
ORIGINAL ARTICLE

Performance improvement of Distributed Virtual Environments
by exploiting objects’ attributes

Christos Bouras • Eri Giannaka •

Thrasyvoulos Tsiatsos

Received: 23 November 2010 / Accepted: 10 August 2011 / Published online: 23 August 2011

� Springer-Verlag London Limited 2011

Abstract Distributed virtual environments need to address

issues related to the control of network traffic, resource

management, and scalability. Given the distributed nature

of these environments, the main problems they need to

overcome are the efficient distribution of workload among

the servers and the minimization of the communication

cost. In this direction, a lot of work has been done and

numerous relevant techniques and algorithms have been

proposed. The majority of these approaches mainly focus

on user entities and their interactions. However, most of

actual DVE systems include additional and non-dynamic

elements, denoted as objects, whose presence can affect

users’ behavior. This paper introduces virtual objects’

attributes and proposes two approaches that exploit these

attributes in order to handle workload assignment and

communication cost in DVE systems. Both approaches

take into account scenario-specific aspects of DVE sys-

tems, such as the impact that entities’ attributes have on

each other and the way this impact can affect the system’s

state. These scenario-specific aspects are then combined

with quantitative factors of the system, such as workload,

communication cost, and utilization. The experiments

conducted in order to validate the behavior of the proposed

approach show that the incorporation of object’s presence

can improve the DVE system’s performance. More spe-

cifically, objects’ presence and their attributes can assist in

the significant reduction in the communication cost along

with effective workload distribution among the system’s

servers.

Keywords Distributed virtual environments � Load

balancing � VR techniques and systems

1 Introduction

A virtual environment can be considered as a simulation of

either an imaginary or real-world generated by a computer.

Virtual reality applications became notably popular the last

two decades. This can be attributed to the wide expansion

of high-speed Internet access that is required to support

these systems, as well as the significant advances of both

hardware and software. These advances led to the design

and development of distributed systems, which allow

geographically scattered concurrent users to communicate,

collaborate, and interact in a highly realistic virtual envi-

ronment. This type of shared, computer-resident virtual

world, where users share the same 3D synthetic scene,

is called a distributed virtual environment (DVE). A large

number of applications were developed for supporting

DVEs, which were gradually adopted in a wide range of

both academic and industrial environments. Their most

common application is still met in the entertainment area,

C. Bouras

Computer Engineering and Informatics Department,

University of Patras, 26500 Rion, Patras, Greece

C. Bouras (&)

Research Academic Computer Technology Institute,

M.Jazantzaki Str. Patras University, 26500 Rion,

Patras, Greece

e-mail: bouras@cti.gr

E. Giannaka

Athens Information Technology, 19.5 km Markopoulou Ave.,

19002 Peania, Athens, Greece

e-mail: elgi@ait.gr

T. Tsiatsos

Department of Informatics, Aristotle University of Thessaloniki,

P. O. Box 114, 54124 Thessaloniki, Greece

e-mail: tsiatsos@csd.auth.gr

123

Virtual Reality (2012) 16:187–203

DOI 10.1007/s10055-011-0198-6



where applications such as Massive Multimedia Online

Games (MMOGs) have become extremely popular. Some

representative examples of such applications are the

World of Warcraft (http://www.worldofwarcraft.com/)

game, Second Life (http://secondlife.com/), and EVE

Online (http://www.eveonline.com).

In networked servers DVEs, the simulated world does

not run on one computer system but on several that are

connected through a network. Connected users view the

virtual world on their computer (client), thus having their

own local copy of the virtual environment. In the majority

of existing DVE systems, users have the ability to navigate

in the virtual world (i.e., changing their position coordi-

nates), to interact with the objects of the virtual environ-

ment (i.e., changing some of their attributes such as

location, shape, color), as well as to interact and commu-

nicate with other participating users. Therefore, interac-

tivity is a basic requirement for the vast majority of virtual

environments. In addition, achieving a high sense of real-

ism and maintaining consistency among all users’ views

are of critical importance, so that all connected users are

always aware both of the presence of other entities (either

users or virtual objects) as well as of any actions per-

formed. Persistence is realized by distributing and syn-

chronizing both user input and user independent behavior.

One common characteristic of DVEs is their dynamically

changing state with users entering, navigating, interacting,

and leaving the system randomly (at will), resulting in

continuously changing utilization of resources for the DVE

system. These changes, in turn, call for effective load

distribution and management of the inter-server commu-

nication (for synchronization purposes), so that consistency

is always maintained and scalability is supported.

Regarding scalability, the work of Morillo et al. (2005) has

shown that in a networked server DVE system when even

one of the servers reaches 100% of CPU utilization, the

performance of the overall DVE system is downgraded.

Existing approaches for handling load distribution,

communication cost, and scalability in DVE systems

mainly focus on the avatar entity that represents users and

their behavior. However, DVE systems include additional

non-dynamic elements, whose state should be managed and

communicated to the participants. The term object is used

for defining these non-autonomous elements. Recent

research highlights the impact of objects’ presence in DVE

systems (Hu et al. 2006). The objects are active parts of the

virtual environment and play an important role in support-

ing the scenario that the virtual environment simulates.

There are different types of objects within the virtual world,

with different attributes. More specifically, there are objects

that users can interact with, objects that can be moved, and

objects placed for supporting the visual and graphical rep-

resentation of the virtual scene. For persistence, any change

of the objects’ state needs to be propagated to all users

concerned. This propagation of states increases not only the

workload but also the communication cost among the sys-

tem’s servers for their synchronization.

This paper presents a load distribution and rebalancing

approach for DVE systems that exploits the presence of

objects along with their attributes within the virtual envi-

ronment. More specifically, the proposed approach uses the

objects’ location, their individual attributes, and the impact

these attributes have on users’ behavior to (a) create par-

titions of the virtual environment that are tolerant to

changes, (b) distribute the workload among the partici-

pating servers in a way that none of them reaches satura-

tion, and (c) minimize the communication among system’s

servers. It is therefore advancing the state-of-the-art that is

mainly focusing on avatars’ presence by introducing

new parameters and scenario-specific aspects of the virtual

environment. More specifically, the object-oriented

approach presented takes into account scenario-specific

aspects of DVE systems, such as the impact that entities’

attributes in diverse simulated virtual scenarios have on

each other and the way this impact can affect their social

behavior and in turn the virtual environment’s behavior and

state. These aspects are then combined with quantitative

factors of the system, such as workload, communication

cost, and utilization for handling workload distribution,

rebalancing, and minimization of the communication cost.

The proposed approach is evaluated through simulations

in large-scale environments and is compared to an avatar-

based technique. The results of the experiments clearly

show that the major contribution of the approach is the

significant reduction in the inter-server communication

cost. Given the fact that DVEs depend strongly on the

underlying network characteristics, the reduction in the

messages exchanged among the system’s servers is of

increased value for the viability, scalability, and perfor-

mance of the DVE system. Furthermore, the proposed

approach achieved an effective load distribution scheme

for longer time intervals, when compared to the avatar-

based approach. Finally, the CPU utilization for all DVE’s

servers never reached the saturation point of 100% of CPU

utilization that is proven to downgrade the overall DVE

system’s performance (Morillo et al. 2005).

This paper is structured as follows: Sect. 2 presents the

research work done both in the direction of load balancing

and prediction techniques in virtual environments. Sec-

tion 3 presents the main attributes of objects in a virtual

environment for highlighting the impact they can have on

users’ behavior along with virtual world characteristics.

Sections 4 and 5 present the distribution and rebalancing

approaches in terms of their main concepts and the

parameters they incorporate. The section that follows pre-

sents the validation of the proposed approach and Sect. 7

188 Virtual Reality (2012) 16:187–203

123

http://www.worldofwarcraft.com/
http://secondlife.com/
http://www.eveonline.com


presents the experiments conducted for assessing the

algorithm’s efficiency for a large-scale DVE. Finally, Sect.

8 provides conclusions of the paper.

2 Related work

The load distribution problem and the prediction of users’

intentions and behavior have drawn increased research

interest and a number of algorithms and methods have been

proposed. This section presents part of the work that has

been done both in the field of solving the load distribution

problem as well as in the design of efficient prediction

techniques for optimizing the DVE’s performance.

In the direction of the partitioning problem, the

approach presented in Morillo et al. (2003a) proposes a

heuristic search based on Ant Colony Systems (ACS). This

heuristic search method uses positive feedback to improve

the use of good search paths, while using negative feed-

back to escape from local minima. Another approach

(Macedonia et al. 1995) is to logically partition virtual

environments by associating spatial, temporal, and func-

tionally related entity classes with network multicast

groups. This is accomplished by exploiting the actual

characteristics of the real-world environments that are to be

simulated and by focusing an entity’s processing and net-

work resources to its area of interest via an Area of Interest

(AoI) Manager. A third approach rejects dynamic concepts

associated with avatars like AoI, aura, or local (Tam 1998).

This proposal divides the three dimensional (3D) virtual

scene in a regular grid. A multicast group is created for

each grid cell, in such a way that avatars sharing a cell also

share multicast packets and are assigned to the same server.

Although this approach provides a fast way of solving the

partitioning problem, the performance of the static parti-

tioning is quite low when avatars show a clustered distri-

bution. Furthermore, the approach presented by Beatrice

et al. (2002) considers that all objects within each region of

the virtual environment are managed by a given server and

adaptive load balancing is provided. In addition, the DVE

system (Frecon et al. 2001) places a multicast partitioning

scheme under the control of a scripting language, making

dynamic partitioning dependent on object behaviors as well

as simple spatial partitions. In the LOT approach, Lui and

Chan (2002) have described the importance of finding a

good assignment of the participating clients to the available

servers with the aim to manage the workload and the

communication cost and to achieve better network perfor-

mance. This partitioning algorithm currently achieves very

good results for DVEs (Morillo et al. 2003b). Finally,

Morillo et al. (2005) presented a partitioning approach for

improving the performance of DVEs that is targeted to

keep all the servers in the system below a certain threshold

value of CPU utilization, regardless of the amount of net-

work traffic. Evaluation results show that this partitioning

method can improve the DVE system performance,

regardless of both the movement pattern of clients and the

initial distribution of clients in the virtual world. Further-

more, areas such as parallel and distributed simulation have

similar issues, such as load balancing of communication

and computation resources and communication cost

reduction. Some approaches perform load balancing at

runtime by taking into account the spatial locality in the

virtual world (Chen et al. 2005), while De Vleeschauwer

et al. (2005) and Verdickt et al. (2007) propose algorithms

to distribute the load by relocating the parts of the virtual

world at runtime.

In the direction of prediction techniques and algorithms,

there is a number of efforts that have been made con-

cerning mainly the prediction of entities movement within

the virtual environment. In particular, one type of path

prediction methods is based on the statistical method using

random process analysis and past navigation patterns (Liu

and Maguire 1996) while dead reckoning is another pop-

ular technique used in DVE systems to reduce bandwidth

consumption in transmitting the positional information of

moving objects (DIS Steering Committee 1998). Further-

more, the work presented from McCoy et al. (2004)

explores the human user behavior in multiplayer distrib-

uted media environments for determining a classification of

entities’ behavior to recognize and exploit statistically

similar patterns of behavior in order to preempt state

changes ahead of time and reduce latency problems.

Finally, the work presented by Chertov and Fahmy (2006)

describes an adaptive load balancing scheme for the server

core that exploits the fact that clients tend to cluster around

points of interest.

Research in the direction of load balancing for DVEs

has been very active with numerous approaches presented

and adopted. More specifically, existing work in the area of

virtual worlds’ partitioning shows that many approaches

achieve good partitioning schemes. The majority of these

approaches is based on the optimal handling of resources

(either network or computational) and the assignment of

the participating entities to the available resources.

Regarding the prediction techniques, the majority of

existing work is related to finding patterns of users’

behavior or predicting the path of avatars’ movement by

using different methods to analyze the interactions as they

occur in the virtual environment (Schroeder et al. 2006).

However, in their vast majority, the existing approaches

mainly focus on users’ presence within the virtual envi-

ronment, their actions, and the way they can be handled in

a more quantitative manner.

The work presented in this paper is based on findings of

existing approaches and advances the state-of-the-art by

Virtual Reality (2012) 16:187–203 189

123



taking into account interaction and communication aspects

that arise from objects’ presence in the virtual environ-

ment, their attributes, and the impact they have on the

users’ behavior. The work of Morillo et al. (2005) has

shown that in a DVE when even one of the servers reaches

100% of CPU utilization, the performance of the overall

networked server DVE system is importantly affected.

Taking this limitation into account, the objective of the

approach presented in this paper is twofold; it aims to

create initial partitions more viable and tolerant to changes

and also to achieve rebalancing in such a way that all

connected servers stay below the prohibitive saturation

point. More specifically, the load distribution is based on

objects’ and virtual world’s attributes aiming at identifying

the regions (partitions) with higher probability of being

overloaded and assigning these regions to the available

servers in an optimum way for extending the system’s

tolerance to changes. Regarding rebalancing, the approach

adopts the concepts of utilization thresholds for performing

changes as proposed in Morillo et al. (2005) and contrary to

the LOT approach (Lui and Chan 2002), which performs

rebalancing in regular time intervals.

3 Virtual world and entities’ attributes

In their vast majority, virtual environments comprise two

types of entities, avatars and objects. The avatars constitute

the graphical representation of the participating users,

while objects are non-autonomous entities of the virtual

scene. Interaction among the participating entities is a

central requirement for virtual environments. In both cases

of interaction, all changes either to avatars’ or to objects’

states need to be propagated to all affected users to ensure

persistence and awareness. In most cases, the avatars that

participate in a virtual environment are allowed to perform

certain types of actions. However, objects that constitute

the virtual environment may significantly differ on the type

of actions they support. Each of the objects of a virtual

environment could have a variety of attributes, such as

shape, color, position, size. The interaction of an avatar

with an object could be considered as the ability to modify

one or more of these attributes. Thus, based on the sup-

ported interaction level, the objects of a virtual environ-

ment could be categorized as follows:

• Static inactive objects: This type of objects does not

support any type of interaction with the participating

users. Examples of such objects could be walls, floors,

or other objects that are usually present to support the

shape, form, and structure of the virtual world or even

weather conditions, such as shadow or sun descriptions

that correspond to objects such as the sky and sun.

• Static active objects: In the case of these objects, the

avatars have the ability to interact with them and

modify one or more of their attributes, apart from their

position as these objects cannot be moved within the

virtual scene. Examples of such objects could be

machines, libraries, etc.

• Non-static active objects: This type of objects allows

the modification of all of their attributes, including the

position, by the avatars they interact with. Examples of

such objects could be books, swords, cups, etc.

Varvello et al. (2008) studied the social behavior of

human beings in a virtual context for Second Life along

with its global and local-scale characteristics in terms of

content. Their research showed that there are certain

regions of the virtual world that users tend to visit, which

are in most cases related to the objects each region

contains. Furthermore, the majority of virtual environ-

ments, either used for educational, entertainment, or busi-

ness purposes, simulate worlds with specific goals and

achievement paths. For example, in an educational virtual

environment, the user needs to follow certain paths in order

to gain knowledge on a subject. In a virtual game, the

player needs to accomplish a mission in order to win. In

this process, objects play an important role for supporting

the context of the scenario that the virtual world simulates.

They are, thus, placed and displayed within the virtual

world in a certain way, which is scenario-specific. Simi-

larly, each of the objects, based on its role for the scenario,

is assigned specific attributes. The approach presented in

this paper is driven by the objects’ attributes and the impact

they can have on users’ behavior.

For assessing objects’ presence, we introduce three

object attributes: (a) the Degree of Interaction (DoI),

(b) the Level of Importance (LoI), and (c) the Space of

Interaction (SoI). These attributes are presented in detail in

the subsections that follow.

3.1 Degree of interaction (DoI)

In a virtual environment, users have the ability to interact

with each other and with the objects of the world in order to

complete the ‘‘mission’’ that each environment simulates.

As mentioned above, the interactions in a virtual environ-

ment are strongly related to the number of actions supported

by the application. In a virtual world comprising only

avatars, the interactions are mainly driven by their social

behavior, which usually follows the principles of real-world

interaction. In a virtual environment comprising avatars and

objects, the users’ behavior can be driven by the purpose of

these objects and their role in the virtual world. Objects that

allow a number of actions to be performed on them have a

higher probability of constituting points of interaction with

190 Virtual Reality (2012) 16:187–203

123



the connected users of the DVE system. The number of

actions that can be performed on an object may vary and is

related with the modification of one or more of its attributes

(i.e., location, size, shape, color, texture).

We define as object’s i degree of interaction (DoI) the

number of actions that can be performed on this object.

Thus,

DoIi ¼
Xj¼n

j¼0

prj; ð1� pr� 5Þ ð1Þ

where i is the object, j the number of actions supported for

this object, and pr the priority, in terms of importance, of

each action, in relation to the objectives of the DVE. The

proposed approach takes into account this degree of

interaction in order to predict avatars’ distribution within

the virtual environment. The priority pr factor is included

in the calculation of the DoI attribute in order to include

cases of highly context-sensitive environments, where

some actions on the objects could be more important than

others. For example, consider a virtual laboratory for

medical experiments where the users can select a substance

among a variety of medical substances in order to prepare

virtual medicine. The users can move the substances in the

virtual laboratory (thus changing their position), dilute

them (thus changing their texture), and break them (thus,

changing their shape). If all actions were of equal impor-

tance, then the DoI of a medical substance object, i.e., a

vial would be three (as the number of actions). However, in

a context-aware medical environment, the dilution could be

the most important action that could be performed on the

object, followed by the breaking of the object. For this

case, the modification of the object’s texture could have the

maximum priority (i.e., pr = 5), the modification of its

shape could be lower (i.e., pr = 4), and finally the modi-

fication of its location could be of the lowest priority (i.e.,

pr = 1). Therefore, in such an environment, the DoI for

this object would equal to 10. Though in the majority of

virtual environments, all actions are treated the same way

and for these cases, the priority factor could be ignored.

The calculation of the DoI attribute in a virtual envi-

ronment could be realized with a script that parses the

virtual world file and calculates the supported actions for

each object. The results of this parsing can be assigned to

the 3D object as a new attribute (the DoI attribute). At this

point, it should be mentioned that the calculation of the DoI

attribute is strongly related to the programing language the

virtual world has been programed with.

3.2 Level of importance (LoI)

Let us consider a virtual environment that simulates the

museum of Louvre. Mona Lisa by Leonardo da Vinci is

among the most famous artworks of the museum, which

gathers a great number of visitors every year. In real life,

visitors can admire the painting but are not allowed to

touch it or perform any type of interaction with it. For

simulating this reality in the virtual Louvre, the painting of

Mona Lisa would be a static inactive object that the user

could view but would not be allowed to interact with. This

means that the DoI factor for this painting would equal to

zero. However, as in real life, users’ avatars would still

gather around the piece, thus transforming it to a point of

interest for the virtual environment. For capturing the

importance of objects, we introduce the Level of Impor-

tance (LoI) attribute for each object of the virtual envi-

ronment. The LoI factor of an object indicates whether an

object is often visited by the participating users. The LoI

values of objects could be used as indicators for users’

movement and behavioral trends. Contrary to the DoI value

of an object which is static, the LoI value changes over

time according to users’ preferences. Tracking of the

objects’ LoI attribute can provide useful information for the

virtual world. More specifically, the objects’ LoI values can

highlight areas that need special resource handling either

due to overcrowding or underpopulation.

The calculation of the LoI value is as follows: we ini-

tially assume that at time T0 all objects of the virtual world

have the same LoI. We set this initial value to 0. This value

needs to be increased or decreased according to users’

behavior. We set the scale for the LoI value within a range

from 0 to 10, with 10 declaring an object that is of high

importance to the virtual world. An object of the virtual

environment would be the most important if all users

gathered around it. However, for large-scale virtual envi-

ronments, the number of concurrent users can be of the

order of thousands and there is no realistic probability that

such a high number of users could gather around a single

object. Furthermore, the DVE system can be comprised by

servers with different technical specifications, in terms of

processing power, memory, etc. This heterogeneity of the

system’s servers defines the maximum number of concur-

rent users that each server can support. We define this

maximum number as Siavmax. This maximum number is

also strongly related to the CPU utilization of each DVE

server. More specifically, the presence of any number of

users exceeding the Siavmax threshold would lead to 100%

of CPU utilization and the performance of the DVE system

would be degraded (Morillo et al. 2007). We, therefore,

consider that the LoI value of an object would be set to 10

if for a given period of time (t), there were Siavmax users

around it. For a real DVE system, this is the worst-case

scenario as a single server would be dedicated in serving

the demands around one single object.

Based on the above, we define a decision matrix for

setting the values of the LoI parameter as follows:

Virtual Reality (2012) 16:187–203 191

123



The selection of the time period t that will be used for

monitoring the changes of the LoI factor depends on the

type of the virtual environment and the detail of informa-

tion we need to acquire. A longer time period t can provide

better results for identifying busy or idle regions of the

virtual environment over time. A shorter time period can

provide more accurate results for virtual environments that

follow deep and major changes over short periods of time.

In most cases, the time period t can be shorter at the ini-

tialization of the virtual world and when knowledge has

been maintained on users’ preferences, the time period

could be prolonged.

At this point, it should be mentioned that in cases that

the designers of the DVE systems have indications or

actual data for the way that the users will initially behave in

the virtual environment, they can themselves provide some

initial values for the LoI parameter. Though these data and

predictions could assist as a starting point for the values

of objects’ LoI because, as mentioned, the value of this

attribute changes dynamically and shapes itself so as to

better predict actual users’ behavior as this behavior

changes over time.

3.3 Space of interaction (SoI)

Users in the DVE are assigned the Area of Interest (AoI)

attribute. The AoI represents the region of the virtual world

within which the user’s avatar needs to be aware of all

entities and activities that take place, so as to assure

awareness and persistence. Therefore, if an activity hap-

pens in the AoI region, the user state needs to be updated.

Similarly, we introduce the term Space of Interaction for a

given object (SoI). This attribute defines the area of the

virtual scene, within which the objects are interactive

among themselves or with the avatars of the DVE system.

Figure 1 illustrates the concept of SoI. Even though the

object is in the line of sight of both avatar A and avatar B,

it is only avatar B that can interact with this object. The SoI

of an object is related to its size in the 3D virtual scene.

In particular, larger objects tend to have wider areas of

interaction, while for small objects, this area is narrower.

The SoI factor could constitute a useful parameter and

filtering mechanism for the assignment and/or reassign-

ment of entities to the servers of the DVE system. More

specifically, if the difference of an object’s SoI with an

avatars location is small, then the avatar will be able to

interact with this object.

If during rebalancing this object and the corresponding

avatar are assigned to different servers, inter-server mes-

sages should be sent for synchronization and persistence

purposes. Therefore, the object and the avatar should be

kept in the same server in order to avoid increased com-

munication load.

3.4 Virtual world’s cell division

For the spatial distribution of the virtual environment, the

world is divided in equal-sized square cells. The number of

cells is related to the average diameter DA of avatars’ Area

of Interest (AoI). More specifically, the calculation of the

cell size equals to DA
2. The selection of DA

2 as the cell size

derives from the need to limit cases that the AoI of avatars

intersects with more than one cells, as presented in Fig. 2a

(cell edge is 1 m and DA is 2 m). In particular, if the DA of

the avatars is larger than the cell’s edge, the avatar has

visibility of actions that take place outside its cell. It will,

therefore, need to be notified for events that take place not

only in the cell that it is located but also for events that take

place in neighboring cells. Consequently, if the neighbor-

ing cells are located in different servers, then inter-

server communication is required for maintaining avatar

awareness.

Therefore, by selecting DA
2 as the cell size, the proba-

bility for the intersection of the avatars AoI with neigh-

boring cells is reduced (Fig. 2b) with the cell edge set to

4 m and DA set to 2 m)) and so is the need for message

exchange among neighboring cells and servers.

At this point, it should be mentioned that hexagon

neighborhoods that are used in literature (Macedonia et al.

1995; Shirmohammadi et al. 2008) can also be applied for

the division of the virtual world.

3.5 Virtual world’s entry points and hotspots

In the majority of virtual environments, there are certain

regions/areas where users are transferred when entering the

virtual world or when transported from one place to

another. In these areas, either they comprise objects or not,

there is often a high concentration of avatars. Although

users do not tend to stay for long in entry point areas, these

cells can provide useful information on users’ movement.

More specifically, when avatars enter the virtual environ-

ment or are transported from one point to another (entry

point), they will most likely move toward neighboring cells

of these entry points. This information combined with the

effect that DoI, LoI, and SoI play in avatars’ behavior

Fig. 1 Objects’ space of interaction

192 Virtual Reality (2012) 16:187–203

123



(movement and interaction patterns) helps us identify and

mark areas with high user concentration. We introduce and

define these areas with the term hotspot. Hotspot areas, as

defined in the proposed approach, add workload to the

servers and should be therefore cautiously handled both

during load distribution and rebalancing.

4 Distribution approach

This section presents the distribution approach that is based

on the exploitation of the objects’ attributes, described in

the previous section, for achieving effective workload

distribution (below the CPU threshold) and minimized

communication cost among the servers of the DVE system.

In particular, the basic concept of the algorithm described

is based on the following observations:

• Firstly, in virtual environments, users tend to visit

areas, where actions and interactions are allowed

(http://playnoevil.com/serendipity/index.php?/archives/

483-Linden-Labs-Second-Life-Server-Architecture-

Questions.html).

• Furthermore, the majority of DVEs developed, which

constitute simulations of real or imaginary worlds, are

designed for supporting certain scenarios. Thus, the

virtual world and the objects included are placed in

ways that facilitate the users in performing these

scenarios.

From the above, it becomes clear that the presence of

objects within the virtual world is of high importance for

the behavior and actions of the users that join the DVE

system. Due to the fact that this behavior is driven by each

user’s individual preferences, interests, and characteristics,

the prediction of users’ behavior becomes challenging.

However, based on the contextual purpose of objects

within the virtual world and the attributes each of them has,

they could be effectively exploited for designing behav-

ioral patterns, which in turn can be used for optimizing the

overall system performance. Based on these observations,

the subsections that follow present the distribution

approach and the actual algorithm.

4.1 Distribution process and object’s attributes

The objective of load distribution in a DVE system is the

efficient assignment of the virtual world and its entities to

the available servers of the system in order to maintain a

good overall performance. The efficient assignment is

related both to managing the workload among the servers

as well as to minimize the communication cost among

them. The communication cost, used throughout this paper,

is related to the messages that different servers need to

exchange for maintaining the awareness of all connected

users’ views. Given the fact that the network and the

availability of its resources can introduce delays that may

affect the quality of the user experience, it is of vital

importance that the communication cost of the total system

is minimized.

Initially, all cells rely in one server. Each cell can

comprise a number of objects. The workload for handling

each cell depends both on the number of objects in this cell

as well as on DoI and LoI values of these objects. More

specifically, the number of objects increases the workload

that each cell introduces to the server, while DoI and LoI

‘‘forecast’’ the workload and communication cost that each

object will introduce to the server when users will interact

or gather around it. Furthermore, DoI, LoI, and SoI could

be considered as indicators for avatars’ behavior (in terms

of movement and interaction) within the virtual environ-

ment. The DoI and LoI values of an object could be used as

prediction parameters. More specifically, when a number

Fig. 2 Effect of cell size in

relation to the AoI

Virtual Reality (2012) 16:187–203 193

123

http://playnoevil.com/serendipity/index.php?/archives/483-Linden-Labs-Second-Life-Server-Architecture-Questions.html
http://playnoevil.com/serendipity/index.php?/archives/483-Linden-Labs-Second-Life-Server-Architecture-Questions.html
http://playnoevil.com/serendipity/index.php?/archives/483-Linden-Labs-Second-Life-Server-Architecture-Questions.html


of objects is within the AoI of an avatar, then the proba-

bility of the avatar to select the object that it will visit and

interact with is strongly related to the DoI and LoI of these

object. Finally, the SoI parameter of an object indicates

‘‘when’’ an interaction between this object and an avatar

can be realized.

As mentioned above, apart from an effective workload

distribution of the virtual world to the servers of the sys-

tem, another important factor for the efficient partitioning

is the minimization of the communication among partici-

pating servers. To address this issue, the distribution pro-

cess takes into account the entry points and hotspot areas

formulated around these entry points. More specifically,

the algorithm, when distributing cells to the existing

servers keeps the hotspot area, that is the entry point and

the neighboring cells, on the same server. By keeping the

hotspot areas together, the communication cost is reduced

compared to the cost that the avatars’ movement and

interactions would produce, if these cells relied in different

machines.

At this point, it should be mentioned that the rational of

the algorithm is to mark the ‘‘predicted’’ crowded places

within the virtual environment and assign them to the

available servers so that workload will be balanced. Thus,

the approach aims at assigning to each available server of

the system at least one hotspot area.

4.2 DVE spatial distribution algorithm

As mentioned in the previous section, the distribution

algorithm is a two-step process. In the first step, the hotspot

areas of the virtual environment are located and formed. In

the second step, these areas are assigned to the servers of

the system.

Step 1 In the first step of the spatial distribution algo-

rithm, the identification and formulation of the hotspot

areas take place. The identification is based on the entry

point cells of the virtual world and of their neighbors.

More specifically, initially, the workload of all cells is

calculated based on the number and attributes of the

objects they contain. After the identification of the entry

point cells, the neighbors of these cells are identified and

are linked with the entry point cells and the hotspot area is

formulated. As already mentioned, the aim is to assign at

least one hotspot area to each of the available servers. For

handling cases that the entry point cells are less than the

available number of servers, the algorithm creates a

‘‘virtual’’ hotspot area. This creation is based on the

selection of the cell with the maximum load (among the

remaining cells). Similar to the entry point cells, a hotspot

area is then formulated around the most loaded cell. The

identification and formulation process of the virtual hot-

spot areas are depicted in Fig. 3.

Step 2 In the second step of the algorithm, the actual

distribution of the environment to the servers takes place.

The distribution follows a round robin approach starting

from the entry point cells that are assigned one by one to

the servers. The step that follows is the assignment of the

entry point’s neighbors to the server that the entry point is

located following a descending order. When all hotspot

areas’ cells are assigned to the servers, the algorithm pro-

ceeds with the remaining cells. These cells are once again

selected on a descending order (based on the cell load). If

these cells are neighbors to one or more cells of an already

assigned hotspot area, the algorithm selects the server with

the minimum load among them and assigns this cell to this

server. When this step is completed and for any remaining

cells, the algorithm places them one by one to the servers,

selecting each time the one with the minimum load.

At this point, it should be mentioned that in dynamic

virtual environments the state of the virtual world is

continuously changing as avatars join or leave the virtual

space. It is, therefore, very difficult to find a partitioning

scheme that could ensure a good performance throughout

a long period of time, without the need of rebalancing the

workload and communication cost among the servers and

reassigning entities. However, the ‘‘long period of time’’ is

scenario-specific for the DVE system. For example, in a

virtual world that simulates a virtual battlefield, soldiers

move and run, thus performing a large number of inter-

actions. In this case, the changes in the state of the virtual

world would be more frequent and severe than in the case

of a virtual classroom, where users are seated, attending a

lecture. Therefore, in the case of a virtual battlefield, a

long period of time could be on the order of 10 min while

in the case of the virtual classroom, it could be on the

order of 30 min. The distribution approach presented in

this paper proposes partitioning of the virtual environ-

ment, which aims at finding a good partitioning scheme

that will ensure efficient performance of the system for

longer time intervals after users’ avatars enter the virtual

environment as well as the minimization of the reassign-

ments needed.

5 Rebalancing and the probability of interaction

The initial distribution of the virtual world can play an

important role for the future reassignment needs of the

system entities to the available servers. The dynamically

changing state of the virtual environment, with users joining

and leaving at will calls for future rebalancing needs. In the

LOT approach (Lui and Chan 2002), the rebalancing is a

two-step process: a workload balancing among the servers

of the system and a communication refinement step for

the further reduction in the communication cost. In the

194 Virtual Reality (2012) 16:187–203

123



workload rebalancing or linear rebalancing, the algorithm

creates a linear problem for which it aims at finding the

optimal solution. However, not all systems provide a solu-

tion and furthermore how effective can a balanced workload

distribution objective be?

In distributed systems, the servers available can signif-

icantly differ on their processing capabilities in terms of

CPU and memory. Thus, a server of the system might be

able to handle up to 100 concurrent users while another one

maybe limited to 30. The heterogeneity of the servers that

comprise the system is an important factor to be taken into

account when considering the issues of load balancing and

distribution, as there are cases that the workload among the

servers is equally balanced, but for one server, this load

could be easy to handle while for another one, it could be

an overload. The equally balanced workload could only be

effective in cases of homogenous systems, as all machines

available are of the same type and with similar capabilities.

For handling this issue, the proposed approach exploits

performance thresholds, as proposed in (Morillo et al.

2005) different for each server based on its processing

capabilities and resources.

Furthermore, the LOT approach (Lui and Chan 2002)

performs rebalancing every fixed period of time (standard

time intervals) in order to ensure balanced load distribution

among the DVE system’s servers. Though, there might be

cases that the number of concurrent users in the system is

low and the system servers can handle the generated load

effectively. For these cases, time-based rebalancing would

lead to reassignments of entities among the DVE’s servers,

when there is no actual need for that, thus affecting the

state of all servers. In real DVE systems, the interventions

and updates on the state of the DVE system’s servers

should be minimized in order to avoid possible impacts on

the connected users’ experience and smoothness of the

overall DVE system’s operation. These cases are avoided

with the adoption of performance thresholds, as rebalanc-

ing takes place only when needed.

The rebalancing approach presented in this paper unifies

in one step procedure the load balancing and communica-

tion refinement in order to achieve performance optimi-

zation and system consistency. The rebalancing exploits a

new parameter denoted as Probability of Interaction (PoI)

for each of the avatars. This parameter as well as the

Fig. 3 Identification and

formulation of hotspot areas

Virtual Reality (2012) 16:187–203 195

123



rebalancing process is described in the paragraphs that

follow.

5.1 Probability of interaction

An entity (object or avatar) can be viewed by a given

avatar when it is located within the AoI of this avatar.

Given the object attributes described in previous sections,

DoI and LoI parameters can be used as indicators for

identifying the objects that the avatar will tend to interact

with from the set of feasible objects included in its AoI.

Initially, the approach exploits the attributes of the objects

and defines a probability of interaction for each one of

them with the specific avatar. As we have already men-

tioned, the users of a DVE system tend to gather among

objects based on their DoI and LoI values. Thus, the higher

the value of these parameters, the higher the probability of

an interaction between avatars and objects will be. Fur-

thermore, it is noted that users tend to visit objects located

closer to them. Therefore, the closer the object is, the

higher the probability of an avatar interacting with it.

Based on the above, we have defined the Probability of

Interaction of an avatar with an object as the normalized

value of those parameters (ranging from 1 to 10) with

regard to the distance between the avatar and the object, as

shown in (2).

PoI ¼ w1� DoI þ w2� LoI

dist
ð2Þ

The objects that a virtual environment contains may

significantly vary according to the scenario that each world

simulates. In a virtual campus, the objects’ attributes will

have a different importance when compared to the objects

of a virtual battlefield. Thus, in some cases, interactivity

might be the most important factor while in others, the

importance of an object might be the most meaningful

parameter. To handle this diversity, in the PoI definition,

attributes DoI and LoI are calculated based on weights w1

and w2. In case of equal importance of DoI and LoI for

objects of a virtual environment, both w1 and w2 are equal

to 0.5.

Figure 4 presents an example for the different PoI val-

ues inside the AoI of an avatar. During the reassignment of

avatars to the servers, the PoI parameter can be used as an

estimate of the communication cost that will be introduced

if a given avatar is moved from one server to another. In

particular, for each ‘‘candidate for moving’’ avatar, the

approach calculates the probability of interaction of this

avatar with the entities of the server it is located (denoted

as origin server) as well as the probability of interaction

with the entities of the server it can be moved to (denoted

as destination server). This probability of interaction is

calculated as follows:

avatarx si poi ¼
Xj¼n

j¼1

PoIxj ¼
w1� DoIj þ w2� LoIj

distxj

� �

ð3Þ

The rebalancing process described in the subsection that

follows uses the PoI parameter for identifying the entities

that need to be assigned in order to improve the

performance of the DVE system.

5.2 Rebalancing algorithm

The rebalancing process takes place when one of the sys-

tem’s servers exceeds a certain threshold. The threshold is

defined by the system administrators and is related to the

CPU utilization of a server for a certain period of time. As

mentioned earlier, the results provided in (Morillo et al.

2007) show that if one of the system servers reaches 100%

of CPU utilization, then the performance of the whole

system is downgraded. Based on this, the application

designers could set this threshold to a lower value on the

order of 80–90%. The selection of a threshold value for the

rebalancing process instead of defined time slots (as real-

ized in Lui and Chan 2002) could avoid the application of

algorithms when rebalancing is not really necessary

and furthermore, preserve system performance if a server

becomes overloaded before the predefined time that

rebalancing takes place. The triggering of the rebalancing

process can be realized with the SNMP protocol (http://

tools.ietf.org/html/rfc1908), which constantly monitors the

CPU utilization of all servers available.

When rebalancing is triggered, the algorithm examines

the list of servers with which the overloaded server already

communicates, in order to identify whether one of them

could be used as candidate for the rebalancing. The iden-

tification of an already collaborating server is performed to

avoid cases where the reassignment of an avatar to another

server introduces communication cost among the two

servers, which did not exist before the reassignment. When

a neighboring server is identified, the algorithm creates a

list with all border avatars of the overloaded server. As

border avatars we define those avatars, whose AoI inter-

sects with entities (objects and avatars) that are located in a

different server. For each border avatar, the following

values are calculated:

• The ‘‘forecasted’’ workload that the avatar will intro-

duce to the ‘‘destination’’ server: this value provides an

estimation of the workload that the avatar and its

interactions will introduce to the ‘‘destination’’ server

and is used in order to identify whether the destination

server is able to handle it or not.

• The Probability of Interaction (PoI) of the border avatar

with the entities of the ‘‘origin’’ server: this value is an

196 Virtual Reality (2012) 16:187–203

123

http://tools.ietf.org/html/rfc1908
http://tools.ietf.org/html/rfc1908


indicator of the communication cost that will be

introduced if the border avatar is assigned to the

destination server.

• The Probability of Interaction (PoI) of the border avatar

with the entities of the ‘‘destination’’ server: this value

is an indicator of the communication cost between the

origin and the destination server that will be introduced

if the border avatar remains to the origin server.

After calculating the above for all border avatars of the

overloaded origin server, the algorithm creates a descend-

ing list based on the values of the probability of interaction

to the destination server. The reason behind the selection of

this value as the prime value is based on the fact that apart

from workload de-loads, we need to move avatars that

introduce or are probable to introduce the highest com-

munication cost. When the list is prioritized, for each of the

border avatars with the highest communication value, the

algorithm makes a comparison with the existing probability

of interaction value. If the destination value is higher than

the origin, the capability of the destination server is

examined in order to identify whether it could accept the

workload or not. To define the capability of the server,

another threshold is introduced, denoted as ‘‘operating,’’

which indicates that a server is able to process additional

workload. If the destination server performance is below

the operating threshold, the avatar is moved to the desti-

nation server. As mentioned above, at the beginning of the

rebalancing process, the algorithm checks among the list of

servers with which it already communicates (exchanges

messages) in order to avoid the establishment of additional

unnecessary inter-server communication. However, for

handling cases where the overloaded server does not

exchange messages with other servers, the algorithm

searches among the other servers and tries to find a can-

didate able to handle the additional workload.

Based on the above, the steps of the rebalancing algo-

rithm are depicted in Fig. 5. The algorithm described above

performs all the necessary steps for identifying and

selecting the best possible solution for rebalancing, based

both on the system’s criteria (such as the CPU utilization)

and on the criteria that the presence of avatars and objects

introduces. At this point, it should be mentioned that the

rebalancing process and in particular the selection of the

avatars that will be re-assigned is based on the PoI

parameter, which stands as an indicator for the system

communication cost.

6 Validation

For validating the efficiency of the approaches, the load

distribution along with the rebalancing algorithm has been

applied to a virtual environment. The environment runs on

three servers with the same capabilities in terms of com-

puting power (homogenous system). For the validation of

the approach, the following are presented:

• The results of the algorithm for the spatial distribution

of the virtual environment These results present the

spatial assignment of the virtual environment by

exploiting the objects’ attributes and demonstrate the

distribution of cells and entities (objects) to the servers

of the system after the application of the spatial

distribution algorithm. In addition, the steps followed

for the validation scenario are presented along with the

distribution of workload among the servers when

distribution is completed.

• The results in terms of workload and communication

cost of the system for the rebalancing approach These

results are provided to validate the rebalancing effi-

ciency when one of the system servers reaches the

utilization threshold. In this direction, for each of the

scenario tested, the state of the virtual environment is

presented when rebalancing is triggered (in terms of a

snapshot of the virtual world). To demonstrate the

rebalancing process, we provide the initial distribution

of the virtual environment, the state of the virtual world

when rebalancing is triggered, and finally the state and

cost of the system when rebalancing is completed.

Fig. 4 Calculation of PoI

Virtual Reality (2012) 16:187–203 197

123



For the validation, we consider a small-scale virtual

environment with dimensions 4 9 4. The virtual environ-

ment consists of 23 virtual objects and 28 avatars. The

objects of the virtual environment are marked with poly-

gons, while the values in these polygons represent the nor-

malized value of DoI and LoI for each object. In these

experiments, we consider a virtual environment that the user

can interact with the virtual objects that are placed in the

virtual scene for supporting specific objectives. This means

that both DoI and LoI attributes of objects play an important

role and are therefore of the same importance for the virtual

environment examined. This means that their weight is

equal and is set to 0.5 for each of them (w1 = w2 = 0.5).

We also consider that the average workload that an object

introduces to a server is on the order of 5 units while for the

avatars, it is set to 10 units, the average avatar diameter DA is

1, and the number of servers available equals to 3. Finally,

for the CPU thresholds, we define that rebalancing will take

place when a server exceeds 90% of utilization, while the

CPU operating threshold is set to 65% (Table 1).

The application of the algorithm presents the case where

all entry points share common neighbors. For this case, the

Fig. 5 Representation of the

rebalancing algorithm

198 Virtual Reality (2012) 16:187–203

123



process that takes place is the following: We note that the

number of entry points available is 2 (C5 and C15), while

the number of existing servers is 3. Thus, we need to create

an additional ‘‘virtual’’ entry point. From the remaining

cells, we select the one with the highest workload, which is

C13. Since we have created at least one entry point to be

assigned to each server, we start the formulation of the

hotspot areas and the assignment of the hot spots cells to

the available servers (using round robin). The step that

follows is the calculation of the total number of neigh-

boring cells for each hot spot as well as to give priority

(when assigning the neighbors) to entry point with the

smaller number of neighbors (so as to ensure that workload

will be distributed and all entry points are assigned with

neighbors). The results of this application of the algorithm

are presented in Fig. 6a, while the steps followed are

shown in Table 2.

After the spatial distribution of the virtual environment

by exploiting objects’ attributes, the experiment examines

the effect of the rebalancing process. The triggering of the

rebalancing step takes place when one of the servers

exceeds the defined CPU threshold. In the case of the

presented scenario, Server 3 is the one that triggers the

event. Figure 6b presents the state of the virtual environ-

ment when the threshold is reached and rebalancing is

called. At this moment, there are four border avatars with

objects within their AoI located in different servers.

More specifically, as presented in Fig. 6b, border_ava-

tar1 has 2 objects in its AoI located in Server 3 and 1 object

within its AoI located in Server 2, border_avatar2 has 1

object in its AoI located in Server 3 and 1 object within its

AoI located in Server 2, border_avatar3 has 1 object in its

AoI located in Server 3 and 1 object within its AoI located

in Server 1, and finally, border_avatar4 has 1 object in its

AoI located in Server 3 and 1 object within its AoI located

in Server 1.

As described in the rebalancing algorithm, all border

avatars of the overloaded server, denoted as origin server,

are selected. For each of them, the PoI values are calcu-

lated both for the origin (server 3) and the candidate

(Server 1 and Server 2) servers. These PoI values are then

sorted from high to low, as shown in Table 3.

Based on the comparison of the PoI between the desti-

nation and origin server in combination to the capability of

the destination server to accept additional workload

(si_CPUop_thr), border avatars are reassigned among the

system servers. It should be mentioned that in the column

‘‘Workload’’ of Table 3, the workload that each avatar

introduces to the server is calculated. In the experiments

conducted, for all scenarios tested, we have taken an

average avatar workload of the order of 10 units. Thus, this

column could be neglected from the sorting table. How-

ever, we keep this column in all experiments descriptions

in order to ensure that the calculations are clear to the

reader. The cost of the virtual environment in terms of

workload for each of the existing servers and the com-

munication cost among these in the states before and after

rebalancing are presented in Table 4. As it can be noticed

from the above table, the rebalancing process achieved the

Table 1 Decision matrix for LoI calculation

Range of number of avatars visited object

within period t
loix

ðloiðx�1Þ�Siav max

loimax
þ 1� av visits� loix�Siav max

loimax

x ¼ 0

………… ….

ðloiðx�1Þ�Siav max

loimax
þ 1� av visits� loix�Siav max

loimax

x ¼ 10(xmax)

Fig. 6 Spatial assignment

(a) and triggering state (b)

Virtual Reality (2012) 16:187–203 199

123



distribution of workload in such a way that all connected

servers are below the maximum threshold defined. The

most important aspect, however, is the important reduction

in the communication cost among the participating servers,

which is of vital importance for the DVE system.

7 Experiments

After describing and validating the proposed object-ori-

ented spatial distribution approach, we present the experi-

ments conducted for a large-scale DVE. The results

demonstrate that the main improvement was the reduced

communication cost. Furthermore, the load distribution and

rebalancing approach achieved balanced workload among

the system’s servers in terms of CPU usage, without ever

reaching the prohibitive saturation point of 100% of CPU

utilization for any individual server over the duration of the

experiments. The experiments were conducted with the

STEADiVE (Simulation Tool for Evaluating and Assessing

Distributed Virtual Environments) tool (Bouras et al.

2009), which is a simulation tool implemented with Simul8

(Simul8 Simulation Software). The STEADiVE tool can be

used by designers of DVE systems for simulating the

performance of their approaches under different scenarios.

In order to examine the performance of the object-ori-

ented spatial distribution approach, we compared it with

that of the LOT approach (Lui and Chan 2002) that is

proven to provide good results for large-scale DVEs. In

short, the LOT approach follows a three-step process by

first distributing the virtual environment into the available

servers of the system using a Divide and Conquer tech-

nique. In the step that follows for a defined time interval, an

algorithm checks the workload on the servers and performs

all the necessary re-assignments of entities so that a nearly

equally balanced workload is achieved. The third and last

step of the approach encounters the exchange of some

entities among the servers for the refinement of the com-

munication cost.

7.1 Experiments’ setup

The experiments conducted consider a DVE system com-

prising of 8 servers. The DVE system does not correspond

to an actual DVE system (i.e., Second Life, WoW, or

similar application). It is a DVE generated through simu-

lation using the STEADiVE tool mentioned above. All of

the servers available have the same computing power and

are dedicated in serving the DVE system requests (no

background applications are running). For comparison

reasons, the setup of the DVE system adopts the values and

characteristics of a large-scale DVE as defined and evalu-

ated by the LOT approach (Lui and Chan 2002). In this

direction, the experiments consider a large virtual world

with a dimension of 25 9 25 units with the total number of

avatars equals to 1,500. The radius of the AoI of each

avatar is equal to 0.5 while the number of objects within

the virtual environment equals to 900 and these objects

are uniformly scattered within the virtual environment.

Furthermore, the virtual environment comprises 18 entry

Table 2 Workload assignment for the spatial distribution

Steps Server 1 Server 2 Server 3

1 C15 C13 C5

2 C10 C8 C0

3 C14 C12 C4

4 C11 C9 C6

5 C2

6 C1

7 C7

8 C3

Workload 46.0 45.0 50.0

Table 3 Calculation and

sorting of PoI values
Workload S1_poi S2_poi S3_poi

(origin)

Destinatioon server compatibiblity Decision

border_avatar4 10 39,28 17,50 H Move ?

border_avatar1 10 34,83 22,75 H Move ?

border_avatar2 10 20 34,51 14,58 H Move ?

border_avatar3 10 33 20 x Remain

Table 4 Rebalancing effect on system cost

Before

rebalancing state

After

rebalancing state

Workload

Server 1 136 156

Server 2 145 155

Server 3 180 150

Communication cost

Server 1–server 2 21 12

Server 2–server 3 18 14

Server 1–server 3 25 14

200 Virtual Reality (2012) 16:187–203

123



points. For the OO Spatial approach, the CPU_max

threshold is set to 80% while the CPU_operating threshold

is set to 40%. For the LOT approach, rebalancing takes

places every 10 min. The experiments run for a period of

180 min (3 h) and approximately 1,000 runs were exe-

cuted. The results presented correspond to the average

values obtained from these runs.

The main parameters monitored throughout the experi-

ments were the workload of the available servers and the

communication cost among them. Regarding the calcula-

tion of the communication cost, for simulation purposes, we

consider an average message size of x units throughout the

experiments conducted. Thus, the communication cost in all

experiments and figures presented reflects the number of

messages exchanged among the interconnected servers.

Furthermore, another factor to be taken into account in

DVEs is the latency of the system to users’ requests. As in

DVEs latency cannot be measured properly, the round-trip

delay (RTT) or ASR (average response time) is used instead

(Morillo et al. 2007). For the experiments conducted, the

results obtained for the average ASR are compared to the

250 ms ASR threshold used in the literature.

7.2 Experimental results

Figure 7 presents the communication cost for the LOT and

the object-oriented spatial distribution approach. The figure

clearly demonstrates that the communication cost for the

OO spatial approach is significantly reduced when com-

pared to the communication cost introduced by the LOT

approach. Given that DVEs are strongly dependent on the

underlying network characteristics (i.e., delay, delay jitter,

throughput), the reduction in the messages exchanged

among the system’s servers is of great value for the via-

bility, scalability, and performance of the system. The

higher communication cost of the LOT approach is due to

the fact that avatar–object interactions have not been

considered during the distribution. More specifically, in

the avatar-based distribution of the LOT technique, the

algorithm aims at minimizing the inter-server messages

among avatars that rely on different partitions. Even though

the avatar-to-avatar communication may be reduced, the

approach fails to address the communication cost generated

by avatar–object interaction.

Given the high concentration of objects in the experi-

ments conducted compared to the avatars’ number, the

LOT approach presents significantly higher communication

cost due to the omission of object entities.

Another major difference between the LOT and the OO

spatial distribution approaches is the triggering of the

rebalancing process. In real DVE systems, the interventions

and updates on the state of the connected servers should be

minimized in order to avoid possible impacts on the con-

nected users’ experience and smoothness of the overall

system’s operation. In the LOT approach, rebalancing

takes place after a defined period of time (every 10 min in

the experiments conducted). For the OO spatial distribution

approach, rebalancing takes place only when one or more

of the servers reach the CPU performance threshold.

Figure 8 presents the trigger of the rebalancing for the two

approaches over time. From the results, it can be seen that

the LOT approach performs 18 rebalancing processes on

the DVE system when the LOT approach performs only 7.

The results for the OO spatial approach show that the

initial load distribution of the virtual environment based on

object’s attributes achieves a distribution scheme that is

viable for longer time intervals. Furthermore, it can be seen

that as time passes by the time intervals between the

rebalancing for the OO spatial approach are prolonged. As

mentioned in the previous section, objects’ LoI factor

changes dynamically based on users’ behavior and pref-

erences. Tracking of objects’ LoI can provide useful

information for the virtual world as it can highlight areas

that need special resource handling. Thus, the prolongation

of the time intervals between rebalancing could be

explained by the fact that the DVE system learns over time

users’ behavior and uses this knowledge for future load

distribution and rebalancing.

Fig. 7 Communication cost for the LOT and the OO spatial approach

Fig. 8 Trigger of rebalancing for the LOT and the OO spatial

approach

Virtual Reality (2012) 16:187–203 201

123



As mentioned earlier, a factor to be taken into account in

DVEs is the latency of the system to users’ requests. As in

DVEs latency cannot be measured properly, the round-trip

delay (RTT) or ASR (average response time) is used

instead (Morillo et al. 2007). The average ASRs in milli-

seconds obtained for the experiments conducted are pre-

sented in Table 5.

Based on the work presented by Henderson and Bhatti

(2003), if the ASR is not greater than 250 ms, then users

perceive that the system responds quickly. The results

obtained from our experiments (Table 5) illustrate that

both approaches achieve an average ASR below the

250 ms threshold. Furthermore, the results show that the

OO spatial distribution approach achieves better results

compared to the LOT one.

8 Conclusion

This paper identifies the importance of objects within DVE

systems and describes a way that objects’ attributes can be

exploited for handling performance issues that DVE sys-

tems need to address. More specifically, the objects’ attri-

butes are introduced along with the impact they can have

on users’ behavior within the virtual environment. These

attributes are then used for assisting both the distribution of

the virtual world and the rebalancing process when rebal-

ancing is needed. Throughout this paper, objects’ attributes

could be proven of high importance for predicting users’

behavior within the virtual world and for ‘‘forecasting’’ the

dynamically changing needs of the DVE system.

The object-oriented spatial distribution approach pre-

sented is based on the fact that an effective initial parti-

tioning of the virtual environment could make the system

more tolerant to future changes as it can be viable for longer

time intervals, so that rebalancing needs are reduced. For

the distribution, the approach exploits the objects’ presence

and virtual world characteristics in order to identify and

forecast the most demanding regions of the environment, in

terms of resources needed, and to assign them to the servers

available. However, independent of the efficiency of the

initial partitioning rebalancing is always needed due to the

dynamic nature of DVEs. In this direction, the paper pre-

sents a rebalancing approach that combines scenario-spe-

cific aspects of entities’ presence to identify their optimal

assignment to the servers of the system.

In order to evaluate the efficiency of the proposed

approach, experiments were conducted in large-scale

environments and the approach was compared to an avatar-

based technique. The results of the experiments clearly

showed that the major contribution of the approach is

significant reduction in communication cost. Given the fact

that DVEs depend strongly on the underlying network

characteristics, the reduction in the messages exchanged

among the system’s servers is of increased value for the

viability, scalability, performance, and overall communi-

cation efficiency of the DVE system. Furthermore, the

proposed approach achieved an effective load distribution

scheme for longer time intervals without reaching the sat-

uration point of 100% of CPU utilization.

References

EVE Online. http://www.eveonline.com. Accessed 29 May 2011

Second Life. http://secondlife.com/. Accessed 29 May 2011

Simul8 Simulation Software. http://www.simul8.com. Accessed 29

May 2011

Beatrice N, Antonio S, Rynson W, Frederick L (2002) A multi-server

architecture for distributed virtual walkthrough. In: Proceedings

of the ACM symposium on virtual reality software and

technology, Hong Kong, China

Bouras C, Giannaka E, Tsiatsos T (2009) A framework model for

DVEs using SIMUL8. In: Proceedings of the second interna-

tional conference on simulation tools and techniques (SIMU-

TOOLS), Rome, Italy

Chen J, Wu B, Delap M, Knuttson B, Lu H, Amza C (2005) Locality

aware dynamic load management for massively multiplayer

games. In: Proceedings of principles and practice of parallel

programming (PPoPP). pp 289–300

Chertov R, Fahmy S (2006) Optimistic load balancing in a distributed

virtual environment. In: Proceedings of the 16th ACM interna-

tional workshop on network and operating systems support for

digital audio and video (NOSSDAV), pp 74–79

De Vleeschauwer B, Van Den Bossche B, Verdickt T, De Turck F,

Dhoedt B, Demeester P (2005) Dynamic microcell assignment

for massively multiplayer online gaming. In: Proceedings of

Netgames 2005, New York, USA

DIS Steering Committee (1998) IEEE Standard for distributed

interactive simulation - Application protocols doi: 10.1109/

IEEESTD.1998.88572

Frecon E, Smith G, Steed A, Stenius M, Stahl O (2001) An overview

of the COVEN platform. Presence Teleoper Virtual Environ

10(1):109–127

Henderson T, Bhatti S (2003) Networked Games: A QoS-sensitive

application for QoS-insensitive users. In: Proceedings of the

ACM Int’l conference applications, technologies, architectures,

and protocols for computer communications (SIGCOMM’03).

pp 141–147

Hu SY, Chen JF, Chen TH (2006) Von: a scalable peer-to-peer

network for virtual environments. IEEE Netw 20(4):22–31

Liu G, Maguire G (1996) A class of mobile motion prediction

algorithms for wireless mobile computing and communication.

Mob Netw Appl arch 1(2):113–121

Lui JC, Chan MF (2002) An efficient partitioning algorithm for

distributed virtual environment systems. IEEE Trans Parallel

Distrib Syst 13(3):193–211

Table 5 Average ASRs for the

LOT and the OO spatial

approach

Average ASR (in ms.)

OO spatial

approach

LOT

approach

219 245

202 Virtual Reality (2012) 16:187–203

123

http://www.eveonline.com
http://secondlife.com/
http://www.simul8.com
http://dx.doi.org/10.1109/IEEESTD.1998.88572
http://dx.doi.org/10.1109/IEEESTD.1998.88572


Macedonia M, Zyda M, Pratt D, Brutzman D, Bar-ham P (1995)

Exploiting reality with multicast groups: A network architecture

for large-scale virtual environments. In: Proceedings of virtual

reality annual international symposium (VRAIS)

McCoy A, Delaney D, McLoone S, Ward T (2004) Towards

statistical client prediction—analysis of user behavior in distrib-

uted interactive media. In: Proceedings of the international

conference on computer games: artificial intelligence design and

education (CGAIDE), Reading, U.K

Morillo P, Fernandez M, Orduna JM (2003a) An evolutive approach

to the partitioning problem in distributed virtual environment

systems. In: Proceedings of XIV Jornadas de Paralelismo.

Madrid, Spain, pp 299–304

Morillo P, Orduna JM, Duato J (2003b) On the characterization of

distributed virtual environment systems. In: Proceedings of

European conference on parallel processing (Euro-Par). Klagen-

furt, Austria

Morillo P, Orduna JM, Fernandez M, Duato J (2005) Improving the

performance of distributed virtual environment systems. IEEE

Trans Parallel Distrib Syst 16(7):637–649

Morillo P, Rueda S, Orduna JM, Duato J (2007) A Latency-Aware

partitioning method for distributed virtual environment systems.

IEEE Trans Parallel Distrib Syst 18(9):1215–1226

SNMP v2. http://tools.ietf.org/html/rfc1908. Accessed 29 May 2011

PlayNoEvil Game Security News and Analysis. http://playnoevil.

com/serendipity/index.php?/archives/483-Linden-Labs-Second-

Life-Server-Architecture-Questions.html. Accessed 29 May 2011

Schroeder R, Heldal I, Tromp J (2006) The usability of virtual

environments and methods for the analysis of interaction, Journal.

Presence Teleoper Virtual Environ (MIT Press) 15(6):655–667

Shirmohammadi S, Kazem I, Ahmed DT, El-Badaoui M, De Oliveira

J (2008) A visibility-driven approach for zone management in

simulations. Simulation 84(5):215–229

Tam PT (1998) Communication cost optimization and analysis in

distributed virtual environment. Technical report, department of

computer science and engineering, The Chinese University of

Hong Kong

Varvello M, Picconi F, Diot C, Biersack E (2008) Is there life in

second life?. In: Proceedings of the ACM CoNEXT conference,

Madrid, Spain, pp. 1-12

Verdickt T, De Vleeschauwer B, Van Den Bossche B, De Turck F,

Dhoedt B, Demeester P (2007) Adaptive microcell assignment in

massively multiplayer online games. In: Proceedings of the 10th

international conference on computer games; AI, animation,

mobile, educational and serious games (CGAMES), Louisville,

Kentucky, USA, pp 92–99

World of Warcraft. http://www.worldofwarcraft.com/. Accessed 29

May 2011

Virtual Reality (2012) 16:187–203 203

123

http://tools.ietf.org/html/rfc1908
http://playnoevil.com/serendipity/index.php?/archives/483-Linden-Labs-Second-Life-Server-Architecture-Questions.html
http://playnoevil.com/serendipity/index.php?/archives/483-Linden-Labs-Second-Life-Server-Architecture-Questions.html
http://playnoevil.com/serendipity/index.php?/archives/483-Linden-Labs-Second-Life-Server-Architecture-Questions.html
http://www.worldofwarcraft.com/

	Performance improvement of Distributed Virtual Environments by exploiting objects’ attributes
	Abstract
	Introduction
	Related work
	Virtual world and entities’ attributes
	Degree of interaction (DoI)
	Level of importance (LoI)
	Space of interaction (SoI)
	Virtual world’s cell division
	Virtual world’s entry points and hotspots

	Distribution approach
	Distribution process and object’s attributes
	DVE spatial distribution algorithm

	Rebalancing and the probability of interaction
	Probability of interaction
	Rebalancing algorithm

	Validation
	Experiments
	Experiments’ setup
	Experimental results

	Conclusion
	References


