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Abstract-In this paper we analyze the performance 
characteristics of various alternatives for the admission 
control module of a Bandwidth Broker. In particular, we 
study the metrics such as acceptance rate, fairness towards 
requests and computation overhead and how they are 
affected when comparing a simple admission control module 
and an adaptive one. Furthermore, we examine the benefits 
that can arise under various circumstances through usage of 
adaptive price-based admission control and enhancements 
such as the ability to handle the resubmission of previously 
rejected requests. We describe the results of our 
experimentation using a simulated environment and the 
operating circumstances that benefit each solution. 

I INTRODUCTION 

The Bandwidth Broker [9] is an entity that manages the 
resources within a specific DiffServ domain by controlling 
the network load and by accepting or rejecting bandwidth 
requests. Every user (service operator) who is willing to 
use an amount of the network resources, between its node 
and a destination, sends a request to the Bandwidth 
Broker. Bandwidth Brokers have been proposed in the 
framework of the DiffServ architecture for Quality of 
Service (QoS) provision in the Internet. In order to offer 
better scalability than other architectures such as IntServ, 
the DiffServ architecture [1] only deals with individual 
flows at the edges of a domain, allowing the core elements 
of the network to only handle classes of service. 

Bandwidth Brokers are an intensely studied field, and a 
number of architectures have been proposed for the 
various aspects of its operation [10]. Reference [2] 
proposes a novel architecture for the admission control 
module that aims at maximizing the resource utilization 
for the network provider, while keeping the computation 
requirements of the admission control module of the 
Bandwidth Broker relatively low. This model is extended 
in [3] in order to provide support for resubmissions of 
requests that were previously rejected. Although the above 
mentioned references contain initial evaluation of the 
proposed architectures, there is yet no thorough 
comparative investigation of the relative performance and 
benefits of these architectures over each other, which is 
the focus of our work in this paper in order to identify 
which admission control architecture is more suitable for 
various circumstances. 

The rest of the paper is organized as follows: Section II 
presents the functionalities of the admission control 
module of a Bandwidth Broker and the various algorithms 
that have been proposed for its operation, while section III 
presents the algorithms that were evaluated in this paper. 
The setup of the simulations is described in section IV and 
section V gives the detailed analysis of the results of the 
simulation experiments that were carried out in order to 
comparatively evaluate the admission control algorithms. 
Finally section VI presents the conclusions and our future 
work in this area. 

II ADMISSION CONTROL MODULE 

Admission control is the task that a Bandwidth Broker 
has to perform in order to decide whether an incoming 
resource reservation request will be accepted or not. Once 
the request has been accepted, the Bandwidth Broker has 
to make sure that it will be met by the network. Admission 
control is a very important part of the Bandwidth Broker 
operation, because it determines the fairness between the 
requests and the degree of network utilization that the 
Bandwidth Broker will achieve for the managed domain. 
An improperly designed admission control module can 
lead to low network utilization, unfairness and therefore 
frustration to the users that request resources or it can also 
impose an unacceptable overhead to the Bandwidth 
Broker’s operation. 

In general, we can separate the types of reservation 
requests depending on the actual time period for which 
they request resources. 

Immediate requests: When an immediate request is 
accepted, it is immediately effective, which means that the 
requested resources are reserved right away. This type of 
request leaves little room to the Bandwidth Broker for 
implementing a strategy that maximizes the network 
utilization. 

Book-ahead (or advance) requests: A book-ahead 
request specifies the resources that will be needed at some 
later point in time, which has to be specifically defined. A 
thorough presentation of the concept of book-ahead 
reservations can be found in [11]. In general, book-ahead 
requests allow for better solutions to the admission control 
problem, and there are a lot of actual cases in the real 
world where a book-ahead request meets the requirements 



of an application, like for example pre-arranged video 
conferences. 

In some cases, a book-ahead request may have a 
flexibility of allowing the Bandwidth Broker to answer the 
request by either accepting it or rejecting it not 
immediately, but after a period of time (which can be 
specified). 

Admission control can be done either on a hop-by-hop 
basis [4] or on a per-flow basis [12]. The former case can 
be implemented by first calculating the path for an end-to-
end reservation through a routing protocol like RIP or 
OSPF, and then run the admission control algorithm for 
each link in the calculated path. This however presents the 
problem of implementing an efficient solution of merging 
the admission decisions of all links on a requested path. 
Reference [6] proposes a flexible model that can 
significantly simplify the management of resources in a 
virtual private network. We evaluate the algorithms using 
this same model, where edge routers have predefined 
limits on the resources that they are able to use, thus 
freeing the Bandwidth Broker to make a single admission 
decision for the ingress point of the request (and an 
additional decision for the egress point). 

Most related work for Bandwidth Brokers examines a 
request as soon as it arrives and accepts it if the 
reservation does not exceed the unreserved link capacity 
[8]. Theoretically, this approach has benefits in terms of 
speed and efficiency, but it can lead to low network 
utilization. In [7], the authors show how the general 
admission control problem can be formulated as an 
optimization problem, with the goal of maximizing the net 
revenue. The network utilization can improve drastically 
if we allow the Bandwidth Broker’s admission control to 
gather a number of requests and compute a better 
allocation of resources. Also [5] deals with price-based 
admission control, studying both online (when answers to 
requests have to be issued immediately) and offline (when 
requests can be gathered and evaluated) versions of the 
problem are discussed. [2] combines the above approaches 
with an adaptive scheme that attempts to achieve a 
preferable balance between optimal utilization of the 
network and minimal overhead for the Bandwidth Broker 
operation. A final addition to the admission control 
algorithm can be the support for resubmitted requests, 
which means that requests that have been rejected are 
notified of a later time when they will have better success 
chances [3]. Moreover, they are given a chance of 
reducing their reservation requests, in hope that a 
satisfactory compromise can be found that will cover the 
user’s needs. This can be achieved by keeping a tentative 
list of the total bandwidth requested at any time, for both 
admitted and pending requests. 

III ALGORITHMS TO BE EVALUATED 

Below is a short summary of the algorithms that were 
evaluated through our simulated experiments. More 
details on the operation of each algorithm and its overall 
architecture can be found at the corresponding references. 
• Simple admission control: This is the simple type of 

admission control, where each incoming request is 
examined by itself, and is accepted if there is still 
available bandwidth for the service (that is, the total 

bandwidth available for the service minus the already 
reserved bandwidth). Therefore, this algorithm 
displays identical behaviour each time it is presented 
with the same set (and with the same temporal 
succession) of incoming requests. This algorithm has 
the advantage of simple implantation and 
management, since only the most basic constraints 
(such as the available resources for the premium 
service) need to be configured by some administrative 
entity. For convenience, this algorithm is labeled 
from now on as SAC. 

• Price-based admission control without adaptation: 
This type of admission control is similar to the offline 
version presented in [5]. The algorithm makes a 
decision on which requests will be accepted trying to 
optimize the network utilization by gathering and 
evaluating a group of requests. In order to solve the 
NP-complete problem that arises, an approximation 
algorithm is used which can approximate the optimal 
solution within a specified range. For convenience, 
this algorithm is labeled from now on as PBAC. 

• Adaptive admission control as described in [2]: The 
algorithm tries to gather multiple requests and 
evaluate them together for purposes of increasing the 
resource utilization, but also uses an adaptation 
module in order to keep processing requirements low. 
The adaptation module is responsible for interrupting 
the process of solving the scheduling problem and for 
adjusting the size of subsequent instances of the 
scheduling problem based on constant monitoring of 
computation time. Because the adaptation module 
takes into account the computational overhead of the 
Bandwidth Broker, the output of the algorithm may in 
theory vary slightly if an experiment is repeated with 
exactly the same set of requests. In practice however, 
each time we repeated an experiment we describe in 
this paper, the output of the algorithm was always 
exactly the same (i.e. the same requests were 
accepted). Also, the algorithm includes a couple of 
parameters that can influence its behaviour. The first 
parameter is the adaptation parameter a, which takes 
values in the range from 0 to 1 and determines the 
aggressiveness of the adaptation (values closer to 1 
define more aggressive adaptive behaviour for the 
algorithm). In particular, the size Rsize of the instance 
of the scheduling problem at a specific time is 
according to the algorithm: 

 
Rsize(t) = Rsize(t-1) + (Wq- Rsize(t-1))*a 

 
where Wq is the queue with all the pending requests 
that have to be examined, and Rsize is the size of the 
queue of requests that will actually be examined in 
the next instance of the scheduling problem 
execution. This can be written as: 

 

Rsize(t) = (1-a)t-1Rsizeinit + (1+(1-a)
a

a t 2)1(1 −−−
)Wq*a 

 
which demonstrates that Rsize converges to the size of 
Wq as quickly as (1-a)t converges to near-zero values. 
The second parameter is the threshold, which roughly 



determines the limit of the computational overhead 
that the algorithm incurs to the system. These 
parameters can be defined by the architecture’s 
administrative entity, and in the experiments of this 
paper we have generally left these parameters 
constant. This means that in theory more tweaking of 
these parameters can probably result to improved 
performance for this algorithm. For convenience, this 
algorithm is labeled from now on as AAC. 

• Adaptive admission control with resubmissions as 
described in [3]: The previous algorithm is enhanced 
with the capability to recognize previously rejected 
requests and increase their priority. Other than that, 
this algorithm is very similar to AAC. For 
convenience, this algorithm is labeled from now on as 
AACR. 

We have selected the above algorithms for evaluation, 
because their comparison can provide a good insight in the 
characteristics we are interested in studying. SAC is the 
simplest algorithm and therefore a good benchmark for 
the more complicated solutions. PBAC lacks adaptive 
capabilities, allowing us to identify the effect they have on 
the simulated environment, and finally AAC and AACR 
differ only regarding the support of resubmissions, and 
therefore their comparative evaluation can reveal the 
effect of resubmission on the overall system performance. 

IV SIMULATION SETUP 

In order to evaluate the proposed mechanism, we used a 
simulated system developed for this purpose, which 
accepted random requests (requests that did not follow a 
specific pattern in terms of their arrival time or reservation 
requests) on an Intel-based PC with 512MB of memory 
running Windows 2000. The simulated system was first 
used for the evaluations in [2], and has since been 
expanded in order to implement the various changes and 
enhancements to the algorithm, and also in order to be 
able to support evaluations for the rest of the algorithms 
mentioned in this paper. The simulations examined a high-
level view of the network, without taking into account 
details at the packet level since our main focus is on 
examining the relative performances of the algorithms and 
isolating these from impact by external or low-level 
parameters. 

The parameters for each request were randomly 
produced [13] within suitable boundaries (regarding the 
total duration of each simulation, the total available 
bandwidth, the minimum and maximum reservation 
requests) for each situation that we wanted to simulate, 
and each set of requests designated a specific ingress point 
at the network (so all requests competed for the same 
resource limit at the ingress point of the simulated 
network). Listings of the random requests generated, as 
well as the source code for replicating our results can be 
found in [15]. The simulated topology was a simple star 
network, with the Bandwidth Broker module being 
located in the centre and requests originating from one 
leaf node towards another leaf node of the network. 

The main metrics that we are interested in, in order to 
compare the performance of the algorithms and evaluate 
the relative advantages and weaknesses of each, are the 
acceptance rate and the generated profit for the provider. 

The acceptance rate shows the percentage of requests 
accepted out of the total number of submitted requests. In 
case that a flat pricing model is followed (where there is a 
standard profit per reservation) this metric also 
corresponds to the network provider’s revenue. The 
generated profit for the provider is calculated as the 
product of the bandwidth consumption of each reservation 
times its duration. This is a convention since the pricing 
model can vary depending on the specific circumstances. 
We believe though that such a metric is one of the most 
representative ones, since it can be understood as the 
amount of resources that is consumed by a reservation and 
the sum for all reservations shows the network utilization 
that each algorithm achieves. 

Maximum available bandwidth for the service were set 
at 50 Mbps, while the duration of each simulation was set 
at 30 time slots. For algorithms AAC and AACR, the 
results were obtained setting the adaptation parameter a at 
a value of 0.5 (moderate adaptation) and a computational 
threshold of 3 time slots. 

V EVALUATION RESULTS 

The first set of experiments assumed a rather short 
average duration of reservation request (5 time slots), in 
order to simulate a scenario where there is relatively less 
competition between requests, and more importantly 
where the impact of admission decisions spans a shorter 
time frame. Fig. 1 displays the results of the ratio of 
requests accepted for each algorithm, while Fig. 2 displays 
the results of the network utilization (which can be 
thought of as each provider’s profit) achieved by each 
algorithm. 

We then repeated the above experiments using longer 
average duration for the incoming requests (within the 
same timeframe of the total experiment duration), with the 
intention of simulating the situation where requests are 
more heavily competing for the available resources and 
where careless selection of the admitted requests can have 
a significant impact on the network utilization (by tying 
up resources that could more effectively be used by other 
requests). Fig. 3 displays the ratio of accepted requests for 
this set of experiments, while Fig. 4 displays the network 
utilization. 
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Fig. 1. Comparison of acceptance rate for shorter duration requests 

 



Network utilization (short)
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Fig. 2. Comparison of network utilization for shorter duration requests 
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Fig. 3. Comparison of acceptance rate for longer duration requests 
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Fig. 4. Comparison of network utilization for longer duration requests 

There are a lot of interesting observations that we can 
make based on the above results, which also assist in 
better understanding the algorithms and their properties. 

The results show that SAC generally displays good and 
competitive behavior in many cases. This observation, 
combined with the algorithm’s advantage of being the 
most straightforward and easiest to implement makes it a 
suitable choice for environments where the load is 

expected not to be very high or the competition between 
reservation requests very intense. Furthermore, SAC 
proved more competitive when the requests had a longer 
average duration. This can be explained when we take into 
account the fact that longer requests have a more lasting 
impact and therefore the relative advantage of the other 3 
algorithms (PBAC, AAC and AACR) is reduced since a 
request often spans multiple admission decisions (as is 
always the case with SAC). Its main weakness is its 
inferior performance in terms of network utilization, 
especially for requests of shorter average duration. 

The PBAC algorithm displays the most varying 
behavior. This can be explained because of its 
approximation nature. It is the algorithm that is most 
affected from the random generation of the request 
parameters. Separate evaluations with different random 
parameters but with the same average characteristics give 
quite different results for PBAC compared to the rest of 
the algorithms. Therefore, while the admission control 
approach of PBAC is interesting as a theoretical study, it 
is less useful for practical purposes than other algorithms. 

The AAC and AACR algorithms generally display the 
best behavior regarding the utilization of the network, 
which is their primary objective (Fig. 2 and Fig. 4). 
Especially for relatively shorter requests, AACR 
maintains a steadily higher rate of network revenue 
because of the utilization of the capability for 
resubmissions. For longer duration requests this effect 
seems to have less impact, something that is not 
surprising, since in that case a resubmitted request will 
probably face a similar situation to the one when it was 
first rejected (most of its formerly competing requests will 
probably be still reserving the network resources). 

It is also important to evaluate the algorithms with 
respect to computational overhead. Since the 
measurements result from simulations at a relatively high 
level, they mainly focus on measuring a high level 
complexity of the algorithm. This approach has the benefit 
that it can to a certain extent isolate the algorithm from the 
specific low level environment it will ultimately be 
implemented in, and therefore provide us with more 
generic results. The drawback is that it does not provide us 
with details such as network overhead or memory 
consumption. The metric that we present below is the 
average time that a request had to wait before an answer 
by the admission control module arrived, because this is 
the one that will probably be less affected by low level 
im lementation issues. p 

TABLE 1 shows that for SAC algorithm the 
computational overhead was almost zero, since the 
admission decision is actually a simple comparison to the 
available bandwidth, and therefore the answer was always 
delivered within the same time slot that the request was 
submitted. For the rest of the algorithms there is an 
increase as the frequency of the request arrival increases, 
however for both AAC and AACR the increase is 
relatively mild because of the adaptation module (which 
avoids an exponential increase in computational 
overhead), while for PBAC the approximation algorithm 
also leads to a relatively mild increase in computational 
time. Overall, it is expected that none of the algorithms 
will pose a significant burden to a typical modern system 
hosting the admission module. SAC achieves this because 

of its inherent simplicity, PBAC because of its 
approximation approach to the admission decision while 
AAC and AACR because of their adaptive capabilities. It 
has to be noted here that different selections of the 
parameters determining the behavior of these two 
algorithms directly affect the metric displayed here. It is 
expected that they will be set to a suitable level for the 
specific environment they are implemented in, which can 
be done following the guidelines and relevant discussion 
in [2]. 

 
 
 
 



TABLE 1 
COMPUTATIONAL OVERHEAD FOR EACH ALGORITHM 

Average time to answer request (time slots) 
Algorithm Low request 

frequency 
Medium request 

frequency 
High request 

frequency 
Higher request 

frequency 
SAC 0 0 0 0 
PBAC 2.89 5.00 7.32 8.04 
AAC 2.36 3.18 5.06 6.87 
AACR 2.23 2.95 4.03 5.17 

 
 

VI CONCLUSIONS - FUTURE WORK 

In general, all algorithms taking advantage of book-
ahead requests fared better than the simple admission 
control algorithm in situations where the network load 
approached congestion of allocated resources. However, 
for a number of situations where the competing requests 
do not heavily collide with each other, the simple 
admission control algorithm actually displays good 
performance and obviously has the advantage of simpler 
implementation and less overhead. However, if the request 
frequency rate increases beyond a certain limit that each 
time depends on the specific parameters of the situation, it 
is expected that the additional complexity of such 
algorithms is outweighed by the benefits in terms of 
provider’s profits and users’ perceived acceptance rate. 
Our algorithm bridges this gap and through its adaptive 
capabilities, it intends to be a solution that suits most 
situations in a reasonable way. 

Our plans for future work include the extension of the 
comparative evaluation using a network based simulator 
such as NS-2 [14], which will be able to monitor each 
algorithm’s operation at the packet level and allow us to 
offer a more complete assessment of the performance of 
each algorithm within the general Bandwidth Broker 
framework. Furthermore, we plan to examine and 
comparatively evaluate the advantages of distributed 
designs, as well as their impact and overhead for the 
network. 
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