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Abstract

In this paper we investigate the online video on demand problem, namely having to

accept or reject a request for a movie without knowing the future requests. We present

online movie-scheduling schemes that implement the principles of refusal by choice and

delayed noti�cation. A novel way to schedule movies that exploits the knowledge of

the distribution of the preference of requests for movies, is shown to have a competitive

ratio that outperforms all the previously known schemes in practical situations. In fact,

our scheduler has a competitive ratio bounded above by a constant, independent of the

number of the users, channels, or movies, in the case that a large fraction of the requests

tends to concentrate in a small number of movies. We extend our approach by presenting

an \adaptive" randomized scheduler which initially is not aware of the movie popularities

but it adapts to it, and achieves a similar asymptotic competitive ratio.

Keywords: Video on demand, online scheduling algorithm, competitive ratio, probability

distribution.
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1 Introduction

Recent advances in computing and communication technology have made feasible video on

demand systems. Usually, the movies are stored in a central video server (which may be

connected to other servers by a high-bandwidth WAN). The video server is connected via a

high-capacity �ber line to local distribution centers (hubs) from which coax cables are used to

broadcast to the households. Major bottlenecks in this architecture are the limited number

of broadcast channels (shared by many households) and/or the number of movies that the

server can transmit concurrently (e.g. see [12]).

Di�erent issues involved in the design of a video on demand system have been studied

by di�erent researchers the last few years. Architectural issues have been studied in [10, 15],

physical storage organizations necessary for supporting video on demand systems in [5, 6, 13],

and probabilistic models for the assignment of video data onto a storage hierarchy in [14].

The �rst attempt to tackle video on demand from an optimization perspective was done

by Aggarwal, Garay and Herzberg in [1]. In that important work, the video on demand

problem was studied in an online setting, where an online algorithm receives a sequence of

requests for service. The performane of the online algorithm on a sequence of requests is

compared to the performance of an optimal o�ine algorithm that services the same sequence

of requests. Such an analysis of an online algorithm is referred to as competitive analysis.

Aggarwal, Garay and Herzberg showed upper and lower bounds on the competitive ratio

of online scheduling algorithms for certain scenarios, and also introduced the concept of

refusal by choice with delayed noti�cation and presented algorithms that exhibit under certain

conditions, an asymptotically optimal behaviour.

Refusal by choice (and, in fact, by random choice) was used previously in the problem

of admission control in fast networks (see [2, 3, 4, 9]). The admission control problem, �rst

de�ned by Garay and Gopal in [8], is the problem of deciding online whether or not a network

should accommodate a request for a large amount of data. The online video on demand

research was complementary to the research for the admission control problem. While the

research on admission control was mostly concerned with online allocation of network paths

in a way that would minimize overlap with paths of future requests, the adaptive video on

demand research focuses mostly on the issue of \revenue" of movie schedulers (over very

simple networks). The revenue has to do with grouping requests so that a single transmission

may serve many users requesting the same movie (popular movies). Also, the problem of
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online video on demand is related to the call control problem (see [3, 7]).

None of the previous works took into account the fact that most requests tend to conce-

trate on (a few) popular movies. In this paper we present a novel movie-scheduling scheme

which exploits the knowledge of the underlying distribution of movie requests, and achieves

constant competitive ratio in the case that the number of popular movies is small (which is

a realistic assumption). Our method follows the principle of refusal by choice with delayed

noti�cation. We also present a randomized movie-scheduling algorithm which does not need

to know the distribution of the movie requests in advance but it is able to follow slow changes

in this distribution, in an adaptive way that has a small transient behaviour. Our scheduler

will adapt to such an unknown distribution quickly (statistically learns). This method also

achieves constant competitive ratio in the case that the number of popular movies is small.

This is due to the assumption on a distribution of the input requests (which restricts the

oracles that would create worst-case behaviours in the lower bounds of [1]).

The rest of the paper is organized as follows. In section 2 we present the video on demand

architectural model used, and some basic de�nitions. In section 3 we present the online movie

scheduling algorithm S that knows the distribution p() of the movie requests, and in section

4 we analyze its performance against an optimal o�ine algorithm. In section 5 we extend

our approach by presenting an online scheduling algorithm R which is not aware of p() but

it adapts to it, and we discuss its performance.

2 The model and de�nitions

The video on demand model considered here follows [1], as far as the architecture is concerned.

It consists of a video server which acts as a database of movies, and supports a �xed number

of movie-streams (sessions). The users connect to the server via dedicated links and make

movie-requests to it. The communication network used is equipped with a multicast facility.

Thus, the same movie-stream can be sent to more than one users without causing any extra

overhead to the server, and therefore, multiple users can participate in a single session. Let

M be the set of movies stored in the server, U be the set of users making requests, and C

be the set of channels in the system, and let m, u, and c be their cardinalities, respectively.

The system is as in Figure 1.

The system has three time parameters:

T : The duration of a movie (we assume it is the same for all movies).
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Figure 1: The model

� : The maximum delay between a request and the start of the movie (if the request is

accepted).

�: The noti�cation time (the maximum delay between a request and its response).

Obviously, � � � � T . In this paper we consider � = �. We assume users are

\blocked" when seeing a movie, i.e., they cannot place other requests at that time.

Also, we assume that each user can place at most one request in each interval of time

T . Requests to the system are triples (q time; user; movie) and responses are tuples

(r time; user; movie; channel; servetime), where r time is a positive number in the in-

terval [q time; q time + �], user 2 U , movie 2 M , channel 2 C, and servetime is a real

number in the interval [r time; q time + �]. By convention, a refusal to serve is a response

with negative servetime.

A scheduling algorithm determines the responses of the system to the users at any

moment, and allocates movies to channels based on the requests to the system up to the

moment the scheduling is taking place. If � = 0 then a request must be responded as soon as

is it is presented. In this case the scheduling algorithm performs \immediate noti�cation".

Otherwise (i.e., � > 0), the scheduling algorithm performs \delayed noti�cation" and the

response to the user is issued at most � time units after the presentation of the request.

A scheduling algorithm is said to \refuse by choice" if it has a response (t; u;m; c; s) with

negative servetime s, while there exists a free channel at the reponse time t.

Let r be a request and e a movie. We assume that the request r will be for movie e with

probability p(e), i.e., we assume that requests are \independently" created according to the

distribution p() which indicates the movie popularities. Smart schedulers accumulate arriving

requests into queues Qj one for each movie ej . The idea is to serve for each j, all the requests

for movie ej accumulated into Qj with a single transmission (over a single channel). For an

input distribution D (and a randomized approach) the revenue of a sequence s of requests,
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for an online scheduler A, is a random variable showing how many requests were served in

the run. Let its expected value be x = E(rev(A(s))). Let OPT be an o�-line algorithm

that plays the role of an adversary whose goal is to produce a request sequence that would

force the player (the online algorithm A) to perform poorly. Let y = E(rev(OPT (s))) be the

expected revenue of OPT . The competitive ratio of the scheduler A is then

C(A) = sup
OPT;s2D

y

x

We of course assume that A, OPT follow the restrictions of T; �; � and also that the distri-

bution p() is respected in all sequences.

3 The online movie-scheduling algorithm S

In this section we present an online movie-scheduling shceme S for the video on demand

problem. We assume that the distribution p() is known, i.e., the scheduling algorithm S is

aware of the movie popularities. Then, S uses this information to divide the set C of channels

into subsets C1; C2; � � � ; Ck, so that channels in partition Ci, i 2 f1; � � � ; kg, will be used for

movies to be seen by at least h(i), i 2 f1; � � �kg, users on average, where h is an increasing

function from f1; � � � ; kg to f1; � � � ; u=cg (the way that the integer k and the function h are

determined, is discussed in the sequel of this section). The goal is to allocate less channels

to more popular movies, in order to optimize channel revenue and reduce unused channels.

The sets Ci change dynamically, i.e., each channel may belong to di�erent classes at di�erent

time periods of the execution.

The scheduling algorithm S employs m queues Qj , j = 1; � � � ; m, one for each movie ej ,

j = 1; � � � ; m. When a request for movie ej is done, it is inserted into Qj . Each Qj has a

\start-time" startj which is the time when the earliest request for that movie arrived. At

time startj + � the scheduler decides whether to serve the requests in Qj . If there is a free

channel in a set Ci with h(i) � jQj j, then all movie requests in Qj are served on that channel

by a single transmission. If, however, no such channel is available, then S rejects only those

requests in Qj made at time startj and resets startj to the time of the earlier request now

in Qj . When a channel is freed it is chosen to be placed to a set Ci with probability f 0i=F

where F =
Pk

i=1 f
0

i .

The f 0i 's, k and h are estimated as follows: If n users place \ overlapping requests" (i.e.,
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requests that can be served concurrently), then

P e
i = Probfmovie e will be selected by i usersg =

 
n

i

!
pi(e)(1� p(e))n�i

where p(e) is the probability of the movie e. Recall that each user can place at most one

request. Let

Qe
i =

nX
j=i

P e
j = Probfe will be selected by at least i usersg

If yei = 1 with probability Qe
i and 0 else, then,

P
e y

e
i equals the number of movies that

will be selected by at least i users to be seen \concurrently".

Clearly, E (
P

e y
e
i ) =

P
eQ

e
i by linearity of expectation. Let fi =

P
eQ

e
i . (We may use

n = u for the worst case demands. Actually, one may adaptively use n equal to u minus the

number of users that are currently seeing a movie.)

Let f 0
1
= f1. Let f

0

2
=
Pj2

i=2 fi for a j2 � 2 such that

f1

2
� f 0

2
< f1

In general, let f 0l =
Pjl

i=jl�1
fi, where jl�1 is such that f 0l�1 =

Pjl�1

i=jl�2
fi, and jl is such

that
f1

l
� f 0l <

f1

l � 1

Finally, let k be such that f 0k =
Pn

i=jk�1
fi and

f1

k
� f 0k <

f1

k � 1

Let h(1) = 1 and

h(l) = l
u

ck
for l = 2; � � � ; k

De�nition 1 The distribution p() is called k-skewed if the cummulative statistic fi is such

that there exist f 0i , i = 1; � � � ; k, as they are de�ned above.

Let gi be the expected number of channels currently in set Ci, i = 1; � � � ; k. Note that

gi =
cf 0i
F

; i = 1; � � � ; k

where F =
Pk

i=1 f
0

i . Any transmission made on a channel in set Ci must serve at least one

request for i = 1, and at least lu=(ck) requests for l = 2; � � � ; k.
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4 The performance of S

As in [1], the saturation level at instant t is the highest i such that all channels in sets

C1; C2; : : : ; Ci are occupied at time t. The saturation level of an interval of time is the

highest saturation level achieved during the interval.

We divide executions into intervals I0, I1, : : :of time T each, i.e., Ij = [jT; (j+ 1)T ).

For all j, let A(j) be the number of requests accepted by S at interval Ij in response

to a request sequence, and R(j) the number of requests rejected by S but accepted by the

o�ine algorithm OPT in its execution in response to the same request sequence. Let �j the

saturation level of interval Ij .

Thus, there is some t 2 Ij such that all channels in sets C1, C2, : : :C�j are occupied.

Since such requests must have been scheduled to run no earlier than t� T we have 8j,

A(j � 1) +A(j) � h(1)g1+ h(2)g2 + � � �h(�j)g�j =
c(h(1)f 0

1
+ h(2)f 0

2
+ � � �+ h(�j)f

0

�j
)

F
�

�
c+ u=k(�j � 1)f1

f1(1 +Hk�1)
�

c+ u=k(�j � 1)

1 +Hk�1

(1)

where Hk�1 = 1+ 1

2
+ � � �+ 1

k�1
. (Note that F =

Pk
i=1 f

0

i < f1+ f1 + f1=2 � � �+ f1=(k � 1) =

f1(1 +Hk�1).)

Now, all requests in R(j) were rejected by S during Ij , so each such request was made in

the interval [jT � �; (j+1)T � �). The o�ine algorithm OPT could thus serve these requests

anytime in [jT � �; (j + 1)T � �). Since each channel is freed after T time units, OPT can

utilize each channel twice in this interval.

To bound the number of requests (for the same movie) that such a transmission by OPT

could serve we distinguish cases depending on the value of �j .

Suppose �rst that �j < k. Then, any o�ine transmission serving more than h(�j)

requests would also be served by S. Therefore, 8j R(j) � 2h(�j)c = 2u=k�j .

Let A(j), R(j) be the expected values of A(j) and R(j), respectively. Let also A =P
A(j) be the expected total number of requests accepted by S, and R =

P
R(j) the expected

total number of requests rejected by S but accepted by the o�ine algorithm OPT.

Then

C(S1) �
A+ R

A
= 1 +

R

A
(2)
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i.e.,

C(S1) � 1 +
2u=kE(�j)

u=kE(�j � 1)=(1+Hk�1)
= 1 + 2(1 +Hk�1) = 3 + 2Hk�1 (3)

Consider now the case where �j = k. Note that R(j) � 2h(k)c = 2u while

A(j) �
c+ u

1 +Hk�1

yielding the same result. Therefore, we have the following theorem.

Theorem 1 If p() is k{skewed then the competitive ratio of the shceduler S is asymptotically

bounded above by 3 + 2Hk�1, where Hk�1 is the (k � 1) harmonic number (i.e. Hk�1 =

1 + 1

2
+ : : :+ 1

k�1
).

Note that k can be independent of u, c, m. The actual value of k depends on the way

that the sequence f1; f2; � � � decreases. If the sum
P

j fj converges then the value of k is

constant. For example, if the sequence f1; f2; � � � decreases as the sequence 1;
1

2
; 1
4
; 1
8
; � � �, then

k = 4.

Note that our assumption that k is a small number is a realistic one given that the

number of popular movies is small. Even if the distribution p() is not good enough so that

the cummulative statistic fi to be such that f 0i can be de�ned, the sequence fi is still rapidly

decreasing. In this case, we may rede�ne the sequence f 0i so that that it adapts to the way

fi is decreasing. This means that we might not be able to use the \harmonic" way that

scheduler S employs to group consecutive elements of the sequence fi into an element of f 0i

but still we may group them in a non-canonical way so that the total number of elements in f 0i

(i.e., the value of k) is small. Therefore, even in this case we have an online movie-scheduling

algorithm that achieves competitive ratio against any o�ine algorithm similar to that of S.

5 Work in progress

In this section we present an adaptive online movie-scheduling scheme R which is not aware

of the movie popularities, i.e., the distribution p() in not known. R uses an intitial partition

of the channels in C into classes C1; C2; � � � ; C�, and a mechanism to dynamically reallocate

channels to the sets Ci, and adjusts to the initially unknown distribution p() and there-

fore, achieves an asymptotic competitive ratio against any o�ine algorithm similar to the

competitive ratio of S.

The adaptive scheduler R partitions the channels into � classes C1; : : : ; C� where � = du
c
e,

with jCij = d c
iHi

e (Hi is the ith Harmonic number), i.e., the initial allocation is the full
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Harmonic allocation. R attempts to serve requests as in S, with the following di�erence: At

time startj of the queue Qj the scheduler looks for a free channel in a set Ck, h(i) � jQj j

(initially, h(i) = i). If such a channel does not exist it rejects the head of the queue. If such

a channel exists, then it serves the queue with probability
1

2
. Else the (candicate) head of

Qj is rejected and the free channel is reallocated to a set Ci with probability f 0i=F , where

F =
P

i f
0

i . The f
0

i 's are estimated as follows. Let fi be the number of queues with at least i

requests, for i = 1; � � � ; n. We use the sequence fi to de�ne the sequence f
0

i and the function

h in a way similar to that of S. Also, when a channel is freed, it is reallocated according

to the estimates of
f 0
i

F
. Assume that the sequences of movie request over time are ergodic

i.e., time average are close to ensemble averages. Also, assume that the number of requests

generated in a period of � time units (request generation rate) is high (at least logm). Then,

by assuming a long enough run, the estimator is very close to the actual statistic, i.e., R

adjusts to the (unknown) p() distribution by its dynamic reallocation mechanism. So, we

claim the following result.

Result 1 If p() is k{skewed and the movie request sequence is ergodic then the asymptotic

competitive ratio of the adaptive scheduler R is asymptotically bounded above by 3 + 2Hk�1,

where Hk�1 is the (k � 1) harmonic number.
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