
Web Page Fragmentation for Personalized Portal Construction

Bouras Christos Kapoulas Vaggelis Misedakis Ioannis
Research Academic Computer Technology Institute, 61 Riga Feraiou Str., 26221 Patras, Greece and

Computer Engineering and Informatics Department, University of Patras, 26500 Rion, Patras, Greece
+30-2610-960375

bouras@cti.gr
+30-2610-960355
kapoulas@cti.gr

+30-2610-996954
misedaki@cti.gr

Abstract

Web portals offer many services and wealth of content

to Web users. However, most users do not find interest in
all the content present in these sites. Most of them visit
some specific sites and browse in specific thematic areas of
them. In this paper, a software technique is presented that
allows the viewers of web sites to build their own
personalized portals, using specific thematic areas of their
preferred sites. This transcoding technique is based on an
algorithm, which fragments a web page in discrete
fragments using the page’s internal structure. A training
and update procedure is used for identifying the different
instances of thematic areas in different time points.

1. Introduction

Most web sites have a static structure for the

presentation of their content. In content-rich web sites this
structure comprises of areas of content of common
semantic. These areas are called ‘Web Components’,
because the web page can be split entirely in such discrete
areas. Most users of the Web visit some specific web sites
every time they are engaged in a browsing session and they
usually show interest for some specific thematic areas.

In this paper a technique is presented that could assist
web users in their browsing sessions. This technique could
be used for building a web site that allows its users to
construct ‘personalized pages’ containing content from
their favorite sites. A user could have in a single web page,
all the thematic areas of the sites he prefers. The presented
technique premises the usage of a software tool, working
centrally (as a data source for the web server), and which
analyzes selected web pages and fragments them in
thematic areas.

 ‘Web Components’ (denoted WC from now on) was
introduced as a concept in [1]. The fragmentation algorithm
that is used in the system was presented in [2]. A ‘Web
surfing assistant’ is presented in [3], which utilizes a
similar fragmentation technique as the one presented in this

paper for splitting a web page in semantic regions. Several
transcoding systems have been presented that aim to
provide users of small-screen devices, such as PDAs or
WAP-phones, an alternative, enhanced way of browsing
the Web (see e.g. [4]). Finally, [5] proposes a system,
which, like the one presented in this paper, focuses on the
problem of identifying a particular part of a web page in
different time points, besides fragmenting a page.

This paper continues with a brief presentation of the
fragmentation algorithm that has been implemented in
section 2. In section 3 the training and update procedure is
presented. Section 4 presents an evaluation of the training
technique and the paper concludes with some future work
thoughts in section 5.

2. Fragmentation Algorithm

A browser renders a web page based on the HTML file

that represents the page. The tags inside the HTML file are
nested. This means that the code of the page can be
represented as a tree (HTML tree). We could extract the
parts of the page that represent the different Web
Components of the page just by extracting some particular
nodes of the HTML tree.

Most web sites use tables for building their layout. This
lead to the decision to use the table structure of a web page
for fragmenting the page. If we ignore all the nodes of the
HTML tree except the TABLE nodes, the HTML tree is
reduced significantly in complexity. Based on the amount
of content (text) of each node, the algorithm chooses which
nodes must be considered as the building components of
the web page.

The fragmentation algorithm is used for the web pages’
analysis and fragmentation, which includes two phases:
training and update.

Algorithm 1: Fragmentation Algorithm
Steps 1-4 are used both in the ‘Training’ and the ‘Update’ phase.
1) Fetch the latest instance of the web page
2) Parse the web page and construct the HTML tree
3) Analyze the HTML tree and produce the index tree
4) Analyze the index tree and calculate which nodes must be

marked as Web components

Steps 5 and 6 are used only in the ‘Update’ phase.
5) Check if there are differences in the structure of the index tree

from the index tree of the ‘training’ phase or if there are
differences in the number of the web components selected. In
case there are differences, recalculate the web components.

6) Extract the Web Components and store them.
For the needs of step 2 an HTML parser was created,

which builds the HTML tree. Step 3 of the fragmentation
algorithm constructs (using the HTML tree) another tree
structure (‘index tree’) that is used in step 4 for recognizing
which areas of the HTML file will be extracted as Web
Components. The index tree is significantly smaller in size
than the HTML tree, since only the TABLE nodes have
been kept from it. The ID of each node depends on the
position of the node in the index tree. In each node in this
new structure, its corresponding node in the HTML tree is
linked and also some information for calculations that will
be performed later is stored. This information includes the
length of the text of this node in the HTML file (with and
without the tags), the ID of the node, the number of images
that are included under this node and finally the number of
links that can be found in the text (content) of the node.

The actual decisions about how a web page will be
fragmented are taken in step 4. The fragmentation
algorithm recursively parses the index tree trying to find
nodes that match some particular criteria. When such a
node is found, the algorithm stops traversing its children
and the node is marked as a Web Component. When the
fragmentation algorithm finishes the traversal of the index
tree, it makes some last refinements of the Web
Components selections.

After this point, the algorithm includes two more steps,
which are used only in the update phase and will be
described in the respective section of the paper.

The fragmentation algorithm has been presented in [2].

3. Transcoding Technique

In this section the methodology for constructing

personalized web pages based on Web Components is
presented. There are three phases: Web pages’ analysis and
fragmentation, components selection (by the user) and
personalized page synthesis.

3.1. Web pages’ analysis and fragmentation

Web pages analysis and fragmentation involves a

software tool whose role is to continuously analyze
selected web pages and update the information that is
stored about them and the HTML code of the components.
This tool is not installed on the users’ personal computers,
but functions centrally, as a data source for the web server
of the service provider. WCs are not created dynamically
upon users’ requests, but are extracted and stored by this

software mechanism. The building code of each Web
component is updated in frequent time intervals.

Web pages’ analysis and fragmentation is a multi-step
procedure. This procedure includes two main phases. The
first one is the training phase. Each web page is examined
for a given period of time, areas that can be treated as WCs
are detected and signatures are created for them. The
update procedure fragments the web page and updates the
latest instances of the WCs that are stored in the system.

In the following sections the training and the update
phases are examined more thoroughly.
3.1.1. Training Phase. During the training phase, a web
page is analyzed many times. In the end of the training
phase, the training algorithm’s output is the number of the
WCs of the examined page, and a unique identifier for each
one of these components. This unique identifier can be
used for identifying a WC in a web page instance that has
changes in the page structure or changes in the number of
the WCs. This training phase would not be required if
changes never happened in the web page’ structure and the
relative size of its content areas. The training phase allows
the system to have pre-built knowledge about how to
handle these changes. One basic assumption for its correct
functioning is that changes like these do not happen during
the training procedure. We use the simplest solution when
this situation occurs, which is to reject the samples that
have changes.

A web component can be characterized by many factors:
Its position inside the index-tree, its relative position to the
other web components, its ID inside the index tree, its
content (in terms of text or images), its content size (in
terms of text length or number of images) and others.
However, it is quite difficult to find a criterion that can be
used to uniquely identify a WC from the others that are
contained inside a Web page. We have to note here that this
is necessary for the proper functioning of the system, since
the users must be able to select which components they
wish to see in their personalized page and the system must
be able to recognize them from the list of the Web
Components extracted from the fragmentation algorithm.

The training phase can be split in four sub-phases:
1. Data gathering phase
2. Comparison of Content Vectors of instances of the

same WC and extraction of a single Constant
Content Vector (CCV) for each Web Component

3. Comparison of the CCVs of all the WCs of the web
page and extraction of the Identifier Content Vector
(ICV) of each Web Component.

4. Assignment of signatures.
In the data gathering phase, during fixed intervals of

time the fragmentation algorithm is activated and the index
tree for the specific page instance is stored. The goal is to
have enough specimens of the index tree for a time interval
in which all the content changes that happen regularly in

the web page have taken place. When this predefined
monitoring time period has passed, k specimens of the
index tree have been collected, where









=

Interval Sampling
Period Monitoringk .

In the second phase, some calculations take place that
aim to recognize the content of each Web Component that
stays constant during the monitoring period. For each WC
of the index trees, the fragmentation algorithm constructs a
data structure that contains its content, i.e. every word of
the text inside the WC and the filenames of the images
contained in the component. This data structure is named
‘Content Vector’ (CV) and is a characteristic of each WC
instance (This means that the CV can be different for
different instances of the same WC). The CV is a pair of
two vectors, one containing the text terms inside a WC
instance and one containing the filenames of the images.
These are symbolized as Tp and Ip respectively.

Tp = {w | w is a word inside the pure text of WC p}
Ip = {z | z is an image contained in the code of WC p}

CVp = (Tp , Ip)
We assume that for the k specimens of the index trees

the number of the WCs that have been selected in each
fragmentation and the index tree’s structure remain the
same. Using the ID of each WC, the training algorithm
acquires this WC’s instances and its CVs from the
collection of the index trees. Following this it compares the
k CVs of each WC and keeps only the content that exist in
all the CVs. In the end of this procedure the algorithm has
constructed a data structure that keeps the content of each
Web Component that remained constant during the whole
training procedure. This structure is named ‘Constant
Content Vector’ (CCV) and is a characteristic of a WC
independently of its instances in different time points.

I
k

t
tpp CVCCV

1
,

=

=

(CVp,t is the Content Vector of the tth instance of WC p).
The CCV of a WC is derived taking into account only

the content of this specific WC. But the goal of the training
procedure is to produce identifiers for all the WCs of a
Web page, which could uniquely identify all of them in the
web page. Therefore, in step 3 of the training procedure the
CCVs of all the WCs are compared mutually and the text or
images that exist in all the CCVs are removed. These
reduced CCVs are named ‘Identifier Content Vectors’
(ICVs). In addition, if the content of an ICV is contained
completely inside the content of another ICV, then the first
WC and its ICV are marked as weak. This means that its
ICV cannot uniquely identify it. In the end of step 3, each
WC has an ICV that uniquely identifies it in the Web Page,
with the exception of WCs that are marked as weak.

I
max

1

p

i
ipp CCVCCVICV

=

−=

WCp is weak if ∃ WCq: qp ICVICV ⊆
In step 4 the ICVs are set as the signatures of their

respective WCs. However, it is possible that some
components have an empty or weak ICV (an empty ICV is
also weak, since it is a subset of all other ICVs). This ICV
cannot be used as a signature. Therefore, in step 4 the
training algorithm detects the WC with weak ICVs and
assigns another kind of data structure, which is based in
their relative position in the web page and in the content
size, as a signature for them. The way this signature is
constructed is explained with an example:

Figure 1 shows the index tree graph of www.in.gr.
While almost all of its Web Components (which have been
marked with bold in the index graph) have an ICV as a
signature, the leaf nodes, which are descendants of node
with the ID 3-6, have been chosen as Web Components and
all of them have empty ICVs. Therefore, the algorithm
must assign a separate signature to every one of them. The
Web Components with IDs 3-5-4 and 3-7-1-1 are the first
components before and after the series of the components
with empty ICVs. These two components are included in
the signature data structure. In addition, the position of
each one of these components with empty ICVs inside their
list is stored in the signature data structure. These three
fields denote the relative position of the components
regarding the other components in the index tree.
Additionally, two more fields are used to store the text size
and the number of images included in each component.
These are used in order to identify a component in cases
where the relative position is not enough. Therefore, the
identifier data structure for components with weak ICVs
has the structure shown in Figure 2. In this identifier the
previous and the next component (1st and 2nd field) are
marked with their sequence number in the page index,
which is the final output of the training procedure. The
page index is a matrix, which contains the ID and the
signature of every Web Component of the page.

Figure 1: Index tree for www.in.gr

Previous Component Next Component Position Text Size Number of Images

Figure 2: Identifier for weak components
3.1.2. Update Phase. Following the training phase,
knowledge has been acquired about what output to expect
from every fetching and fragmentation of the web page.

The full structure of the web page is available (shown in
anyone of the k index trees collected during the training
phase) and also the page index, which stores all the web
components signatures.

The role of the update phase is to update the stored data
with the latest instances of the Web Components (HTML
code, images, etc). The time interval between each fetching
and update of a web page depends on the frequency of
change of its content.

The fragmentation algorithm produces in step 4 the
index tree of the web page instance that was fetched and
marks some nodes as Web Components. Step 5 takes the
index tree and the page index and checks if there are
differences in the structure of the page or in the number of
the calculated web components. Although it is possible this
check to be implemented directly on the index trees, it is
done by checking for differences in the ID field between
the page index of the latest page instance and the page
index that was produced in the training procedure (the page
index of page instances contains the Web Components’
Content Vector in the placeholder of the signature). If no
changes show up, then the fragmentation algorithm
continues with step 6. Otherwise, a fragmentation
correction algorithm is utilized, which aims at fixing the
problems. Although it is impossible to create an algorithm
that could function with very complex situations, the
algorithm presented below shows a very good behavior for
the most common cases.
Algorithm 2: Fragmentation Correction Algorithm
 (1) If (WCcount in the page index from training== WCcount in the instance page index){

Check the signatures contained in the page index with the Content Vectors
contained in the instance page index
(2) If (signatures match) {

Extract (mark for extraction) the Web components based on their signatures
 }
 (2) else {

Extract all the Web components that their CVs match with signatures in
the page index. Extract all the rest WCs based on their order of appearance
in the page index.

 } (2)
 } (1)
(1) else {

(3)If (index tree structure from training matches with the instance index tree) {
 Extract Web components based on their IDs

} (3)
(3) } else {
 Counter++;
(4) If (Counter<4){

(5) If (WCcount in the instance > WCcount from training){
Run the fragmentation algorithm with its parameters set to produce larger
(and less) Web Components

 (5)} else{
Run the fragmentation algorithm with its parameters set to produce
smaller (and more) Web Components

}(5)
 (4) } else {

Get the initial fragmentation (with the default value of the u parameter).
Extract all the Web Components that can be extracted based on their Content
Vectors. Extract all the remaining Web Components based on their order of
appearance and their content size (closest match).

}(4)
 } (3)
}(1)

We have to note here that the algorithm presented above
uses the CVs of the WC instances for the comparisons with
the signatures of the selected WCs from the training phase.
However, it is more complicated if the page contains

components with weak ICVs, because these WCs have a
different kind of signature. Whenever such a situation
occurs, the algorithm compares all the components that
have an ICV as a signature and after this comparison has
been performed it tries to calculate the rest based on their
relative position and their content size.

Another issue is how to make the comparison between
the CVs of WCs instances and the ICVs of WCs contained
in the page index. The ICV is a subset of the CCV of a
Web Component instance. It also uniquely identifies a Web
Component, i.e. there are no two Web components with
Content Vectors that are supersets of the same ICV. The
fragmentation correction algorithm uses this property of the
ICVs for the comparisons it has to make. Specifically, it
checks an ICV against all the CVs of the WC instances.
The first matching instance, is the WC it tries to detect.

When the fragmentation correction algorithm finishes,
all the WC instances have been marked for extraction.
Then, in step 6 they are extracted and materialized (with
some changes in their HTML code) in the Web Server.

3.2. Personalized Portal Creation

Web page analysis and fragmentation aims at having

always the latest instances of the WCs that comprise the
web pages that are offered to the user for their personalized
page creation. Personalized Portal Creation is targeted to
the user. It aims at creating a list of the WCs that a user
wants to include in his/hers personalized page or altering
this list by adding or removing components. Using a
special page of the web interface of the system, the user is
called to select one of the sites that have been analyzed by
the system. When the user makes a choice, he is transferred
to a page where all the web components of the selected site
are shown. From this page the user can select his preferred
WCs. When a user finishes with the selected web page,
he/she can be transferred back in the first page where
he/she is asked again to select one of the available sites.

3.3. Personalized Page Synthesis

Personalized Page Synthesis is performed by a script in

the web server of the service provider. It constructs the
user’s personalized page using the HTML code of the
selected WCs.

It has to be noted that during the personalized page
synthesis, a special procedure must be followed for web
components that originate from pages using CSS and
Javascript or VBscript. In this procedure, the names of
styles or functions are slightly changed in order to avoid
naming conflicts.

An example of a personal page is seen in figure 3. In
this page there are 3 WCs, one from www.e-go.gr and two
from www.abcnews.com.

Figure 3: Personal page

4. Evaluation

In order to evaluate the training/update procedure we

executed the algorithms in the night of 20 November 2003
with three news websites (CNN, ABCNEWS and
CBSNEWS). The time interval between each parsing was
50 minutes and 10 parsings were performed. The results are
shown in figures 4 and 5, from which some interesting
conclusions are drawn:

Number of Web components

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

ABCNEWS
CNN
CBSNEWS

Figure 4: Number of Web Components

ABC News Web Components

0

5

10

15

20

25

30

35

40

1 2 3

4-
1

4-
2

4-
3

4-
4

4-
5

4-
6

4-
7

4-
8

4-
9

4-
10

4-
11

4-
12

4-
13

4-
14 5 6 7 8 9 10 11 12

IDs

IC
V

Figure 5: Web components of ABCNEWS

It is clear that the assumption that no changes happen in
the number of the WCs during the training procedure does
not hold true always. This is shown in the graphs (in figure
4) for CBS News and CNN. However, there are only 2 and
1 fetches respectively (out of 10) that differ from the
majority. Therefore, rejecting these samples does not cause
significant problems and loss of information.

Figure 5 shows the size of the ICVs of the 25 web
components of ABC News. 9 WCs out of the 25 have weak
ICVs, while 5 out of the 9 WCs with weak ICVs are also
empty. However, almost all of them are weak not due to
changes in their content, but due to small size. This shows
that the whole technique could be enhanced by not
allowing the fragmentation algorithm to select small Web

Components (it could merge them with others or just ignore
them). Figure 5 shows also that some sites (such as
ABCNEWS) utilize a lot of images for building their layout
and these images contribute a lot to the content of the Web
Components. This leads to the thought that the images
should be also considered in the heuristics of the
fragmentation algorithm.

5. Future Work - Conclusions

A first prototype of the proposed technique has been

implemented and experiments with some sites have been
performed. Based on the results of these experiments, we
have concluded on several possible improvements. The
fragmentation algorithm can be enhanced with more
advanced heuristics. Some times it can produce unevenly
sized Web Components, as a result of the layout decisions
of the author of a web page. This situation could be
resolved by using more layout tags for building the index
tree or by including the possibility to combine sibling
nodes in a WC. Also, the semantics of several tags could be
utilized in the process of fragmenting a web page. In
addition, the training and update procedures could be
enhanced by merging them in a single process of
continuously updating the code of the WCs and re-training
the system with the latest information about the WCs.
Finally, although this was not the initial goal during the
design of this technique, we will examine ways of utilizing
it (with modifications) towards implementing a fully-
automatic transcoding system for enhanced PDA browsing.

6. References

[1] C. Bouras and A. Konidaris, “Web Components: A Concept
for Improving Personalization and Reducing User Perceived
Latency on the World Wide Web”, Proceedings of the 2nd
International Conference on Internet Computing (IC2001), Las
Vegas, Nevada, USA, June 25th - 28th 2001, Vol 2, pp.238-244.

[2] C. Bouras, V. Kapoulas and I. Misedakis, “A Web-page
Fragmentation Technique for Personalized Browsing” (Poster
Absract), ACM SAC 2004 (IDM track), March 14-17, 2004

[3] E. Hwang and Sieun Lee, “Web Surfing Assistant for
Improving Web Accessibility”, International Conference on
Internet Computing (IC'03), Las Vegas, Nevada, USA, June 23-
26, 2003.

[4] Buyukkokten, H. Garcia-Molina, A, Paepcke, ‘Accordion
Summarization for End-Game Browsing on PDAs and Cellular
Phones’, In Proceedings of the Conference on Human Factors in
Computing Systems, CHI'01, 2001.

[5] Juliana Freire, Bharat Kumar, Daniel Lieuwen, ‘WebViews:
Accessing Personalized Web Content and Services’, Proceedings
of the 10th international conference on World Wide Web, Hong
Kong, 2001

