Using Java to implement a multimedia annotation
environment for young children

Afrodite Sevasti
Computer Engineering and
Informatics Department,

University of Patras
and
Computer Technology Institute,

61 Riga Feraiou Str., GR-262 21
Patras, Greece

(+30)-61-960316
sevastia@cti.gr

ABSTRACT

The exceptional advent and dominance of interactive multimedia
applications in our days has led to the need for their exploitation
for educational, among many other, purposes. In this work, we
present the design and implementation of a multimedia annotation
environment for young children using the Java 2 Platform. This
environment was developed to provide children of ages 4 to 8
with the opportunity to reflect upon and annotate episodes from
their everyday life.

Our aim was to exploit the recent technological developments in
the field of multimedia and the processing capabilities of
contemporary personal computers, in order to build an annotation
environment where children would be able to add multimedia
annotations to videos. Apart, from the environment itself, design
choices, interface realization, platform limitations and emerging
solutions as well as media handling methods and performance
issues are also presented.

Keywords
Interactive multimedia, video annotation, video browsing, Java,
hypermedia interface, media integration and synchronization

1. INTRODUCTION

The fields of multimedia editing and annotating are currently
among the rapidly evolving fields in the development of
Instructional Computer Technology. Multimedia editing, to begin
with, has been recognized as a widely promising tool in
educational procedures. It can replace the two-dimensional

Bouras Christos
Computer Engineering and
Informatics Department,

University of Patras
and
Computer Technology Institute,
61 Riga Feraiou Str., GR-262 21
Patras, Greece
+30-61-960375

bouras@cti.gr

written word with three-dimensional written, auditory or visual
material, enriching all educational procedures and capturing the
students’ attention. In our days, there exist several commercial
authoring applications in the field of multimedia editing and
storyboarding for younger children. However, current educational
software rarely offers either the child or the adult facilitator
options for ‘deeper interaction’ and it hardly ever exploits
powerful computer technologies.

In this paper we present the implementation work that took
place within the framework of project “Today’s Stories”, part of
the Long Term Research Task 4.4, (i3 —ESE, Project Nr. 29312).
According to the “Today’s Stories” project definition ([18]), one
technological objective of the project is to develop a wearable
device (actually a wearable video camera), that can capture short
sequences of interest in the child’s daytime. The crucial insight
here is that apart from providing a fragmented history of the day
of a child, recordings of an event from more than one child’s
perspective can be interrelated. This brings us to the second
technological objective of the project, which is the development a
multimedia editing tool that enables children to annotate a
recorded episode with what they see, think, experience.
Annotation uses expressive media, symbols (e.g., stylized faces to
express various emotional states), or sound-effects (e.g., special
effects to highlight for example surprise or fear). The resulting
multi-medial document is to be kept as a memory and a document
for future reference.

The work that took place within the scope of this second
technological objective of the project, including design and
implementation issues, is the subject of this paper. It must also be
stated here that our work took seriously into consideration the
pedagogical issues that are involved in the nature and use of such
an application, as they have been approached by the “Today’s
Stories™ consortium (see also the notion of personal autonomy as
a central educational aim in [1]). After all, the project itself pays
attention to social, cultural and ethical implications, as well as to
the conditions for acceptance and success of deploying its
technology.

For the implementation of this video exploring and
annotating application, referred to from now on as the Diary

Composer (DC), the Java platform was elected. More specifically,
the Java 2 SDK, Standard Edition, v 1.2.2, developed by Sun
Microsystems, Inc. and the Java Media Framework (JMF) 2.0 API
developed by Sun Microsystems, Inc. and IBM were used. This
choice was made for several reasons, with the first one being to
assure complete platform independence and that the final version
of the application could also be accessible through the Internet,
for future use from the children’s home. The fact that Java
programs are compiled for the Java Virtual Machine (JVM)
enables Java programs to be executed on a variety of platforms,
provided that the JVM is implemented for each one of these
platforms [19].

Apart from that, the release of version 2.0 of the Java Media
Framework (JMF) with a much richer set of features as well as the
advanced features provided by the Swing 1.1.1 API (included in
the Java Foundation Classes (JFC) API of Java 2 SDK, Standard
Edition, v 1.2.2) made the Java 2 Platform appropriate for our
implementation.

In this paper, we initially make a thorough presentation of the
standardization, research and implementation attempts in the field
of multimedia annotation. Consequently, we are presenting an
overview of the DC design and architecture, describing briefly the
functionality provided by the application. The remainder of the
paper analyses the implementation techniques that were used for
implementing that functionality as well as the limitations that
were imposed by the platform used for the implementation,
accompanied by performance issues. Finally, we are describing
our future work on this application.

2. RELATED WORK

A worthwhile approach to the standardization of multimedia
annotating is the work of the EBU/SMPTE Task Force for
Harmonized Standards for the Exchange of Program Material as
Bit streams. The Task Force has produced [7], which in section 4,
‘Wrappers and Metadata’ gives a thorough terminology and
structure (close to that defined by the Digital Audio-Video
Council (DAVIC)) for how physical media (video, audio, data of
various kinds including captions, graphics, still images, text etc.)
can be linked together, for streaming of program material and
stored in file systems and on servers.

Another attempt towards the direction of standards for multimedia
annotation was made by the Workshop on MMI (Metadata for
Multimedia Information) conducted by the European Committee
for Standardisation and Information Society Standardisation
System (CEN/ISSS) from February 1998 until June 1999. The
workshop resulted into deliverables on the requirements and
model for metadata for multimedia information.

MPEG-7 is an ISO/IEC standard being developed by MPEG
(Moving Picture Experts Group), formally named "Multimedia
Content Description Interface". It aims to create a standard for
describing the multimedia content data that will support some
degree of interpretation of the information’s meaning, which can
be passed onto, or accessed by, a device or a computer code. In
[11] it is stated that MPEG-7 must accommodate audio-visual
material and take advantage of the ability to associate descriptive
information within video streams at various stages of video
production. As an example for this, information captured or
annotated during shooting, and post-production edit lists are
suggested. Based on these principles among others, MPEG-7 will

work on making a global standardisation for multimedia
annotations.

Apart from standardisation efforts, a lot of research work is
performed in the field of video editing and multimedia annotation.
An interesting work that deals mainly with non-linear video
navigation and organization is presented in [9]. The author
introduces the notion of ‘hypermovies’: hyper-documents that
only consist of movie nodes. These nodes are entities comprising
not only of the video as content but also of additional cinematic
information which is synchronized with the video and can be
made visible on demand to support navigation. The MovieCatalog
tool presented, uses the Apple Macintosh Finder look-and-feel in
order to organize movie segments, by displaying on the screen
one thumbnail for each one of them, while the Segmenter tool
uses the multiple tracks that the Quicktime format supports, to add
additional cinematic information to different tracks.

The multiple tracks provided by the Quicktime format, are also
utilized for the development of a Movie Authoring and Design
system called ‘“MAD’ which is presented in [8]. MAD facilitates
the process of creating dynamic visual presentations by
simultaneously allowing easy structure creation or modification of
motion pictures and visualization of the result of those
modifications. The principles behind MAD include hierarchical
multimedia document representation, the flexible inclusion and
combination of words, images, sounds, and video sequences, and
real-time playback of a rough version of the final film at any time
in the process.

An effort to reinforce a document design methodology to a
hypermedia document is presented in [15]. Here, the authors point
out that hypermedia applications are real-time, dynamic and
depend on user interactions and therefore authoring techniques
usually postpone design validation to the run-time stage.
Moreover, they emphasize the fact that hypermedia documents
can contain inconsistencies, which are stemming from the
temporal constraints that are applied to their components through
various relationships among anchors. The document design
methodology proposed, translates a high-level model of a
hypermedia document into an RT-LOTOS formal specification,
on which standard reachability analysis may be applied for
verification purposes.

Another interesting work, the results of which were seriously
taken into account while developing our DC application, is
presented in [10]. Here, the authors investigate the users’
assimilation and understanding of the informational content of
multimedia clips, to conclude upon a significant result: The
quality of video clips can be severely degraded without the user
having to perceive any significant loss of informational content.

The authors of [14], developed ‘CueVideo’ in order to provide a
solution to effective video cataloging and browsing. The first
phase of the ‘CueVideo’ system involves the so-called integrated
cataloging which includes segmenting the video files into shots
and adding image, text, speech etc. as annotations. In this way, the
user can incorporate the type of semantic information that
automatic techniques would fail to obtain and which facilitates
content characterization, browsing and retrieval. An interactive
video authoring system that supports the video object annotation
capability is presented in [6]. The so-called ‘Zodiac’ system
allows users to associate annotations, such as text, image and
audio, to moving objects in a video sequence. This work makes a

step even further on the subject of video annotation, since it
doesn’t annotate video frames but objects in video frames.

The approach followed in the ACTS project no. AC082, called
DIANE (Design, Implementation and Operation of a Distributed
Annotation Environment) ([2].[3]), was to allow the recording if
an arbitrary application output as the basic content of a
multimedia document and to annotate it with all kind of media
available to the user. This was achieved by the concept of a
multimedia annotated document consisting of two distinct parts:
recorded application output and annotations given by a user in
various media including text, audio, video and pointer
movements. By providing generic techniques to record output of
arbitrary applications, DIANE implemented an annotations’
recording tool independent of any application context.

A brief but thorough presentation of commercial authoring
applications in the fields of multimedia editing for young children
is given in [4]. These applications comprise worthwhile solutions
to the direction of offering children the opportunity to experiment
and create with the use of multimedia. However, none of them
offers the functionality of adding annotations to videos and most
of them include textual components for user interaction —
something that we definitely wanted to avoid in our case.

A conclusion that can easily be drawn by this extensive research
in the standardisation and implementation initiatives on
annotation of multimedia is that the corresponding technologies
have not matured yet. Standardisation efforts, with that of the
MPEG-7 standard being the most significant, are still under
development. The MPEG-7 standard for example is due to no
sooner than 2001. Implementation efforts, on the other hand, tend
to use their own method of annotating multimedia, making their
solutions proprietary. In this work, we present our implementation
solution for adding multimedia annotations to videos and we
describe what our future work will focus on, in order to conform
to the upcoming standards.

3. APPLICATION OVERVIEW

The DC application was designed so that it provides two distinct
components and corresponding interfaces: one for making the
video recordings accessible to the DC users, allowing navigation
and selection of the video/videos to be annotated and one for
providing the tools and infrastructure for annotation. We call the
first component of the application the ‘Video Explorer’ and the
second one the ‘Annotation Panel’.

3.1 The Video Explorer

This component of the application was designed to provide the
functionality of displaying a representative frame (actually the
first frame) from each video recording stored into the DC system.
These frames are called ‘thumbnails’ and it was a challenge of the
design and implementation phase to organize and display them on
screen in an efficient manner that would also be comprehensible
to children of ages 4 to 8.

According to [20], all authoring interfaces use authoring
metaphors for their implementation such as a slide-show
metaphor, a book metaphor, a timeline metaphor, an icon
metaphor etc. For the DC implementation, the set of videos
recorded needed to be somehow structured and included in a
multimedia database. The “Today’s Stories™ objectives indicated

that the storage and retrieval should avoid using textual
categories.

For the implementation of the Video Explorer, the timeline
metaphor was adopted. Generally speaking, a timeline metaphor is
an authoring metaphor where objects and events are placed on the
time scale in correct relationship. For the case of the Video
Explorer, video thumbnails are organized in groups according to
the identity of their owner, in other words, according to which
child shot them. Each group of video thumbnails is then
distributed along a timeline, which in interface terms is
represented by a straight line extending from one point of real-
world time to another. The distribution of video thumbnails along
the timeline is proportional to the shooting time of each video
recording.

Another significant component of the Video Explorer is the help
feature, envisaged by the ‘Genie’ character. This ‘Genie’ has been
implemented to have drag-and-drop features within the Video
Explorer (it also appears in the Annotation Panel) environment.
Dropping the ‘Genie’ on a certain visual component of the Video
Explorer initiates an event that provides the DC user with an
audio description and a brief listing of the visual component’s
functionality. This implementation of the help feature was based
on the JFC/Swing Containment Model (see [12],[13]) which
allows for placing interface components in different layers within
the same container. More details on this will be provided in the
‘Implementation Issues’ further down.

Figure 1. The Video Explorer layout

The Video Explorer supports simultaneous use of more than one
users, by presenting more than one timelines in cases when more
than one children share the same workspace (see Figure 1).
During the videos’ storing procedure, metadata that indicate
which of the videos are shootings of the same incident by
different children, are also stored in the system. During the
implementation of the DC, several methods were developed that
associate related video files and their visual representations on the
Video Explorer interface. Thus, video files of the same incident
shot from different perspectives, form a so-called ‘hyper-video” in
the DC. This hyper-video, containing one, two or three separate
video files is the entity handled by the annotation methods of our
DC application. It is actually treated as an autonomous unit (for
annotation, auto-save etc. procedures) to which all annotations are
added, from the moment it is realized.

The functionality supported by the Video Explorer component
includes the ‘delete’ operation. This operation has been
implemented in such a way that all annotations of an annotated
video are erased when the video thumbnail is dragged and
dropped upon the ‘Dustbin’ visual component of the interface.
Future versions of the DC will also support navigating through
videos from different dates, by the use of the ‘Diary’ visual
metaphor (see Figure 1)

Each single video thumbnail or hyper-video comprises a
‘hyperlink’. This ‘hyperlink’, when clicked or pressed upon (this
depends on whether a mouse or a touch-screen is being used for
interface 1/0) initializes an annotation session, by opening the
second component of the DC application, the so-called
Annotation Panel.

3.2 The Annotation Panel

The second component of the DC has as its main functionality to
provide the user with the tools to add image and sound
annotations to the video/videos already selected via the Video
Explorer.

The dominant still controversial features of the Annotation Panel
implementation are its dynamic nature and simplicity. Bearing in
mind that the tool aims at very young children and that the
procedure of annotation actually can be broken into two phases
(adding/removing annotations and playback of the video in its
current state, containing all annotations previously added),
appropriate methods had to be implemented. To be more specific
an annotation procedure consists of the following steps:

e Start the video playback
e Pause playback

e Either drop one or more annotations to the video’s visual
component (add) or drag previously added annotations from
the videos visual component (remove)

e Resume playback

The last three steps are iterated as many times as the user wishes
to.

A playback procedure consists of the following steps:
e Rewind the video up to its first frame

e Start the video playback

e Pause and resume playback

Again, these steps can be iterated as many times as the user
wishes to.

The design choice made was to merge the annotating and
playback procedures so that the two distinct phases would become
transparent to the users of the DC. The DC application allows for
steps of the annotation procedure to be interrupted for initializing
a playback procedure and vice versa. In other words, the user is
provided with the ability to interrupt the annotation procedure, in
order to go back and find out how he has done so far, but during
playback he can still pause the video reproduction and add
annotations. We have called this ‘dynamic annotation’ and more
implementation details will be given in the ‘Implementation
Issues’ section.

Apart from the ‘Genie’ character that implements the help feature
in the Annotation Panel in an identical to that in the Video

Explorer way, the Annotation Panel provides the user with a
totally different set of functionality. Three simple video control
buttons are provided to the user for controlling playback of the
hyper-video being annotated. According to the Video Explorer
implementation, more than one videos might be chosen for
simultaneous annotation, in cases more than one video recordings
of the same incident, forming a hyper-video, exist. However, this
hyper-video depicts the same incident from two or three different
perspectives and there was no point in providing the users of the
DC with the possibility to start/stop/resume each video
component of the hyper-video separately. Therefore, the video
control buttons are placed on one control panel, which is common
to all the videos that are being annotated at the moment. From the
implementation point of view, this approach required video
synchronization techniques, which will be analyzed further in the
‘Implementation Issues’ section, to be adopted.

Figure 2. The Annotation Panel layout

For the current version of the DC, two types of annotation palettes
were implemented: one for image annotations and one for sound
annotations (represented by images as well for the purposes of the
DC interface). The first palette (see bottom left of Figure 2),
contains image annotations that are depicting emotions while the
second one (see bottom right of Figure 2) contains image
annotations that are depicting sounds but also represent sounds.
The user is provided with the functionality of pausing the video at
any moment and adding to it an unlimited number of image and
sound annotations, in order to comment the incident that has been
recorded.

Both image and sound annotations are implemented in such a way
that present the users with a ‘sticky’ behavior: annotations can be
dragged towards any direction within the DC interface but can be
dropped only on one of the video frames. Dropping an annotation
outside a video frame, results in the annotation moving back to its
original position in the palette. The latter provides the users with
the ability to remove annotations from a video, simply by
dragging away any annotation that has been ‘stuck’ on the video
and dropping it outside the video frame. Adding a sound
annotation to a video frame does not only result into the
correspondent icon being added to the video as an image
annotation: it also ‘adds’ the sound associated with it to the sound
track of the video, so that the sound annotation is reproduced
during playback, at the time it was placed during annotation.

Apart from the predefined set of sound annotations, new sound
annotations (e.g. spoken words) can also be inserted to the current
hyper-video. The user has to pause video playback at the desired
video frame and speak to his workstation’s microphone while
pressing the microphone icon between the two palettes (see Figure
2). In this way, all kind of sound annotations can be ‘added”’ to the
video’s audio track.

Except for removing annotations one by one, the Annotation
Panel provides the user with the opportunity to reset the hyper-
video being currently annotated, thus removing all annotations at
once (by pressing the small icon under the microphone in Figure
2). Finally, there is a ‘Back’ button that can be used from users to
finish their annotating session and return to the Video Explorer
either for further navigation through videos or for choosing
another hyper-video to annotate.

4. IMPLEMENTATION ISSUES

4.1 Annotation

For the implementation of the annotation functionality in our DC
application, we co-estimated the related work presented in section
2 of this paper and the requirements specified by the “Today’s
Stories” consortium as far the multimedia annotating application
to be developed was concerned.

Due to the lack of mature standards and in order to achieve
acceptable performance and platform independence in application
execution and video supported formats, we designed a proprietary
still open and configurable annotation system. The main idea was
to create transparent to the end user data structures that would
hold hyper-videos and all kinds of multimedia annotations
attached to them in an efficient and consistent way. This way, we
bypassed the limitations and performance issues rising from all
our attempts to encode video and annotations together.

All of our annotation methods follow the principle of associating
an annotation with the frame of the video to which the annotation
was added. In this way, predefined images and sounds as well as
recorded sounds are associated in dynamic data structures with the
video frame being annotated by them. During the application
runtime, this association is dynamic and configurable. This
approach makes the feature of ‘dynamic annotation’ described in
section 3.2 feasible.

The annotation procedure can be interrupted by the user at any
time in order for him to be able to preview his annotations so far.
The application then reads from those dynamic data structures in
order to represent the annotated hyper-video playback to the user.
This is achieved by displaying images and opening sound players
at those positions during playback, where the data structures’
contents appoint. At any moment, the user can remove any
annotation he wishes. This functionality is internally implemented
by removing the correspondent entries from these data structures
and re-ordering the data structures’ contents.

All these dynamic interactions are possible during an annotation
session. As soon as the user wishes to interrupt the annotating
procedure, annotation data together with the hyper-videos they
refer to, are stored permanently to the system for future use. For
the current version of the application, we have implemented a
proprietary scheme for storing all this information.

The implementation approach described here has the following
advantages:

e Supports a wide variety of video formats for the video files
that are annotated within the application (in [16], a list of the
supported by the JIMF API media formats is provided)

e An unlimited set of different kinds and formats of
multimedia data can be used as annotations (images, sounds
etc.)

e Performance is preserved in satisfactory levels independently
of the amount/type of annotations inserted, due to the fact
that annotations are stored separately from the raw video data
and not encoded within it.

The main disadvantage of our implementation approach is the fact
that annotated hyper-videos are stored in a proprietary format,
readable by our application alone. In section 5, we describe how
our future work will proceed in order to eliminate this
disadvantage.

4.2 User Interface

For the purposes of the annotation functionality, the
implementation procedure exploited the potentials of the
JFC/Swing Lightweight Component Framework and Containment
Model ([12],[13]) so that the DC application was developed on a
multi-containment, multi-layer infrastructure. The JFC/Swing
Lightweight Component Framework and Containment Model
were two of the major enhancements of Swing over the Abstract
Window Toolkit (AWT) that the Java platform used to provide for
User Interface (UI) development. Actually, the DC application
would be impossible to implement without these two features of
Swing.

The Lightweight Component Framework facilitated the
implementation procedure in the sense that the application was
organized in many different components, the most complicated of
which contained the simpler ones, thus acting as containers. All
methods implementing objects’ behavior within the application
itself and the application Ul, were accessible by the appropriate
levels of containment hierarchy in order to provide a consistent
and reliable look and feel throughout the application. An
indicative diagram that depicts a large proportion of the
containment hierarchy of the DC implementation objects is shown
in Figure 3.

Application

Frame Container

T T

Video Explorer/
Annotation Panel
JFrame Container

Toolbar
JFrame Container

Dustbin
JPanel
Component

Video
JinternalFrame
Component

Help
JPanel
Component

Diary
JPanel
Component

Video Control

JPanel Componet

Annotation Palette
JPanel Component

L

Image Annotation || Sound Annotation
JPanel Component JPanel Component

Figure 3. The multi-containment infrastructure

Root containers of the containment hierarchy have been
implemented in such a way that act as mediators among their
components. They listen for events from certain components (e.g.

a mouse ‘click’ event on a video control object) and generate
other events according to the application’s functionality protocol
(e.g. starting, stopping or rewinding of the initiated video player/s
depending on which video control object was triggered). In this
way, leaf components of the containment hierarchy do not
communicate directly with each other. Instead, each event climbs
up in the hierarchy tree so that all listener objects are informed
about it in order for the appropriate methods to be called.

The JFC/Swing Containment Model allows for organizing
components in different layers within their container. Actually,
this feature is provided by the group of the heavyweight container
classes in Swing and is referred to as the nested-container
hierarchy in [13]. According to this infrastructure, the Annotation
Panel container was organized in layers: the background
component controls and coordinates all other layers. Videos and
video controls are placed two layers above on the so-called Modal
layer while annotations are placed on the topmost Drag layer (see
Figure 4).

This Ul architecture was adopted for several reasons and resolved
most of the implementation problems. One of these reasons was to
make the heavyweight visual component of each video player
cooperate with the rest of the application, being placed over the
UI background and under the annotations’ layer at the same time.
Of course, this architecture facilitated the implementation of the
drag and drop behavior of annotations and the ‘Genie’ object in
the best possible way. Annotation and ‘Genie’ objects’ behavior is
defined by a set of methods that allow them to move on the Ul
drag layer, thus creating the impression that they ‘float’ over all
other Ul components. Their drag-and-drop behavior was
implemented over the mouse listening interface that the Java 2
SDK provides.

Background
@ContentPane

Video-Video Controls
@LayeredPane_MODAL_LAYER E K

Annotations
@LayeredPane_DRAG_LAYER

Figure 4. The multi-layer infrastructure

4.3 Media Handling

The release of version 2.0 of the Java Media Framework (JMF)
API from Sun Microsystems, Inc. and IBM has undoubtedly
provided Java platform programmers with a much wider set of
features for inserting and handling multimedia in their
applications. The major challenges that the DC implementation
had to face was to ensure the best quality possible while loading
more than one video/audio players, synchronize these players and
monitor their behavior throughout the application runtime. In this
section, we present how the JMF API was used for the DC

implementation and the design choices made in order to achieve
the desired functionality.

According to [17], the JMF specification defines APIs for
displaying time-based media. JMF players share a common model
for timekeeping and synchronization and JMF clocks define the
basic timing and synchronization operations. Also, according to
[5]. IMF does not build the functionality of constant media
progression tracking into each media player. Based on the above,
we had to implement several mechanisms for accessing video data
by frame number instead of media time, for keeping track of the
video data progression in frame numbers and for generating
events according to the current video frame number.

One of the dominant components for video/audio management
within the DC was the Frame Positioning Control (FPC) interface
of the JMF API ([5].[16]). This interface was used for accessing
the individual frames of each video file, a feature which is not
built-in within JMF. This limitation produced the first obstacles in
the Video Explorer implementation, where a player interface and
consecutively an FPC interface for each video had to be initialized
in order to access the first representative frame of each video and
transform it to an image thumbnail. This procedure was very
consuming in terms of resources in cases such as the one depicted
in Figure 1, where ten different video thumbnails were to be
created.

The design choice that was made here deviated this problem by
removing from the DC implementation the processing burden of
extracting a thumbnail from each video file. Instead, an
asynchronous application that uses the FPC interface to produce a
thumbnail, runs every time a new video file is stored in the DC
infrastructure. This standalone application is transparent to the
user and produces one image file for each video file, to be used as
the video thumbnail in the Video Explorer.

In order for the annotation feature of the DC to be implemented,
we had to keep track of the video progression in frame numbers
or, in other words, be aware of the number of the current video
frame being displayed on screen, during the annotation/playback
procedure. Whenever video playback is paused and annotations
are added to or removed from it, the current frame number is used
to associate annotations with the video, as it has already been
explained in section 4.1.

However, keeping track of the video progression in terms of frame
number, required the combination of the FPC interface and its
mapTimeToFrame method. Actually, calling this method on the
FPC interface of a video player is the only way to monitor a video
player’s progression in frame numbers within JMF. This
procedure is often performed during the DC runtime and more
specifically every time the application needs to be informed about
the exact video frame number to which one or more annotations
have been added. This fact could not be ignored by our
implementation and it is one of the major performance drawbacks
of the DC application.

Things become even more complicated if we attempt to introduce
the functionality of displaying annotations previously added to a
video file, during playback. This functionality requires constant
monitoring of the video player’s current frame number, so that an
annotation display event is initiated when the video playback
approaches the video frame number where the annotation was
added. For this functionality and since JMF players cannot

produce such events themselves, we had to implement a thread
running in parallel to the video player/s.

This thread has as its main duty to monitor the player status, and
place annotations to their position inside a video’s visual
component, according to the data recorded during the annotation
procedure. It receives as input the content of the data structures,
where data, associating video frames with annotations, are stored.
We will refer to these data as annotation data entries (ADE) from
now on. Each ADE, consists of an annotation’s insertion frame
number (AIFN) and an annotation identifier (Al). In fact, the
thread implemented complies with the following algorithm:

Thread activates itself only when video player is in “Started”
state

Thread polls the video player for the current video frame number
(CVFN)

Thread compares CVEN with the subset of ADEs for which
AIFN<CVFN

WHILE (AIFN<CVFN+15 and AIFN>CVFN-15)

Add the annotation referred to by this ADE’s Al to the
video’s visual component

This algorithm ensures that although annotations are actually
added to one frame of the videos (AIFN), they are displayed for a
window of 30 video frames (starting from 15 frames before the
AIFN and finishing at 15 frames after the AIFN) so that the user
can perceive their existence. The main drawback of this approach
has turned out to be the burden placed upon the application’s
performance by the thread introduced.

The implementation of the annotation functionality within the DC
environment includes also synchronization techniques for the
cases when two or three videos forming a hyper-video are being
simultaneously annotated. Generally speaking, JMF provides the
functionality of synchronization of multiple players in such a way
that the programmer has to define a master player, the controls of
which are responsible for all other players stated as ‘slaves’. For
the DC purposes we had to implement methods that designated as
master player in a group of two or three videos the one with the
maximum duration. We also made several experiments that
resulted into the conclusion that equal frame rates among the
members of a video group are ensuring best synchronization and
performance behavior.

Finally, the JMF API does not provide a reliable mechanism for
interfering with the video players’ playback rate. In fact, not all
players are guaranteed to allow their playback rate to be adjusted,
that is reduced or increased. This fact prevented us from being
able to provide videos’ fast forward and rewind functionality
within our application in its current version. This issue is part of
our future work and might also be resolved in future versions of
the IMF APL

4.4 Performance Issues-Memory management
A lot of performance issues occurred during the implementation
procedure of the DC application, some of which have already
been mentioned in previous sections of this paper.

A quantative amount of experimenting took place in order to
determine the appropriate video format characteristics that would
allow qualitative simultaneous playback of three different video
files in the Annotation Panel component. Results designated as

the only solution recommended for good performance that of
reducing the video files” frame rate to numbers less than or equal
to 15 frames per second. According to the results of [10], we are
allowed to do so for the sake of playback quality, without putting
in stake significant loss of informational content.

Another significant issue related to performance, that had to be
dealt with, was that of memory management. The nature of the
DC application requires for tentative memory interactions and
extensive care had to be taken for the introduction of efficient
memory management into the application. Keeping in mind that
Java does not provide sophisticated and automated mechanisms
for memory management and garbage disposal, several methods
were implemented for disposal of the extensive memory resources
occupied by video players. These methods anticipate for master-
slave relationships between video players and clean up most of the
system’s memory resources each time an annotation session is
terminated.

5. FUTURE WORK-CONCLUSIONS

The DC application presented in this paper comprises the first
fully functional version of a tool that will be further enhanced
with functionality and improved. This will be done according to
the feedback that will be provided from extended trials in school
environments within the “Today’s Stories” project time plan and
the pedagogical analysis of the application’s use and nature.

From the implementation point of view, functionality to be added
includes:

e To make the DC environment accessible over the Internet

e An interface for the insertion of custom image annotations to
the application

e A hierarchical structure that will support multiple annotation
palettes, categorized according to different thematic
categories

e A navigator-browser for the users’ video recordings from
previous dates

e More sophisticated video controls, such as fast forward and
rewind

Apart from adding functionality to the existent tool, our future
work will also investigate the possibilities to introduce
multimedia annotations in widely accepted video content types
such as QuickTime. QuickTime architecture and file format offer
themselves for annotation insertion, since they organize media
data in synchronized tracks. However, there are still limitations to
the data types that can be used as annotations and of course to the
platforms over which an annotated QuickTime movie can be
presented. We are currently working with the QuickTime for Java
API in order to make QuickTime and its annotation techniques
accessible to all the Java compliant platforms.

Generally speaking, we can conclude that our work and all other
efforts should move towards the direction of multimedia
annotations’ standardization. It is for sure that the upcoming
MPEG-7 standard will contribute significantly towards this
direction.

6. ACKNOWLEDGMENTS

We would like to thank all our partners in the “Today’s Stories”
consortium for their feedback and collaboration in the procedure
of defining the functional specifications of the DC application.

We would also like to mention that the application’s interface
graphics and layout that appear in Figure 1 and Figure 2 were
designed by the Assistive Technology & Human-Computer
Laboratory, Institute of Computer Science, Foundation for
Research & Technology-FORTH, Crete, Greece. The videos, the
thumbnails of which appear in Figure 1 and Figure 2, were
produced by Marilyn Panayi and David Roy and were shot in
Denmark, at the KISS — NIS Laboratory and Nr. Brody Skole.

7. REFERENCES

[1] Aviram, A., Personal Autonomy And The Flexible School,
International Review of Education 39(5), Kluwer Academic
Publishers, printed in the Netherlands, 1993, 419-433

[2] Benz, H., Bessler, S., Fischer, S., Hager, M., and
Mecklenburg, R. DIANE: "A Multimedia Annotation
System" in Proceedings of the Second European Conference
on Multimedia Applications, Services and Techniques
(ECMAST'97) (Milan IT, May 1997), Fdida, S., and
Morganti, M. (Eds.), Lecture Notes in Computer Science
1242, Springer Verlag, Berlin, 183-198.

[3] Benz, H., Fischer, S., Mecklenburg, R., and Dermler, G.
DIANE - "Hypermedia Documents in a Distributed
Annotation Environment" in Proceedings of the Conference
on Hypertext - Information Retrieval - Multimedia (HIM'97)
(Dortmund DE, September 1997), Norbert, F., Gisbert, D.,
and Tochtermann, K.(Eds.), Schriften zur Informatik, UVK
Universitaetsverlag, Konstanz, 293-306.

[4] Bouras, C., Kapoulas, V., Konidaris, A., Ramahlo, M.,
Sevasti, A., and Van de Velde, W. "Diary Composer:
Supporting Reflection on Past Events for Young Children"
To appear at the ED-MEDIA 2000-World Conference on
Educational Multimedia, Hypermedia &
Telecommunications, Montréal (Canada), June 26-July 1,
2000.

[5] Carmo, L.de. Core Java Media Framework, Prentice Hall
PTR, Upper Saddle River NJ, 1st edition (June 24, 1999).

[6] Chiueh, T., Mitra, T., Neogi, A., and Yang, C.K. Zodiac: A
"History Interactive Video Authoring System" in
Proceedings of the 6th ACM International Multimedia
Conference (Multimedia'98) (Bristol UK, September 12-16,
1998), 435-443.

[7] EBU/SMPTE Task Force for Harmonized Standards for the
Exchange of Programme Material as Bitstreams. Final
Report: Analyses and Results, August 1998.

[8] Baecker, R., Rosenthal, A.J., Friedlander, N., Smith, E., and
Cohen, A. "A Multimedia System for Authoring Motion
Pictures" in Proceedings of the 4th ACM International
Multimedia Conference (Multimedia'96) (Boston MA,
November 18-22, 1996), 31-42

[9] Geissler, J. "Surfing the Movie Space: Advanced Navigation
in Movie--Only Hypermedia" in Proceedings of the 3rd
ACM International Multimedia Conference (Multimedia'95)
(San Francisco CA, November 5-9, 1995), 391-400.

[10]Ghinea, G., and Thomas, J.P. "QoS Impact on User
Perception and Understanding of Multimedia Video Clips"
in Proceedings of the 6th ACM International Multimedia
Conference (Multimedia'98) (Bristol UK, September 12-16,
1998), 49-54.

[11]International Organisation For Standardisation (ISO/IEC
JTC1/SC29/WGI1) - Requirements Group (Adam Lindsay,
Editor), MPEG-7 Applications Document v.9 (ISO/IEC
JTC1/SC29/WG11/N2861), (Vancouver CA, July 1999).

[12] Pantham, S. Pure JFC Swing, Sams Publishing, Indianapolis
IN, 1999.

[13]Piroumian, V. Java Gui Development: The Authoritative
Solution, Sams Publishing, Indianapolis IN, 1999.

[14] Ponceleon, D., Srinivasan, S., Amir, A., Petkovic, D., and
Diklic, D. "Key to Effective Video Retrieval: Effective
Cataloging and Browsing" in Proceedings of the 6th ACM
International ~ Multimedia Conference (Multimedia'98)
(Bristol UK, September 12-16, 1998), 99-107.

[15] Santos, C.A.S., Soares, L.F.G., de Souza, G.L., and Courtiat,
J.-P. "Design Methodology for Formal Validation of
Hypermedia Documents" in Proceedings of the 6th ACM
International ~ Multimedia Conference (Multimedia'98)
(Bristol UK, September 12-16, 1998), 39-48.

[16] Sun Microsystems Inc. Java Media Framework API Guide,
September 3, 1999, v. 0.8.

[17] Sun Microsystems Inc., Silicon Graphics Inc., and Intel
Corporation. Java Media Players, Version 1.0.5., May 11,
1998.

[18] Today’s Stories: i3 —ESE (Long Term Research Task 4.4)
Project Nr. 29312, Project Web Site found at:
http:/stories.starlab.org/about.htm

[19] Weber, J.L. Special Edition Using Java 2 Platform, Que
Publishing, 1999.

[20] Yoo, S. Multimedia Authoring/ Scripting. Course seminar.
Oct. 14, 1995. Found at:

http://mmlab.snu.ac.kr/course/mmseminar/temp/Y sPres.html

