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Abstract 
In this paper, we present work that we have carried out in 

extending the ns-2 simulator in order to study and validate 
Quality of Service issues and related architectures. In the 
case of the DiffServ framework, simulation is valuable since 
an analytical approach of mechanisms and services is 
infeasible due to the aggregation and multiplexing of flows. 
This paper covers work in extending ns-2 functionality 
towards the direction of realistic traffic generation and a 
series of mechanisms defined by the DiffServ architecture. 
We have also extended ns-2 with the functionality of 
Bandwidth Brokers, which are entities for managing the 
resources and negotiating end to end resource reservations 
between domains. The Bandwidth Broker ns-2 
implementation is useful for studying the related 
architectures and admission control procedures. 

1. INTRODUCTION 
Because of the importance of simulating environments to 

research conducted in the area of computer and 
telecommunication systems, a lot of research work on 
telecommunications and more specifically in contemporary 
IP networks has been carried out in the last years. Two 
important trends have been the introduction and exploitation 
of the DiffServ framework towards the direction of building 
advanced networking services as an evolution to the 
traditional best-effort model, and the continuous penetration 
of wireless networks. Since ns-2 [1] has arisen as the most 
widely acknowledged simulator for packet switched 
networks, our work on studying the above issues has 
focused on extending the corresponding ns-2 functionality 
in these areas. ns-2 strength is that it is a powerful 
simulation tool that can simulate many kinds of networks 
and provide useful low-level insight in the operation of the 
networks. 

The DiffServ framework [2] proposes the provision of 
service differentiation to traffic in a scalable manner, by 
suggesting the aggregation of individual application flows 
with similar quality needs. The modules presented in this 
paper have been built within the environment of ns-2 and 

comprise self-contained components, each one of which 
provides an additional traffic generation or DiffServ 
mechanism functionality. 

In order to facilitate negotiations for automatic end to end 
QoS provisioning between domains, an additional 
mechanism has to be used. Such is the Bandwidth Broker 
[3], an entity that manages the resources within a specific 
DiffServ domain by controlling the network load and by 
accepting or rejecting bandwidth requests. For requests that 
span multiple domains (inter-domain requests), the 
Bandwidth Broker will have to communicate with 
Bandwidth Brokers in the adjacent domains that are 
traversed by the requested flow. Bandwidth Brokers only 
need to establish relationships of limited trust with their 
peers in adjacent domains, unlike schemes that require the 
setting of flow specifications in routers throughout an end-
to-end path. Therefore, the Bandwidth Broker architecture 
makes it possible to keep state on an administrative domain 
basis, rather than at every router and the DiffServ 
architecture makes it possible to confine per flow state to 
just the leaf routers. Our work focuses on the 
implementation of several variations of the Bandwidth 
Broker module in ns-2, in order to compare the performance 
of different approaches, especially with regard to the 
important issue of admission control. The implementation 
and deployment complexity of such solutions makes it 
useful to be able to inexpensively study related research 
issues in a simulation environment. 

The rest of this paper is structured as follows: Section 2 
describes related work at the ns-2 and the issues discussed 
in this paper. Section 3 describes the implementation of the 
DiffServ functionality, while section 4 focuses on the 
implementation of Bandwidth Broker modules. Finally, 
section 5 concludes the paper. 

2. RELATED WORK 
There are a number of groups working on the ns-2 

simulation platform worldwide. The DiffServ functionality 
supported by the current version of ns-2 is described in [1] 
[4]. In [5], a module for the functionality of Weighted Fair 
Queuing (WFQ) in the ns-2 environment is provided. In [6], 
an implementation of MPLS functionality is provided for 
ns-2. In [7], in the framework of testing a proposed 



measurement based admission control algorithm, a number 
of realistic source models are implemented. The authors 
anticipate for long-range dependence (LRD) of network 
traffic. They present two types of LRD traffic simulation 
models, one based on Pareto ON/OFF processes, the 
superposition of which generates LRD series, and another 
one based on the fractional autoregressive integrated 
moving average process for the calculation of the number of 
fixed-sized packets to be sent back-to-back in each ON 
period of an ON/OFF source. According to relevant 
bibliography, the superposition of sources of the latter 
model effectively simulates aggregated VBR video traffic. 
Our approach differs from this one, because it anticipates for 
simulation of realistic aggregated background traffic, while 
at the same time providing modules for the generation of 
isolated flows in what we call ‘foreground traffic’. Thus, we 
propose the use of distinguishable traffic flows that need to 
be individually monitored in a DiffServ environment, in 
order to observe how DiffServ mechanisms affect the 
characteristics of traffic and quality per application instead 
of per aggregate. Aggregated traffic in our model is only 
simulated to act in the background, in order to efficiently 
reproduce a realistic DiffServ environment where best-effort 
traffic co-exists with quality-demanding flows. In [1], 
several modules on DiffServ functionality are provided as a 
contribution by several research teams worldwide. Specific 
simulation on Bandwidth Brokers has taken place in the 
framework of the OPNET simulator [8]. 

3. DIFFSERV FUNCTIONALITY 

3.1 Background traffic 
Our module simulates the aggregated IP traffic existing in 

the backbone links of a MAN/WAN. It works as follows: A 
configurable number of peripheral nodes are created and 
connected on each of the two backbone link nodes. On each 
peripheral node, a configurable number of agents (TCP or 
UDP) for every type of traffic (SMTP, FTP etc) and a 
source for every agent are attached. Sources are modelled 
according to the ON/OFF model. 

A number of input parameters are required for the 
module’s operation. The major ones are the duration of the 
simulation (in seconds), the bandwidth (bw) and 
propagation delay (pd) attributes of the backbone (bwbackbone, 
pdbackbone) and access links (bwaccess,i, pdaccess,i) as well as the 
transmission rates of the TCP and UDP sources. In order for 
the load on the backbone link to be adjustable according to 
the transmission rates of the TCP and UDP sources and not 
limited by the access links’ capacities, it is suggested that 
input parameters are such that bwbackbone < bwaccess,i for every 
i 

The analysis for the characteristics of the produced 
background traffic can be found in [9]. 

Four procedures, one for each type of simulated traffic 
(SMTP, FTP, TELNET and HTTP), have been 
implemented. Each one of them is responsible for creating 

traffic sources for the corresponding traffic type, defining 
the transport protocol used (TCP or UDP) and the produced 
packets’ size, creating the required agent to which the traffic 
source is attached and attaching the agent to a peripheral 
node of the topology. Finally, the traffic source is triggered 
to start generating packets towards a selected sink. The 
input parameters for these procedures are the pointers to the 
source and sink nodes and the duration of simulation. 

Operation of sources is controlled by another set of 
procedures, one per traffic type, that are responsible for 
defining the details of transmission for each traffic source. 
More specifically, they define the idle and active state 
intervals for each source, according to the distributions and 
packet inter-arrival times as detailed in [9]. It is here that the 
destination node or sink for each source’s transmission is 
randomly selected from the group of nodes on the other end 
of the backbone link to which the current source is attached. 
The selected sink differs between consecutive active states 
of the source. These two groups of procedures are mainly 
responsible for traffic generation over the already described 
topology. 

The background traffic module is created so as to 
function according to the “cross traffic” model. As such, the 
module can be used on a simulation topology by making a 
call: 

generate-backgr-traffic <node1> <node2> <bwbackbone> 
<pdbackbone> <bwaccess,i > <pdaccess,i> <link> 

where node1, node2 are the nodes between which cross-
traffic has to be created and link is the topology link 
between the two nodes. This call can be used to fill each 
link of the simulation with background traffic. 

3.2 Foreground traffic 
The foreground traffic simulation module has been 

created by the creation of flows belonging to isolated VoIP 
transmissions, streaming video and H.323 conferencing 
traffic flows. For the simulation of VoIP data transmission 
an exponential ON/OFF distribution was used, with an 
average duration of ON periods equal to 1.004 sec, average 
duration of OFF periods (idle-time) equal to 1.587 sec, 
packet size of 188 bytes (8 byte UDP header+20 byte IP 
header+160 byte voice data) and a transmission rate during 
the “on” period of 80Kbps. These values obey the principles 
of [10]. For the realistic reproduction of aggregated VoIP 
traffic multiple flows with these characteristics can be 
created simultaneously. 

For each module of the foreground traffic simulation, a 
flow of a traffic type can be generated by making a call: 

create-<type of traffic> <source><sink> 
where source and sink are the source and sink nodes 

between which foreground traffic is generated. 

3.3 Leaky Bucket Shaping 
Leaky Bucket is a shaping algorithm, introduced in [11], 

according to which packets arriving with random rate are 
shaped to a configurable constant rate. The Leaky Bucket 



anticipates for a buffering capacity with constant size. When 
packets arrive when the “bucket” is full, they are dropped. 
We have implemented the Leaky Bucket algorithm within 
the ns-2 environment, so as to provide the shaping 
functionality for DiffServ experiments. 

The basic idea of our implementation is to delay each 
packet (if needed) for the appropriate time in order to shape 
traffic in a constant rate. The best way to do that is to delay 
the packets immediately when they enter a network node 
(the router), before the routing and scheduling processes 
take place. The critical point is to calculate the right delay 
time. 

The existing implementation of ns-2 did not allow 
handling of packets when entering a router (edge or core) 
due to the fact that the implementation of the router itself 
lacks a receive function of its own and it inherits the receive 
function from an ancestor class. So we overloaded the 
receive function so as to call the Leaky Bucket function if 
configured to do so by the simulation script. In this way, the 
shaping functionality is inserted before the routing process. 

The Leaky Bucket module requires the specification of 
three input parameters, namely the DSCP of the packets to 
shape, the rate to which traffic is shaped (in bits/sec) and the 
depth of the Leaky Bucket used to accumulate packets 
during shaping (in bytes). The Leaky Bucket module can be 
used by making the call: 

<router_interface> Leaky-Bucket <DSCP> 
<shaping_rate> <bucket_depth> 

where router_interface is the router port where the Leaky 
Bucket shaper is applied to all packets carrying the specified 
DSCP value. 

The LeakyBucket module can be addressed via a 
simulation script during topology generation. A series of 
variables are then initialised for the DSCPs, the rate, the 
maximum size and the current size of Leaky Bucket. Each 
packet arriving at an interface for which a shaper is 
configured is examined regarding its DSCP value. If a 
shaping entry for the packet’s DSCP exists, the available 
buffer space of the shaper is examined. If the packet cannot 
be accommodated in the buffer it is dropped, otherwise the 
available buffer space and number of packets in the buffer 
are updated. The interval for which each packet must be 
delayed in order for the required shaping to be achieved is 
also calculated. This calculation is based on the number of 
the packets that are already delayed in the shaper’s buffer 
and the time of the last packet’s departure. Each packet is 
scheduled to be released for transmission after the calculated 
period of time. At that time the available buffer space and 
number of packets in the buffer are updated once again. 

The algorithm for the implementation of Leaky Bucket is 
presented in Figure 1. A function that prints the statistics of 
the Leaky Bucket shaper, namely the number of shaped and 
dropped packets has also been implemented and embedded 
in the Leaky Bucket module. 

 

 
Figure 1. Flow chart of Leaky bucket shaping 

implementation 

3.4 DiffServ-based tracing 
In the original version of ns when trace-all for tracing of 

all events in the entire simulated topology is enabled, all 
packets are traced unconditionally. This leads to very large 
trace files. It therefore is desirable to only keep traces for 
only for packets that belong to a specific service class or to 
specific flows. 

In our implementation, the individual flow identification 
numbers (flow-ids) and the value of the priority fields (or 
DSCPs) of the flows and classes of packets that we were 
interested in tracing are stored in appropriate data structures. 
The receive function of tracing objects has been updated so 
as to always consult the list of flow-ids and priority field 
values for which tracing has been explicitly enabled and 
forward to the tracing process only matching packets. The 
remaining packets are forwarded directly to the next 
downstream object of the ns topology, escaping the tracing 
process. Explicit definition of flow-ids and priority fields for 
which tracing must be enabled can be performed by: 

set_DSCP_to_trace <DSCP1><DSCP2>.. <DSCPn> 
and/or 
set_fid_to_trace <fid1> <fid2> … <fidn> 
A packet the flow_id or DSCP value of which has been 

included in a command such as these is always traced. 

3.5 Scheduling at the ingress interface 
The purpose of the implementation of the module for 

packet scheduling at ingress interface queues is to create a 
queue mechanism at the routers, where the packets are put 



in different queues depending on the incoming link that 
brought them there and are scheduled according to their 
priority towards a transmission queue of an egress interface. 
Ingress scheduling is a functionality that a series of Cisco 
Gigabit Switched Routers (GSRs [12]) offer and has been 
introduced to solve the head-of-line problem for high-
priority traffic in large speeds. 

The basic class of the module (Queue_input) is derived 
from the original Queue class of ns-2, inheriting all 
necessary functionality for a router queue. Queue_input was 
augmented with a list of queues (Queue_per_link objects) 
where the packets are enqueued depending on the incoming 
link that brought them to the router. This is achieved by 
checking the field of IP packet headers that denotes, when 
tracing is enabled, the upstream node for each packet. 

Scheduling between the “Queue_per_link” queues is 
performed in a round-robin fashion. 

Each Queue_per_link object is a Random Early Detect 
(RED) Queue of the original ns-2 DiffServ architecture that 
simulates the queuing mechanism at an egress interface of a 
real router. Packets are enqued in different sub-queues 
depending on the priority field or DSCP value. For 
scheduling between the physical subqueues of the 
Queue_per_link object, any of the supported scheduling 
algorithms inherited from the original ns-2 RED Queue can 
be used. The architecture implemented is shown in Figure 2. 

In the example of Figure 3, a sample configuration for 
ingress interface scheduling at a router with two upstream 
links and three outgoing links is presented. 

 
 

 
Figure 2. Architecture of the ingress interface scheduling module 

 
for each outgoing link i of a simulated router { 
  create a Queue_input(i) object 
  set number of Queue_per_link of Queue_input(i) = 2 
  set size of each Queue_per_link of Queue_input(i) = 5000 packets 
  arrange so that packets coming from upstream node s(0) go to Queue_per_link 0 
  arrange so that packets coming from upstream node s(1) go to Queue_per_link 1 
  set number of physical queues of each Queue_per_link of Queue_input(i) = 3 
  set scheduling algorithm between physical queues of each Queue_per_link of  

Queue_input(i) to be e.g. Round Robin
  for each Queue_per_link of Queue_input(i) { 
    for all possible DSCP values of packets entering Queue_per_link(j) 
      arrange the packets with DSCP = k to be enqueued to an underlying physical  

queue, according to the local DiffServ policy
    } 
  } 
  connect Queue_input(i) to the ns topology before the router’s outgoing_link(i)  
} 

Figure 3. Sample configuration required in simulation scripts for using the ingress interface scheduling module 

 



3.6 MDRR scheduling 
In the DiffServ module of ns-2 there are the following 

algorithms for scheduling at the edge and core routers: 
Round Robin (RR), Weighted RR (WRR), Weighted 
Interleaved RR (WIRR), and Priority (PRI). We 
implemented two more algorithms, Modified Deficit RR–
Strict (MDRR_STR) and Modified Deficit RR–Alternate 
(MDRR_ALT), that are used by Cisco GSRs [14]. 

In the MDRR scheduling algorithm, all queues, except for 
the low latency one (LLQ), are served in a Deficit Round 
Robin (DRR) fashion. Each one of DRR served queues can 
be configured with a weight, according to which an 
initialisation quantum (in bytes) defining the maximum 
number of packets that can be uninterruptedly served by the 
queue is calculated. A deficit (initially equal to the 
corresponding quantum) is applied to each DRR queue and 
is decreased by the size of a packet, each time a packet exits 
the queue. The scheduler moves on to the next queue to be 
served when the current queue’s deficit becomes zero or 
negative. When all DRR queues have been served, 
completing a round, all DRR queues’ deficits are augmented 
by the corresponding quantum values, depending on the 
configured queues’ weights. 

There are two alternative modes for serving the LLQ: 
• MDRR strict priority scheduling 
• MDRR alternate priority scheduling 

In both modes the weights for each physical queue on a 
router interface can be set by calling: 

<router_interface> addQueueWeights <physical queue> 
<weight> 

Both modes were implemented as additional modules to 
the scheduling alternatives of the Random Early Detect 
(RED) Queue of the original ns-2 DiffServ architecture. 

In Strict Priority mode, the LLQ is always served if 
packets are queued. Thus, every time the queue to be served 
has to be elected, the LLQ is examined. If a packet is ready 
(at the head of the LLQ) to be transmitted, then it is 
immediately placed on the transmission medium. Otherwise, 
the round robin-fashion of serving the DRR queues picks up 
from where it was interrupted, when a previous packet 
appeared at the head of the LLQ queue. It can be activated 
by defining for each router’s interface: 

<router_interface> setSchedularMode MDRR_STR 
In alternate priority mode, service alternates between the 

LLQ and the other DRR queues. The LLQ now obtains its 
own weight, quantum and deficit values, the latter of which 
is updated every time an LLQ packet is served and 
augmented by a value equal to the current queue’s quantum 
at the end of each LLQ-DRR1-LLQ-DRR2-LLQ-DRRn 
round. 

MDRR alternate priority scheduling algorithm can be 
activated by defining the scheduling mode for each router’s 
interface during the simulation topology set-up: 

<router_interface> setSchedularMode MDRR_ALT 
 

 
Figure 4. Flowchart of MDRR-Alternate scheduling algorithm 

 
4. BANDWIDTH BROKERS 

4.1 Implementation in ns-2 
After the implementation in ns-2 of the basic QoS 

characteristics of the service, we extended our 
implementation in order to include modules for automated 
inter-domain provisioning of QoS services, such as the 
Bandwidth Broker (BB) concept [3]. In order to implement 

it correctly, it was necessary to make several changes and 
additions to the ns-2 structure and source code. An agent in 
ns-2 represents an endpoint where packets are consumed 
and constructed, using a specific protocol. The BB that was 
implemented is based on two new agents, the Edge BB and 
the Base BB. More specifically, we created the classes 
BBedgeAgent and BBbaseAgent, derived from class Agent. 
We also created two new packet types, BBB and BBE, 



which are used for the BB interfaces (to simulate the BB 
messages) and have a size of 64 bytes. BBbaseAgent creates 
BBB packets and consumes BBE packets created by the 
BBedgeAgent. BBedgeAgent creates BBE packets and 
consumes BBB packets created by the BBbaseAgent. In 
order to create a new packet type, it is necessary to define 
the header of the new packet. The header fields that we 
defined for the BBB and the BBE packets were the address 
of the sender of the RAR, the address of the other end node, 
the type of the packet (RAR or RAA), the amount of the 
requested bandwidth and the final answer the BaseBB sends 
to the sender (Negative or Positive). The total bandwidth 
that the BB manages on each link is determined by a new tcl 
instruction “set_bndw”. The syntax is “BΒedgeAgent 
set_bndw node_id bandwidth”. This instruction informs the 
BBedgeAgent for the bandwidth that the BB will manage on 
the link that exists between the node where the 
BBedgeAgent is running and its adjacent node with node-id 
node_id. A BBedgeAgent, which represents a client (user / 
application), can send a RAR requesting guaranteed 
bandwidth between the node where it is running and another 
node with id node_id using the new tcl instruction “sendto”. 
The syntax is “BΒedgeAgent sendto node_id bandwidth”. 
The BBedgeAgent that exists on every node simulates a 
situation where a BB client is connected to a router on a real 
network. This agent operates as client that communicates 
with the base BB and updates its local router with the 
configuration modifications according to new admissions. 

4.2 The supported QoS service 
The Bandwidth Broker provides a QoS service with the 

characteristics of bandwidth guarantee as well as minimum 
delay and jitter. This service is the IP Premium and is 
currently supported by many network providers. The main 
characteristic of this service is that it follows the classic 
DiffServ architecture. It classifies the packets using the 
DSCP values for admitted and downgraded packets. The 
policing is performed at the edge of the network and high 
priority queuing is applied in the core and access routers at 
the outgoing interfaces. 

Having already enhanced ns-2 so that the classification is 
done using the DSCP field of the IP header, enables packets 
that have the same source and destination nodes but belong 
to different applications to belong to different classes as 
well, and packets with different source and destination 
nodes to belong to the same class. 

The QoS service has the responsibility of packet 
classification and policing. If the BBedge agent receives a 
positive answer about a request it has submitted, it 
configures through tcl all the edges that exist on the request 
path. After the configuration process has been completed, 
the BBedge agent can start using the requested and allocated 
network resources. 

The QoS implementation starts with the insertion of the 
DSCP value into the packet headers for packets that use the 
requested service. When these packets are inserted into the 

network with the proper DSCP value, strict token bucket 
policy is applied to them, when they are in the first BBedge 
agent. This action guarantees that the transmitted rate 
matches the requested (admitted) rate. Next, the queue 
management mechanism is properly configured. The used 
queue management mechanism is a high priority queue on 
every node, which is used for all the admitted traffic classes. 

4.3 Admission control algorithms 
There is a large selection of admission control algorithms 

that can be followed for the BB. We have implemented and 
experimented with the performance of four different 
admission control modules. The first algorithm is simple 
admission control (SAC), the simplest type of admission 
control, with easy implementation and low complexity. 
Each incoming request is examined by itself, and is 
accepted if there is still available bandwidth for the service 
(that is, the total bandwidth available for the service minus 
the already reserved bandwidth). Therefore, this algorithm 
displays identical behaviour each time it is presented with 
the same set (and with the same temporal succession) of 
incoming requests. 

Another approach to the admission control issue is taken 
by the Price-based algorithm (PBAC). This type of 
admission control is similar to the offline version of the 
algorithm presented in [14]. It makes a decision on which 
requests will be accepted trying to optimize the network 
utilization by gathering and evaluating multiple requests 
together. In order to solve the NP-complete problem that 
arises, an approximation algorithm is used. 

The Adaptive admission control (AAC) [13] is an 
algorithm that tries to gather multiple requests and evaluate 
them together for purposes of increasing the resource 
utilization, but also uses an adaptation module in order to 
keep processing requirements low. The adaptation module is 
responsible for interrupting the process of solving the 
scheduling problem and for adjusting the size of subsequent 
instances of the scheduling problem based on constant 
monitoring of computation time. The algorithm includes a 
couple of parameters that can influence its behaviour. The 
first parameter is the adaptation parameter a, which takes 
values in the range from 0 to 1 and determines the 
aggressiveness of the adaptation. The second parameter is 
the threshold, which roughly determines the limit of the 
computational overhead that the algorithm incurs to the 
system. 

Adaptive admission control with resubmissions (AACR) 
[15] is a variation of the AAC algorithm. It is enhanced with 
the capability to recognize previously rejected requests and 
increase their priority. Other than that, this algorithm is very 
similar to AAC. The basic idea is that the client will 
resubmit a rejected request only if the BB has indicated that 
the request should indeed be resubmitted, and if the user is 
willing to compromise for a delayed reservation. In order 
for the BB to utilize resubmitted requests, it needs to keep a 
list of the standby requests. Moreover, it actively prioritizes 



such requests in expense of newly received requests, and the 
prioritization depends on the duration that a specific user 
has been waiting and resubmitting a request. 

Implementation of the three advanced admission control 
modules was based on the utilization of the open source 
GLPK linear programming library [16], in order to solve 
instances of the optimization problems. A number of array 
and vector structures were used in order to keep the requests 
and categorize them according to the requirements of each 
algorithm. 

4.4 Evaluation results 
For each experiment we have measured the percentage of 

accepted requests, the delay that was required before the 
Bandwidth Broker would reply to a request and the 
percentage of network utilization achieved by each 
algorithm. 

These results are summarized in Table 1. 

Table 1. Summary of results 

Averages 
per 

algorithm 

Acceptance 
rate 

Average 
delay (time 

slots) 

Average network 
utilization (bytes 

x time slots) 
SAC 29.60% 0 3920014 
PBAC 21.79% 7.08 5243307 
AAC 

thr=5 
25.72% 5.44 4532672 

AAC 
thr=10 

24.77% 5.48 4780385 

AACR 42.56% 5.58 5594577 
The following figures display in more detail the 

behaviour of the algorithms under different experiments 
with different request frequencies, and they help reveal the 
features of each algorithm, its relative weaknesses and 
strengths. 
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Figure 5. Acceptance rate 

As Figure 5 demonstrates, the acceptance ratio of all 
algorithms except AACR remains fairly similar throughout 
the experiments. SAC is the algorithm that slightly achieves 
the highest acceptance rate, while PBAC is the one with the 
lowest, with AAC variations covering the middle. This is 
not a surprising result, since SAC will always accept a 
request if there are enough resources available, while PBAC 
is more oriented towards generating the maximum amount 
of resource utilization, rather than treating all requests alike. 

Because of the resubmission capability, AACR displays 
clearly better performance with regard to this metric. This 
result leads us to the conclusion that in environments where 
the most significant factor is the satisfaction of the 
maximum amount of users regardless of their relative 
weight, the good performance of the SAC algorithm 
combined with its simplicity make it the most suitable 
choice. If resubmissions are desirable and can be supported, 
AACR can then be used for its advantages. 

In most cases however, all users will not generate the 
same revenue for the network provider and a cost scheme 
will most probably have to take into account both the 
relative weight of each request, and the effort to maximize 
the efficiency and utilization of currently available 
resources. We have tried to cover this aspect with Figure 6 
and Figure 7, which display the total absolute profit 
generated for each experiment and the profit per request 
respectively. We have chosen to measure the provider’s 
profit by calculating the product of a request’s duration (in 
time slots used by the ns-2 simulator) times the resource 
allocation that a reservation requires. 
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Figure 6. Network utilization 
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Figure 7. Network utilization per request 

We have to mention that in Figure 6 AACR results are 
not displayed because they are far larger than all other 
results, in order to have better distinguishing capability for 
the rest of the algorithms. These results demonstrate the 
relative strengths of the price-based approaches, since 
PBAC is the most efficient algorithm in this regard, 
followed by AAC, with SAC displaying the worst 
performance. AAC even surpasses the PBAC performance 
in several cases when the request arrival ratio increases. The 
most plausible explanation for this result is that the 
increased arrival rate of new requests makes the larger size 
of the set examined by the PBAC algorithm unnecessary. 
Increasing the threshold for the AAC algorithm seems to 



have a positive effect on its performance, but comparison 
with PBAC shows that a restrained increase in the threshold 
value is enough for obtaining equal or superior results. 
Therefore, the recommendation for fine-tuning the AAC 
algorithm is that it is beneficial to increase the threshold 
value as soon as the arrival rate of request increases. As 
expected, AACR again displays the best overall 
performance, which on the case of total profit exceeds 
several times the results of other algorithms. 

In most real environments it is expected that a relatively 
quick response to a request will be essential. As Figure 8 
demonstrates, SAC is extremely responsive as expected. 
This also means that there is room for a trade-off that can be 
used to improve performance in other areas such as the 
utilization of the network resources. PBAC is not efficient 
in that regard, as it demands the most time in order to 
respond to the reservation requests, a situation that in many 
real-world scenarios is unattainable. The adaptive variations 
prove to be attractive trade-offs, since for most of the 
experiments the additional delay they incur is minimal, 
while at the same time they manage to improve the 
utilization of the provider’s resources, as demonstrated 
above. 
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Figure 8. Average waiting time 

5. CONCLUSION – FUTURE WORK 
In this paper we have presented a series of modules 

implemented in order to extend the DiffServ functionality of 
the ns-2 simulator [18] that are provided free for use. We 
believe that such work is important because of the 
complexity and cost of implementing such mechanisms and 
architectures in real world environments. ns-2 can therefore 
be very useful in extracting conclusions for the performance 
and feasibility of these protocols and architectures. 

Furthermore, our ns-2 implementations have helped us 
evaluate more sophisticated architectures for automatic 
provisioning of QoS services based on the Bandwidth 
Broker concept. 

Our future work in this area will be focused on extending 
the simulated environments with more realistic 
characteristics, extending the scope and variations of the 
experiments including federated networks with independent 
bandwidth broker instances [17], and also compare the 

results from simulations with results from actual 
implementations. 
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