6 is a suitable constant). This will be

shown to be enough to account for possible de
ections until p reaches its row or

column and starts to travel towards its destination. From that pointr on, no other

packet can stop p. When p reaches its destination, all the remainder potential is

lost too. Formally we de�ne �p(t) as follows:

De�nition 5 :

� Initially, for every p, �p(0) = � � n
� If at time t the packet p is de
ected away from its destination then �p(t+1) =

�p(t) + 1

� If p advances towards its destination row or column (the nearest one) then

�p(t+ 1) = �p(t) � 3

� If p reached its destination at time t then �p(t) is forced to zero

The potential of the mesh at time t, denoted by �(t), is the sum of �p(t) over

all the packets.

We say that a node in the mesh looses potential in step t if the sum of the

potential over the packets that entered that node at time t is greater than the sum

over the same packets at time t + 1. If the sum at time t is less than the sum at

time t + 1, we say that the node gains potential.

De�nition 6 : Let S be a network node. Let A, B, C, D be the situations (events)

where S contains one, two, three or four packets.

Note that when S contains four packets at time t (i.e. situation D) then we may

distinguish four subcases:

� subcase (i) : All packets go to the right direction, at t + 1. In this case the

potential loss is 12 units.

� subcase (ii) : Three packets go to their right direction at t+ 1. In such a case

we have a potential loss of 8 units.

� subcase (iii) : Two packets go to their right direction. Then the potential loss

is 4 units.

� subcase (iv) : Only one packet goes to the right direction at time t + 1. In

such a case the potential loss is 0 units.

Let us denote these subcases by D1, D2, D3, D4.
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De�nition 7 : For a node S, let �PS(x) be the worst case (smallest) potential

loss in each case x �fA;B;C;Dg.

5. A technical remark and an Assumption

First, note that �PS(A) = 3;�PS(B) = 2;�PS(C) = 1 and �PS(D) = 0

In the sequel we assume

Assumption 1 Packets arriving at a node have random and independent destina-

tions

Note that such an assumption has been used many times in analyses of network

routing. We aim here in an approximate analysis of the progress of the routing

scheme.

However, in the arti�cial scenario assumed by assumption 1, the distribution of

all possible destination functions is the same as in the case when packets just select

destinations uniformly randomly at the beginning and do not change their choices.

Thus, our assumption covers exactly the case of random independent destinations.

De�nition 8 Let FS

t
be the event "only one packet of node S will move to the

correct direction at time t+ 1"(no progress potential)

Lemma 1 At any time t, the expected number of the nodes S in situation D satis-

fying FS

t
is at most a constant fraction less than 1

Proof. The lemma trivially holds at time t = 0 since no nodes are in situation D.

Assume, inductively, that the lemma holds at time t. Consider a node v of type D.

In the (worst) case that this node is being surrounded by four nodes of type D, each

of them will de
ect a packet of a particular destination (out of v) to v (say north)

with probability 1
3
. Thus, the probability that v will have all its packets with the

same (con
icting) destination at time t+ 1 is at most 4(1
3
)3 = 4

27

Let NL(t) be the set of nodes with at least 1 packet at time t and jNL(t)j their
number. Thus the expected number of nodes S in situation D satisfying FS

t
is at

most 4
27
� jNL(t)j, by linearity of expectation.

Corollary 1 Let E(��S(t+ 1)) be the expected value of the potential loss of node

S at the beginning of time t+ 1 then

X
S2NL(t)

E(��S(t)) � � � jNL(t)j

where � > 0 is a constant, � � 23
27

Proof. Clearly

X
S2NL(t)

E(��S(t)) � jNL(t)j �E(X)

where X= number of nodes with at least 1 packet but in situation D and satis-

fying FS

t
.
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But E(X) � 4
27
� jNL(t)j by lemma 1. Thus

X
S2NL(t)

E(��S(t)) �
23

27
� jNL(t)j

.

Consider now the situation of a particular packet p arriving at node S at time

t. Let s(p) be the probability that p will not be a�ected at S. This probability is

minimized when S receives three other links. Let E1; E2; E3; E4 be the events:

E1 = all four packets have di�erent destinations

E2 = p's destination con
icts with one other

E3 = p's destination con
icts with two others

E4 = all packets go to the same destination

Let E be the event that p will not be de
ected. Then

Pr(E) = 1 �Pr(E1) +
1

2
�Pr(E2) +

1

3
�Pr(E3) +

1

4
�Pr(E4)

Fix p's destination. Due to our assumption,

Pr(E1) =

�
3

0

��
1=3

�0 �
2=3

�3
=

8

27

(because each other packet independently selects p's destination with probability 1
3

and thus we count the number of successes in Bernoulli trials). Similarly

Pr(E2) =

�
3

1

��
1=3

� �
2=3

�2
=

4

9
=

12

27

Pr(E3) =

�
3

2

��
1=3

�2 �
2=3

�
=

2

9

and

Pr(E4) =

�
3

3

��
1=3

�3
=

1

27

Thus

s(p) �
8

27
+
1

2
�
12

27
+
1

3
�
2

9
+
1

4
�
1

27
>

16

27
>

1

2

Thus we have shown

Lemma 2 For each packet p and time t, the probability that the packet will not be

de
ected upon its arrival at the current node is greater than 16
27

>
1
2

Corollary 2 At each step, the expected number of packets that will not be de
ected

is strictly more than half of them.
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Corollary 3 The total expected potential of the grid is reduced at each step.

Proof: At least half the packets in motion are expected not to be de
ected. Each

reduces its potential by 3. In the worst, the rest (less than half) increase each its

potential by 1. Thus, the expected loss of the total potential is always positive.

From Lemma 2, we also have

Corollary 4 The expected potential of any individual packet p is reduced at each

step, hence it is always O(n).

Proof: For each packet p

�p(t+ 1) = (�p(t) + 1) � (1� s(p)) + (�p(t)� 3) � s(p)

and by getting expectations,

E(�p(t+ 1)) � E(�p(t) � 2)

.

Remark 1 Also, note that, due to Lemma 2, each packet p is expected to succeed

not to be de
ected in at least 16 out of every 27 node visits. This means that, by

choosing the constant � to be e.g. greater than 9, the expected potential of p will

never become zero before p arrives to its destination.

6. The progress of the routing scheme

Note that �(0) = �(n3) is the initial total potential

De�nition 9 Let T be the total number of routing steps

Decompose T as

T =

2lognX
i = 0

Ti

where Ti = the number of steps (phase i) during which the nodes with at least one

packet are at least n2=2i+1 and at most n2=2i. Clearly,

E(T ) =

2lognX
i=0

E(Ti)

by linearity of expectation.

Since each node can have at most four packets per step and since the expected

potential of each packet isO(n), due to Corollary 4, then the total expected potential

at the beginning of phase i, �i, is at most O(n3=2i) by de�nition of Ti, 8i.
Let ��i be the potential drop during phase i. Clearly,

��i =
X

t in phase i

X
S2NL(t)

��S(t)
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Thus,

E(��i) = E(
X

t in phase i

X
S2NL(t)

E(��S(t))) � E(
X

t in phase i

23

27
NL(t))

(by Corollary 1)

But, by de�nition of phase i, NL(t) � n
2

2i+1
for all t in phase i. Thus

E(��i) �
n
2

2i+1
�
23

27
�E(Ti)

But �i ��i+1 = ��i

i.e. ��i + �i+1 = �i and E(�i+1) = O(n3=2i+1)

We then get

n
2

2i+1
�
23

27
�E(Ti) � E(��i) = E(�i) �E(�i + 1)

i.e. n
2

2i+1
� 23
27
�E(Ti) � O( n

3

2i+1
), because the total potential is always nonnegative

and becomes zero only when all packets reach their destination, due to our previous

Remark 1. Thus E(Ti) = O(n) 8i. Hence

E(T ) =

2lognX
i=0

E(Ti) = O(nlogn)

Thus we have shown

Theorem 1 The average routing time of the greedy hot-potato routing to deliver

all packets to random destinations is O(nlogn)

Remark 2 Note that the arguments used in the analysis do not depend much on

the speci�c rules of the routing protocol given in De�nition 4. Thus, our analysis

applies to any protocol where at every step each packet attempts to follow some good

direction that leads it closer to its destination.

7. Future work

We conjecture here that our result of �(nlogn) expected termination time for

n
2 packets with random destinations is not optimal. Our experiments [18] in a 2D-

mesh of a 512-node Parsytec machine indicate a �(n) hot-potato greedy termination

time for n2 packets.
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