
An approach to a methodology and implementation of a Network Monitoring Analysis
Tool

Elias Aravantinos Dr. Christos Bouras

Dr. Petros Ganos Computer Engineering and
Informatics Department

Aristidis Ilias University of Patras
Research Academic Computer

Technology Institute
GR-26500, Patras, Greece

Riga Feraiou 61 Research Academic Computer
Technology Institute

GR- 26221 Patras, Greece E-mail: bouras@cti.gr
E-mail: eliasara@cti.gr
E-mail: ganos@cti.gr
E-mail: ilsadis@cti.gr

KEYWORDS
Network monitoring, IP Based Networks, SNMP, Real Time
System, Network resources, Databases.

ABSTRACT

In this paper we describe the design and implementation of a
network monitoring analysis tool. The network resources
were configured to support SNMP under various operating
systems, thresholds definitions and events. The data were
collected by a network monitoring system and handled
according to the values of the variables or the event type. A
real- time report to a database was established via adaptive
scripts. A Network Node Manager (NNM) will inform an
external, remote database about the network status by
sending real time data containing alerts and events. The
whole tool is called Network Management Analysis Tool
(NMAT).

INTRODUCTION

A fundamental division among network monitoring systems
is related to whether the monitoring is done off-line (while
only test messages are flowing), on-line (while user traffic is
on the network) or both. Techniques for monitoring
networks, when they are out of service, involve the
generation of test sequences, monitoring and analysis of the
results, to determine measurable levels of performance and
protocol conformance. Such tests may be implemented in a
test bench environment, manufacturing floor, network
operations centre or during an outage in an operational
network.
The process of on-line monitoring and analysis may be
performed on a continuous basis, scheduled at various times
of day or invoked only when circumstances (such as load
changes or quality concerns) demand a closer scrutiny.
Continuous monitoring (intrusive testing) is the most costly
alternative in terms of resources and time, but is also the
most beneficial from a user’s viewpoint.
Monitoring may be divided into two categories according to
the layers involved:

 Monitoring and analysis of the physical and network
layers referring to the OSI model

 Monitoring and analysis of the hardware platforms and
operating systems

A very large number of access points (network nodes) may
be required and they would usually be dedicated to the
monitoring system. The amount of data that needs to be
collected and transported to a local/remote database may also
be very high. The benefit, however, is that proactive
management and dynamic prediction may be a reality.
Network performance measurement is an extremely broad
area and we can only briefly mention some of the more
relevant work. (Carter and Crovella 1996) present two tools
“bprobe” and “cprobe” to measure the bottleneck link speed
and competing traffic respectively, on a path using ICMP
ECHO packets. Since these tools do not use TCP, they are
not able to capture any TCP related effects that an
application might experience. Van Jacobson proposes the
tool “pathchar” (Jacobson 1997) that estimates bandwidth on
all hops of a path and hence can take a very long time. It also
requires root access, making it less desirable for grid
environments. The tool “Treno” (Mathis amd Mahdavi 1996)
emulates an idealized TCP, which makes the measurements
independent of host-specific TCP implementations but not
representative of what applications would experience.
“Treno” also needs root access. Topology-d (Obraczka 1998)
uses “ping” and “netperf” to make measurements between all
pairs within a group and then computes a minimum-cost
logical topology. The Network Weather Service (NWS)
(Wolski 1998) uses TCP to send small, fixed-size probes
measured in kilobytes, with a frequency that is tuneable, but
typically ranges from tens of seconds to several minutes.
Performance measurement systems, such as the National
Internet Measurement Infrastructure (NIMI) project (Paxson
1998) are designed for arbitrary Internet hosts. The
Cooperative Association complements this work for Internet
Data Analysis. The goal is to develop metrics and tools for
analyzing traffic across the Internet. Additionally, the data
from such tools intend to be used by “higher-level” systems.
Lowecamp (Lowecamp 1998) also provides an API whereby
applications can pose flow and topology-based queries.

AppLeS (Application Level Scheduler) (Su 1998) uses
information from the NWS to schedule distributed resource-
intensive applications.
Finally other components will use “Gloperf” information in
similar resource discovery and allocation functions. We note
(Lee 1999) that “Gloperf” is designed to enhance portability.
It makes end-to-end TCP measurements. Storing “Gloperf”
data in a directory service provides data discovery and
access. However, there are missing some measurements to
allow applications to probe network resources and getting
fresh data.
The purpose of this paper is to approach a methodology and
implementation of a Network Monitoring Analysis Tool
(NMAT) during the operation of an intranet network
containing hundreds of terminals established in enterprise
buildings, airplanes, ships etc. The aim is to collect
automatically and in real-time values of monitoring data in a
storing schema, a database for instance and finally make
decisions at a human level.
This paper is organized as follows: First the tool design is
presented in main principles. The next section describes the
proposed phases of functionalities, containing techniques,
specifications and results of network monitoring. Finally
future work and concluding remarks are provided.

ARCHITECTURE

The Network Management System (NMS) used, is HP Open
View Network Node Manager (NNM). It is a commercial,
well-known and reliable platform that implements the Simple
Network Management Protocol (SNMP). The NNM collects
by polling in tuneable time intervals the SNMP data from the
managed network devices of the intranet and automatically
sends the required values of data to a database.
The tables are filled by these values, which could be
exported in various metadata formats in order to realize a
data statistical analysis. Then the analysis will be assessed
and will also be the input to form the predictions of network
behaviour and performance. The last step concerns decisions
and reconfiguration processes.
The whole process is described as following:
 The NMS is fully configured.
 The general database is created (installation, table

creation).
 The network resources are configured to support SNMP

(agent) under Linux and Windows operating system.
 Thresholds are defined and events are configured at the

NMS.
 Data are collected by the NMS and handled according to

the values of the variables or the event type.
 Real-time report is imported to the database via a script

language.
 The events are classified by an appropriate value for

later data manipulation and analysis.
 Prediction and decision analysis about the network

components performance are made.
The tested network is an Intranet, supported by a Fast
Ethernet network with bus topology. The Fast Ethernet
network cable is Unshielded Twisted Pair category 5 (UTP
cat 5). The tested network consists of a certain number of
terminals, servers, Local Area Network (LAN) router and

LAN switches. Each LAN segment is located in a different
physical place in the Intranet. The LAN switches are Fast
Ethernet network devices that provide each sender/receiver
pair with full 100 Mbps capacity. Each port on the switch
gives full bandwidth to a single server or client station.
Furthermore, there is a switch-router connected to the
Internet to serve the Intranet. The terminals and the servers
are connected to different LAN segments. It was supposed
that the tested terminals are located in different physical
LANs instead of VLANs. All the terminals are connected to
different switches instead of VLANs of the same switch.

NM S Se rve r LINUX S e rve r

S e rve rs

S w itche s

P C s

SNMP

S NM P

SNM
P

Re m ote
Da ta ba se

Figures 1: System Architecture

Figure 1 describes the tested system architecture. The
network monitoring process was based on the SNMP,
managing all devices, like servers, switches and PCs. The
Remote Database was hosted on a LINUX Server and NMS
established a one way communication link, each time that
appeared the need of sending data to the database.
The NMS server supported Windows 2000 Server operating
system and the terminals Windows 2000 and LINUX.
An SNMP agent resides in each terminal machine in order to
be remotely managed by NMS. The managed devices run
software (SNMP agent) that enables them to send alerts
(traps) when they recognize problems (for example, SNMP
link failure). Upon receiving these alerts, management
entities are programmed to react by executing one, several or
a group of actions (referring to scripts) including event
logging, changes in device configuration and system
shutdown.
The management entities poll the end stations to check the
values of certain variables in Management Information Bases
(MIB). A MIB is a SNMP structure that describes the
particular device being monitored. Polling can be automatic
or user-initiated and agents in the managed devices respond
to all polls. Agents are software modules that first compile
information about the managed devices in which they reside,
then store this information in a management database and
finally provide it (proactively or reactively) to management
entities within NNM via SNMP.

IMPLEMENTATION ISSUES

In our tested network an external database is used instead of
an internal NNM database. The reason is to create applicable
tables with different relations compared to the compact,
complicated and inflexible NNM’s database model. As a
result we propose a scheme, which could appear database

platform independency. Moreover the use of an external
database provides interoperability, because it is possible to
comply with several software tools, like JAVA-based
platforms or other experimental tools developed for similar
purposes.
The NNM collects by polling in tuneable time intervals the
SNMP data from the managed network devices of the
intranet and automatically sends the required values of data
to a database.
Any corporate network has two types of end users: the
organization’s typical employee and the network operator
who is responsible for maintaining the end-to-end service.
The organization’s typical end users and the success of the
business applications that live on the network are the ultimate
beneficiaries of all the various network monitoring activities
that are performed within the network. However, the end
users are least aware of the infrastructure behind the service.
They simply need a quality of service that meets their
business needs and achieves certain invisibility. It is the goal
of achieving this “invisibility” of consistently good service
that makes the added cost of monitoring and analysis tools
justifiable.
The MIBs are used to monitor and access network and
system information variables. They are either vendor MIBs
or experimental MIBs. The vendor MIBs concern mainly the
network switches while the experimental ones are used to
monitor special parameters like the hostmib.mib which
monitors system information (for example CPU load).
The SNMP polling interval was generally configured at 60
seconds. The NMS polls each critical variable every 10
seconds receiving traps and events. This polling interval
concerns mostly the servers and the switches of the Intranet.
The rest of the nodes are controlled from NNM every 1
minute.
The Network Management Analysis Tool (NMAT) reports
all events in the external database with the help of two script-
files (Brown 1999) (Events.ovpl and Events_value.ovpl)
developed in Perl scripting language. These files are useful
for the automatic actions, in order to insert the network
variables values polled from NNM into the Database. Both
scripts are running with the help of Open View Perl installed
with NNM and configured with the help of the Event
Configuration module of NNM.
The main problem we had to solve was the handle of
consequential events, which are events that occurred exactly
the same time. After making several experiments, we noticed
that there was a unique variable generated by every event.
This variable helped to distinguish the consequent events as
discrete instants and store them into a remote database.
The events are separated in two categories:
 Events with value
 Events without a measured value

Events with value

The configuration of the events that do contain value should
include the following automatic action command:
OVHIDESHELL cmd.exe /c "Events_value.ovpl $s $ar $N
$3 $8"

Through this command the Perl file is called and rest of the
symbols present the specific event variables based on NNM’s
manual.

#!/opt/OV/bin/Perl/bin/perl
my $param_1 = $ARGV[0];
my $param_2 = $ARGV[1];
my $param_3 = $ARGV[2];
my $param_5 = $ARGV[4];
my $param_4 = 100;
my $param_7 = 100;
my
$SUMMARY_TEXT="tmp_event_".$param_5.".sql"
;
open(SUMMARY,">$SUMMARY_TEXT");
$command1 = "insert into nms(severity,source,event,value)
values ('$param_1', '$param_2', '$param_3', '$param_4');";
printf SUMMARY ("$command1");
close(SUMMARY);
$command2 = "psql.exe -h 150.140.21.70 -f
$SUMMARY_TEXT system nms";
$command3 = "del $SUMMARY_TEXT";
system($command2);
system($command3);
exit 0;

Figures 2: Listing of Events_value.ovpl

Events without a measured value

The configuration of the events that do not contain value
should include the following automatic action command:
OVHIDESHELL cmd.exe /c "events.ovpl $s $ar $N 100
$3"

#!/opt/OV/bin/Perl/bin/perl
my $param_1 = $ARGV[0];
my $param_2 = $ARGV[1];
my $param_3 = $ARGV[2];
my $param_4 = $ARGV[3];
my $param_5 = $ARGV[4];
my
$SUMMARY_TEXT="tmp_event_".$param_4.".sql"
;
open(SUMMARY,">$SUMMARY_TEXT");
$command1 = "insert into nms(severity,source,event,value)
values ('$param_1', '$param_2', '$param_3', '$param_5');";
printf SUMMARY ("$command1");
close(SUMMARY);
$command2 = "psql.exe -h 150.140.21.70 -f
$SUMMARY_TEXT system nms";
$command3 = "del $SUMMARY_TEXT";
system($command2);
system($command3);
exit 0;

Figures 3: Listing of Events.ovpl

The scripts use some NNM variables that are generated with
the event, open a connection with the Postgres database using

the “psql” client and insert data to the NMS table. By the
time of an event, a trap occurs, an automatic action occurs,
the appropriate script is executed reporting the status of the
nodes (up or down) and certain data are imported to the NMS
table of the database. The data could be event description,
severity of the event (normal, major) and special values such
as CPU load and temperature. When the event does not
contain value like node status events, Events.ovpl is running.
When the event does contain value like CPU load
Events_value.ovpl is running. Additionally, PSQL client
helps to connect to the database by using the IP of the
LINUX server instead of the DNS to avoid a possible failure
of DNS server.
Then, the events should be activated (this is an easy
procedure). Once the configuration is created, everything is
included in the trapd.conf file. The events and the
specifications are:

Table 1: Events Configuration

Specifications Name of the event
Polled by the SNMP
manager every 60 sec

OV_NODE_UP
OV_NODE_DOWN

Checked on all
machines every 60
sec
OVER the limit in
case load > 70%
REARM the limit in
case load < 60%

OV_CPU_OVER
OV_CPU_REARM

OVER if T° > 41°C
REARM if T° <=
40°C

OV_TEMP_OVER
OV_TEMP_REARM

Link is DOWN if
connection of cable is
removed

SNMP_LINK_UP
SNMP_LINK_DOWN

The thresholds concern the control of CPU load (OVER in
case load > 70%, REARM in case load < 60%) of all
monitored nodes and also the control of CPU temperature
(OVER if T° > 41°C, REARM if T° <= 40°C) at terminals
side. When the threshold value is exceeded, NNM reports to
the database through an automatic action the new value.
Everything is included in the SnmpCol.conf file.
In order to keep NMS CPU level in low level, a task is added
in Windows task manager that restarts the “SNMPcollect”
procedure every 5 minutes, running cpuNMS.bat file. This
task is necessary because the CPU is overloaded due to the
short SNMP polling intervals. The suggested regular NNM
polling interval from HP is 5 min.
The external database could be Postgres, MySQL etc. The
database management system selected was a Postgres, hosted
on a LINUX server. The configuration of DBMS concerned
only trusted “users”, specifically only the IPs of NMS server
represented a trusted machine, which could communicate
with the appropriate port of the LINUX server and with the
database. The above option was selected to ensure the
security of database and its data.
NNM is able to send and store data to the central database.
The interface uses the Postgres client to connect to the
database and some SQL commands to insert data into the

NMS table. All the modules of this interface are stored in a
temporary folder of hard disk.

Table 2: NMS Table Architecture

ID Event Identifier
Event Short description
Source The IP Address of the Node
Severity Event Importance
Value Variable value of measured

events

A different script is executed according to the type of the
event that occurs, in order to store CPU load, node status,
temperature etc. into the database table. The script is
embedded in the Events configuration module and exports
several variable values of NNM. All actions are automated
and occur in real time. The following table shows a sample
record in the NMS table:

Figures 4: Sample record

The first field is an auto-counter, next the severity
importance, next the source indicating the IP address, next a
field that contains the local date-time and last a field that
contains a short description of the event. Postgres generates
automatically the field date-time. In the field “Value” is
stored data from measured events like temperature and CPU
load.
Other variables that NNM monitors and measures are:
 Interface Utilization of TCP/IP port
 Interface errors
 Bandwidth
 Hardware fails of the monitored devices
 CPU load
 Temperature value of the terminal
 Node status
 Thresholds to critical values
 SNMP traffic, etc.

Table 3 presents some samples of database records during a
certain time period of about three months. It is obvious that
the desired network and system variables were collected
according to the scenario. The Event with ID 11298 that was
stored in the table referred to a very important, major
situation affecting the CPU of the machine with IP
150.140.21.63. The CPU load of the machine at the specific
date time was over the specific limit, about 80%. Then the
Event with ID 11302 refers to a situation where the CPU
operates normally according to pre-configured limits. The
network administrator checks the table and finds out which
are the ‘weak’ points of the network. Then he makes
decisions about network and system improvements, in order
to avoid some similar situations or combination that already
occurred. The main and critical issue is to take decisions
about the whole information system containing network
expansion, bandwidth issues, devices with hardware and
software specifications etc. concluding sometimes to a brand
new system ‘refresh’, after taking into account the different
parameters.

Table 3: Sample of experimental results

ID EVENT SOURCE SEVERITY VALUE DATE AND TIME

8356 OV_Node_Up 150.140.21.39 Normal 27/08/2002
01:34:32

11298 OV_Cpu_Over 150.140.21.63 Major 80 17/10/2002
01:41:15

11299 OV_Node_Down 150.140.21.30 Normal 17/10/2002
01:41:43

11302 OV_Cpu_Rearm 150.140.21.63 Normal 20 17/10/2002
01:51:01

13825 SNMP_Link_Down 150.140.21.38 Major 20/11/2002
10:35:08

FUTURE WORK

The future work concerns the extension of the monitored
SNMP variables in order to cover all the possible network
events. The final expectation is to focus on the real network
status, show its weak points and improve the network
performance.
The prediction and decision analysis of the data collection
could become another issue of our future work. We intend to
select some standard models related to data analysis and do
further work close to this problem. This work will enhance
the decision analysis and prediction parts of our tool.
Another future goal is to apply this tool to several networks
and assess the variables based on their criticality.

CONCLUSIONS

For network operators, network monitoring and analysis
provides the means to become proactive (i.e. to detect faults
prior to receiving a user’s complaint). It also allows them to
manage service level contracts, to be assured of day-to-day
operations and to validate system changes.
The result of our work is a methodology and an
implementation of a network monitoring analysis tool, which
could improve the network performance. This could be
achieved via the prediction and decision analysis of the data
collection.

REFERENCES

Brown, M. C., 1999, “The Complete Reference Perl”,
Osborne/McGraw-Hill.

Carter, R. and M. Crovella. 1996. “Dynamic server selection using
bandwidth probing in wide-area networks”, Technical report,
Boston U., TR-96-007.

Carter, R. and M. Crovella. 1996. “Measuring bottleneck link speed
in packet-switched networks”, Technical report, Boston U., TR-
96-006.

Jacobson, V. 1997. “A tool to infer characteristics of Internet
paths”, Technical report, Lawrence Berkeley Lab.

Lee, C. A., J. Stepanek, R. Wolski, C. Kesselman and I. Foster,
November 1999, “A Network Performance Tool for Grid
Environments”, Technical Paper presented at Super Computing
‘99, Portland, Oregon, USA.

Lowecamp, B. et al., August 1998, “A resource query interface for
network-aware applications”, 7th IEEE Symposium on High
Performance Distributed Computing, pages 189–196.

Mathis, M. and J. Mahdavi, 1996, “Diagnosing Internet congestion
with a transport layer performance tool”, Proc. INET ’96.

Obraczka, K. and G. Gheorghiu. August 1998. “The performance of
a service for network-aware applications”, 2nd Sigmetrics
conference on parallel and distributed tools.

Paxson, V., J. Mahdavi, A. Adams, and M. Mathis. August 1998.
“An architecture for large-scale internet measurement”, IEEE
Communications, 36(8): 48–54.

Su, A., F. Berman, R. Wolski and M. M. Strout, November 1998,
“Using apples to schedule a distributed visualization on the
computational grid”.

Wolski, R., N. Spring, and H. Hayes. 1998. “The network weather
service: A distributed resource performance forecasting service
for meta-computing”, Future Generation Computing Systems.

