
Enhancing Ns-2 With DiffServ QoS Features

Ch. Bouras D. Primpas K. Stamos
Research Academic Computer Technology Institute, PO Box 1122, Patras, Greece and

Computer Engineering and Informatics Dept., Univ. of Patras, GR-26500 Patras, Greece
Tel:+30-2610-{960375, 960316, 960316}
Fax:+30-2610-{969016, 960358, 960358}

e-mail: {bouras, primpas, stamos}@cti.gr

Keywords: Quality of Service, DiffServ, ns-2,

Bandwidth Brokers

Abstract
In this paper, we present work that we have carried out in

extending the ns-2 simulator in order to study and validate
Quality of Service issues and related architectures. In the
case of the DiffServ framework, simulation is valuable since
an analytical approach of mechanisms and services is
infeasible due to the aggregation and multiplexing of flows.
This paper covers work in extending ns-2 functionality
towards the direction of realistic traffic generation and a
series of mechanisms defined by the DiffServ architecture.
We have also extended ns-2 with the functionality of
Bandwidth Brokers, which are entities for managing the
resources and negotiating end to end resource reservations
between domains. The Bandwidth Broker ns-2
implementation is useful for studying the related
architectures and admission control procedures.

1. INTRODUCTION
Because of the importance of simulating environments to

research conducted in the area of computer and
telecommunication systems, a lot of research work on
telecommunications and more specifically in contemporary
IP networks has been carried out in the last years. Two
important trends have been the introduction and exploitation
of the DiffServ framework towards the direction of building
advanced networking services as an evolution to the
traditional best-effort model, and the continuous penetration
of wireless networks. Since ns-2 [1] has arisen as the most
widely acknowledged simulator for packet switched
networks, our work on studying the above issues has
focused on extending the corresponding ns-2 functionality
in these areas. ns-2 strength is that it is a powerful
simulation tool that can simulate many kinds of networks
and provide useful low-level insight in the operation of the
networks.

The DiffServ framework [2] proposes the provision of
service differentiation to traffic in a scalable manner, by
suggesting the aggregation of individual application flows
with similar quality needs. The modules presented in this
paper have been built within the environment of ns-2 and

comprise self-contained components, each one of which
provides an additional traffic generation or DiffServ
mechanism functionality.

In order to facilitate negotiations for automatic end to end
QoS provisioning between domains, an additional
mechanism has to be used. Such is the Bandwidth Broker
[3], an entity that manages the resources within a specific
DiffServ domain by controlling the network load and by
accepting or rejecting bandwidth requests. For requests that
span multiple domains (inter-domain requests), the
Bandwidth Broker will have to communicate with
Bandwidth Brokers in the adjacent domains that are
traversed by the requested flow. Bandwidth Brokers only
need to establish relationships of limited trust with their
peers in adjacent domains, unlike schemes that require the
setting of flow specifications in routers throughout an end-
to-end path. Therefore, the Bandwidth Broker architecture
makes it possible to keep state on an administrative domain
basis, rather than at every router and the DiffServ
architecture makes it possible to confine per flow state to
just the leaf routers. Our work focuses on the
implementation of several variations of the Bandwidth
Broker module in ns-2, in order to compare the performance
of different approaches, especially with regard to the
important issue of admission control. The implementation
and deployment complexity of such solutions makes it
useful to be able to inexpensively study related research
issues in a simulation environment.

The rest of this paper is structured as follows: Section 2
describes related work at the ns-2 and the issues discussed
in this paper. Section 3 describes the implementation of the
DiffServ functionality, while section 4 focuses on the
implementation of Bandwidth Broker modules. Finally,
section 5 concludes the paper.

2. RELATED WORK
There are a number of groups working on the ns-2

simulation platform worldwide. The DiffServ functionality
supported by the current version of ns-2 is described in [1]
[4]. In [5], a module for the functionality of Weighted Fair
Queuing (WFQ) in the ns-2 environment is provided. In [6],
an implementation of MPLS functionality is provided for
ns-2. In [7], in the framework of testing a proposed

measurement based admission control algorithm, a number
of realistic source models are implemented. The authors
anticipate for long-range dependence (LRD) of network
traffic. They present two types of LRD traffic simulation
models, one based on Pareto ON/OFF processes, the
superposition of which generates LRD series, and another
one based on the fractional autoregressive integrated
moving average process for the calculation of the number of
fixed-sized packets to be sent back-to-back in each ON
period of an ON/OFF source. According to relevant
bibliography, the superposition of sources of the latter
model effectively simulates aggregated VBR video traffic.
Our approach differs from this one, because it anticipates for
simulation of realistic aggregated background traffic, while
at the same time providing modules for the generation of
isolated flows in what we call ‘foreground traffic’. Thus, we
propose the use of distinguishable traffic flows that need to
be individually monitored in a DiffServ environment, in
order to observe how DiffServ mechanisms affect the
characteristics of traffic and quality per application instead
of per aggregate. Aggregated traffic in our model is only
simulated to act in the background, in order to efficiently
reproduce a realistic DiffServ environment where best-effort
traffic co-exists with quality-demanding flows. In [1],
several modules on DiffServ functionality are provided as a
contribution by several research teams worldwide. Specific
simulation on Bandwidth Brokers has taken place in the
framework of the OPNET simulator [8].

3. DIFFSERV FUNCTIONALITY

3.1 Background traffic
Our module simulates the aggregated IP traffic existing in

the backbone links of a MAN/WAN. It works as follows: A
configurable number of peripheral nodes are created and
connected on each of the two backbone link nodes. On each
peripheral node, a configurable number of agents (TCP or
UDP) for every type of traffic (SMTP, FTP etc) and a
source for every agent are attached. Sources are modelled
according to the ON/OFF model.

A number of input parameters are required for the
module’s operation. The major ones are the duration of the
simulation (in seconds), the bandwidth (bw) and
propagation delay (pd) attributes of the backbone (bwbackbone,
pdbackbone) and access links (bwaccess,i, pdaccess,i) as well as the
transmission rates of the TCP and UDP sources. In order for
the load on the backbone link to be adjustable according to
the transmission rates of the TCP and UDP sources and not
limited by the access links’ capacities, it is suggested that
input parameters are such that bwbackbone < bwaccess,i for every
i

The analysis for the characteristics of the produced
background traffic can be found in [9].

Four procedures, one for each type of simulated traffic
(SMTP, FTP, TELNET and HTTP), have been
implemented. Each one of them is responsible for creating

traffic sources for the corresponding traffic type, defining
the transport protocol used (TCP or UDP) and the produced
packets’ size, creating the required agent to which the traffic
source is attached and attaching the agent to a peripheral
node of the topology. Finally, the traffic source is triggered
to start generating packets towards a selected sink. The
input parameters for these procedures are the pointers to the
source and sink nodes and the duration of simulation.

Operation of sources is controlled by another set of
procedures, one per traffic type, that are responsible for
defining the details of transmission for each traffic source.
More specifically, they define the idle and active state
intervals for each source, according to the distributions and
packet inter-arrival times as detailed in [9]. It is here that the
destination node or sink for each source’s transmission is
randomly selected from the group of nodes on the other end
of the backbone link to which the current source is attached.
The selected sink differs between consecutive active states
of the source. These two groups of procedures are mainly
responsible for traffic generation over the already described
topology.

The background traffic module is created so as to
function according to the “cross traffic” model. As such, the
module can be used on a simulation topology by making a
call:

generate-backgr-traffic <node1> <node2> <bwbackbone>
<pdbackbone> <bwaccess,i > <pdaccess,i> <link>

where node1, node2 are the nodes between which cross-
traffic has to be created and link is the topology link
between the two nodes. This call can be used to fill each
link of the simulation with background traffic.

3.2 Foreground traffic
The foreground traffic simulation module has been

created by the creation of flows belonging to isolated VoIP
transmissions, streaming video and H.323 conferencing
traffic flows. For the simulation of VoIP data transmission
an exponential ON/OFF distribution was used, with an
average duration of ON periods equal to 1.004 sec, average
duration of OFF periods (idle-time) equal to 1.587 sec,
packet size of 188 bytes (8 byte UDP header+20 byte IP
header+160 byte voice data) and a transmission rate during
the “on” period of 80Kbps. These values obey the principles
of [10]. For the realistic reproduction of aggregated VoIP
traffic multiple flows with these characteristics can be
created simultaneously.

For each module of the foreground traffic simulation, a
flow of a traffic type can be generated by making a call:

create-<type of traffic> <source><sink>
where source and sink are the source and sink nodes

between which foreground traffic is generated.

3.3 Leaky Bucket Shaping
Leaky Bucket is a shaping algorithm, introduced in [11],

according to which packets arriving with random rate are
shaped to a configurable constant rate. The Leaky Bucket

anticipates for a buffering capacity with constant size. When
packets arrive when the “bucket” is full, they are dropped.
We have implemented the Leaky Bucket algorithm within
the ns-2 environment, so as to provide the shaping
functionality for DiffServ experiments.

The basic idea of our implementation is to delay each
packet (if needed) for the appropriate time in order to shape
traffic in a constant rate. The best way to do that is to delay
the packets immediately when they enter a network node
(the router), before the routing and scheduling processes
take place. The critical point is to calculate the right delay
time.

The existing implementation of ns-2 did not allow
handling of packets when entering a router (edge or core)
due to the fact that the implementation of the router itself
lacks a receive function of its own and it inherits the receive
function from an ancestor class. So we overloaded the
receive function so as to call the Leaky Bucket function if
configured to do so by the simulation script. In this way, the
shaping functionality is inserted before the routing process.

The Leaky Bucket module requires the specification of
three input parameters, namely the DSCP of the packets to
shape, the rate to which traffic is shaped (in bits/sec) and the
depth of the Leaky Bucket used to accumulate packets
during shaping (in bytes). The Leaky Bucket module can be
used by making the call:

<router_interface> Leaky-Bucket <DSCP>
<shaping_rate> <bucket_depth>

where router_interface is the router port where the Leaky
Bucket shaper is applied to all packets carrying the specified
DSCP value.

The LeakyBucket module can be addressed via a
simulation script during topology generation. A series of
variables are then initialised for the DSCPs, the rate, the
maximum size and the current size of Leaky Bucket. Each
packet arriving at an interface for which a shaper is
configured is examined regarding its DSCP value. If a
shaping entry for the packet’s DSCP exists, the available
buffer space of the shaper is examined. If the packet cannot
be accommodated in the buffer it is dropped, otherwise the
available buffer space and number of packets in the buffer
are updated. The interval for which each packet must be
delayed in order for the required shaping to be achieved is
also calculated. This calculation is based on the number of
the packets that are already delayed in the shaper’s buffer
and the time of the last packet’s departure. Each packet is
scheduled to be released for transmission after the calculated
period of time. At that time the available buffer space and
number of packets in the buffer are updated once again.

The algorithm for the implementation of Leaky Bucket is
presented in Figure 1. A function that prints the statistics of
the Leaky Bucket shaper, namely the number of shaped and
dropped packets has also been implemented and embedded
in the Leaky Bucket module.

Figure 1. Flow chart of Leaky bucket shaping

implementation

3.4 DiffServ-based tracing
In the original version of ns when trace-all for tracing of

all events in the entire simulated topology is enabled, all
packets are traced unconditionally. This leads to very large
trace files. It therefore is desirable to only keep traces for
only for packets that belong to a specific service class or to
specific flows.

In our implementation, the individual flow identification
numbers (flow-ids) and the value of the priority fields (or
DSCPs) of the flows and classes of packets that we were
interested in tracing are stored in appropriate data structures.
The receive function of tracing objects has been updated so
as to always consult the list of flow-ids and priority field
values for which tracing has been explicitly enabled and
forward to the tracing process only matching packets. The
remaining packets are forwarded directly to the next
downstream object of the ns topology, escaping the tracing
process. Explicit definition of flow-ids and priority fields for
which tracing must be enabled can be performed by:

set_DSCP_to_trace <DSCP1><DSCP2>.. <DSCPn>
and/or
set_fid_to_trace <fid1> <fid2> … <fidn>
A packet the flow_id or DSCP value of which has been

included in a command such as these is always traced.

3.5 Scheduling at the ingress interface
The purpose of the implementation of the module for

packet scheduling at ingress interface queues is to create a
queue mechanism at the routers, where the packets are put

in different queues depending on the incoming link that
brought them there and are scheduled according to their
priority towards a transmission queue of an egress interface.
Ingress scheduling is a functionality that a series of Cisco
Gigabit Switched Routers (GSRs [12]) offer and has been
introduced to solve the head-of-line problem for high-
priority traffic in large speeds.

The basic class of the module (Queue_input) is derived
from the original Queue class of ns-2, inheriting all
necessary functionality for a router queue. Queue_input was
augmented with a list of queues (Queue_per_link objects)
where the packets are enqueued depending on the incoming
link that brought them to the router. This is achieved by
checking the field of IP packet headers that denotes, when
tracing is enabled, the upstream node for each packet.

Scheduling between the “Queue_per_link” queues is
performed in a round-robin fashion.

Each Queue_per_link object is a Random Early Detect
(RED) Queue of the original ns-2 DiffServ architecture that
simulates the queuing mechanism at an egress interface of a
real router. Packets are enqued in different sub-queues
depending on the priority field or DSCP value. For
scheduling between the physical subqueues of the
Queue_per_link object, any of the supported scheduling
algorithms inherited from the original ns-2 RED Queue can
be used. The architecture implemented is shown in Figure 2.

In the example of Figure 3, a sample configuration for
ingress interface scheduling at a router with two upstream
links and three outgoing links is presented.

Figure 2. Architecture of the ingress interface scheduling module

for each outgoing link i of a simulated router {
 create a Queue_input(i) object
 set number of Queue_per_link of Queue_input(i) = 2
 set size of each Queue_per_link of Queue_input(i) = 5000 packets
 arrange so that packets coming from upstream node s(0) go to Queue_per_link 0
 arrange so that packets coming from upstream node s(1) go to Queue_per_link 1
 set number of physical queues of each Queue_per_link of Queue_input(i) = 3
 set scheduling algorithm between physical queues of each Queue_per_link of

Queue_input(i) to be e.g. Round Robin
 for each Queue_per_link of Queue_input(i) {
 for all possible DSCP values of packets entering Queue_per_link(j)
 arrange the packets with DSCP = k to be enqueued to an underlying physical

queue, according to the local DiffServ policy
 }
 }
 connect Queue_input(i) to the ns topology before the router’s outgoing_link(i)
}

Figure 3. Sample configuration required in simulation scripts for using the ingress interface scheduling module

3.6 MDRR scheduling
In the DiffServ module of ns-2 there are the following

algorithms for scheduling at the edge and core routers:
Round Robin (RR), Weighted RR (WRR), Weighted
Interleaved RR (WIRR), and Priority (PRI). We
implemented two more algorithms, Modified Deficit RR–
Strict (MDRR_STR) and Modified Deficit RR–Alternate
(MDRR_ALT), that are used by Cisco GSRs [14].

In the MDRR scheduling algorithm, all queues, except for
the low latency one (LLQ), are served in a Deficit Round
Robin (DRR) fashion. Each one of DRR served queues can
be configured with a weight, according to which an
initialisation quantum (in bytes) defining the maximum
number of packets that can be uninterruptedly served by the
queue is calculated. A deficit (initially equal to the
corresponding quantum) is applied to each DRR queue and
is decreased by the size of a packet, each time a packet exits
the queue. The scheduler moves on to the next queue to be
served when the current queue’s deficit becomes zero or
negative. When all DRR queues have been served,
completing a round, all DRR queues’ deficits are augmented
by the corresponding quantum values, depending on the
configured queues’ weights.

There are two alternative modes for serving the LLQ:
• MDRR strict priority scheduling
• MDRR alternate priority scheduling

In both modes the weights for each physical queue on a
router interface can be set by calling:

<router_interface> addQueueWeights <physical queue>
<weight>

Both modes were implemented as additional modules to
the scheduling alternatives of the Random Early Detect
(RED) Queue of the original ns-2 DiffServ architecture.

In Strict Priority mode, the LLQ is always served if
packets are queued. Thus, every time the queue to be served
has to be elected, the LLQ is examined. If a packet is ready
(at the head of the LLQ) to be transmitted, then it is
immediately placed on the transmission medium. Otherwise,
the round robin-fashion of serving the DRR queues picks up
from where it was interrupted, when a previous packet
appeared at the head of the LLQ queue. It can be activated
by defining for each router’s interface:

<router_interface> setSchedularMode MDRR_STR
In alternate priority mode, service alternates between the

LLQ and the other DRR queues. The LLQ now obtains its
own weight, quantum and deficit values, the latter of which
is updated every time an LLQ packet is served and
augmented by a value equal to the current queue’s quantum
at the end of each LLQ-DRR1-LLQ-DRR2-LLQ-DRRn
round.

MDRR alternate priority scheduling algorithm can be
activated by defining the scheduling mode for each router’s
interface during the simulation topology set-up:

<router_interface> setSchedularMode MDRR_ALT

Figure 4. Flowchart of MDRR-Alternate scheduling algorithm

4. BANDWIDTH BROKERS

4.1 Implementation in ns-2
After the implementation in ns-2 of the basic QoS

characteristics of the service, we extended our
implementation in order to include modules for automated
inter-domain provisioning of QoS services, such as the
Bandwidth Broker (BB) concept [3]. In order to implement

it correctly, it was necessary to make several changes and
additions to the ns-2 structure and source code. An agent in
ns-2 represents an endpoint where packets are consumed
and constructed, using a specific protocol. The BB that was
implemented is based on two new agents, the Edge BB and
the Base BB. More specifically, we created the classes
BBedgeAgent and BBbaseAgent, derived from class Agent.
We also created two new packet types, BBB and BBE,

which are used for the BB interfaces (to simulate the BB
messages) and have a size of 64 bytes. BBbaseAgent creates
BBB packets and consumes BBE packets created by the
BBedgeAgent. BBedgeAgent creates BBE packets and
consumes BBB packets created by the BBbaseAgent. In
order to create a new packet type, it is necessary to define
the header of the new packet. The header fields that we
defined for the BBB and the BBE packets were the address
of the sender of the RAR, the address of the other end node,
the type of the packet (RAR or RAA), the amount of the
requested bandwidth and the final answer the BaseBB sends
to the sender (Negative or Positive). The total bandwidth
that the BB manages on each link is determined by a new tcl
instruction “set_bndw”. The syntax is “BΒedgeAgent
set_bndw node_id bandwidth”. This instruction informs the
BBedgeAgent for the bandwidth that the BB will manage on
the link that exists between the node where the
BBedgeAgent is running and its adjacent node with node-id
node_id. A BBedgeAgent, which represents a client (user /
application), can send a RAR requesting guaranteed
bandwidth between the node where it is running and another
node with id node_id using the new tcl instruction “sendto”.
The syntax is “BΒedgeAgent sendto node_id bandwidth”.
The BBedgeAgent that exists on every node simulates a
situation where a BB client is connected to a router on a real
network. This agent operates as client that communicates
with the base BB and updates its local router with the
configuration modifications according to new admissions.

4.2 The supported QoS service
The Bandwidth Broker provides a QoS service with the

characteristics of bandwidth guarantee as well as minimum
delay and jitter. This service is the IP Premium and is
currently supported by many network providers. The main
characteristic of this service is that it follows the classic
DiffServ architecture. It classifies the packets using the
DSCP values for admitted and downgraded packets. The
policing is performed at the edge of the network and high
priority queuing is applied in the core and access routers at
the outgoing interfaces.

Having already enhanced ns-2 so that the classification is
done using the DSCP field of the IP header, enables packets
that have the same source and destination nodes but belong
to different applications to belong to different classes as
well, and packets with different source and destination
nodes to belong to the same class.

The QoS service has the responsibility of packet
classification and policing. If the BBedge agent receives a
positive answer about a request it has submitted, it
configures through tcl all the edges that exist on the request
path. After the configuration process has been completed,
the BBedge agent can start using the requested and allocated
network resources.

The QoS implementation starts with the insertion of the
DSCP value into the packet headers for packets that use the
requested service. When these packets are inserted into the

network with the proper DSCP value, strict token bucket
policy is applied to them, when they are in the first BBedge
agent. This action guarantees that the transmitted rate
matches the requested (admitted) rate. Next, the queue
management mechanism is properly configured. The used
queue management mechanism is a high priority queue on
every node, which is used for all the admitted traffic classes.

4.3 Admission control algorithms
There is a large selection of admission control algorithms

that can be followed for the BB. We have implemented and
experimented with the performance of four different
admission control modules. The first algorithm is simple
admission control (SAC), the simplest type of admission
control, with easy implementation and low complexity.
Each incoming request is examined by itself, and is
accepted if there is still available bandwidth for the service
(that is, the total bandwidth available for the service minus
the already reserved bandwidth). Therefore, this algorithm
displays identical behaviour each time it is presented with
the same set (and with the same temporal succession) of
incoming requests.

Another approach to the admission control issue is taken
by the Price-based algorithm (PBAC). This type of
admission control is similar to the offline version of the
algorithm presented in [14]. It makes a decision on which
requests will be accepted trying to optimize the network
utilization by gathering and evaluating multiple requests
together. In order to solve the NP-complete problem that
arises, an approximation algorithm is used.

The Adaptive admission control (AAC) [13] is an
algorithm that tries to gather multiple requests and evaluate
them together for purposes of increasing the resource
utilization, but also uses an adaptation module in order to
keep processing requirements low. The adaptation module is
responsible for interrupting the process of solving the
scheduling problem and for adjusting the size of subsequent
instances of the scheduling problem based on constant
monitoring of computation time. The algorithm includes a
couple of parameters that can influence its behaviour. The
first parameter is the adaptation parameter a, which takes
values in the range from 0 to 1 and determines the
aggressiveness of the adaptation. The second parameter is
the threshold, which roughly determines the limit of the
computational overhead that the algorithm incurs to the
system.

Adaptive admission control with resubmissions (AACR)
[15] is a variation of the AAC algorithm. It is enhanced with
the capability to recognize previously rejected requests and
increase their priority. Other than that, this algorithm is very
similar to AAC. The basic idea is that the client will
resubmit a rejected request only if the BB has indicated that
the request should indeed be resubmitted, and if the user is
willing to compromise for a delayed reservation. In order
for the BB to utilize resubmitted requests, it needs to keep a
list of the standby requests. Moreover, it actively prioritizes

such requests in expense of newly received requests, and the
prioritization depends on the duration that a specific user
has been waiting and resubmitting a request.

Implementation of the three advanced admission control
modules was based on the utilization of the open source
GLPK linear programming library [16], in order to solve
instances of the optimization problems. A number of array
and vector structures were used in order to keep the requests
and categorize them according to the requirements of each
algorithm.

4.4 Evaluation results
For each experiment we have measured the percentage of

accepted requests, the delay that was required before the
Bandwidth Broker would reply to a request and the
percentage of network utilization achieved by each
algorithm.

These results are summarized in Table 1.

Table 1. Summary of results

Averages
per

algorithm

Acceptance
rate

Average
delay (time

slots)

Average network
utilization (bytes

x time slots)
SAC 29.60% 0 3920014
PBAC 21.79% 7.08 5243307
AAC

thr=5
25.72% 5.44 4532672

AAC
thr=10

24.77% 5.48 4780385

AACR 42.56% 5.58 5594577
The following figures display in more detail the

behaviour of the algorithms under different experiments
with different request frequencies, and they help reveal the
features of each algorithm, its relative weaknesses and
strengths.

Acceptance rate

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

0 10 20 30 40

requests per time slot

ac
ce

pt
an

ce
 r

at
e PBAC

AAC thr=5
SAC
AAC thr=10
AACR, thr=5, 50%

Figure 5. Acceptance rate

As Figure 5 demonstrates, the acceptance ratio of all
algorithms except AACR remains fairly similar throughout
the experiments. SAC is the algorithm that slightly achieves
the highest acceptance rate, while PBAC is the one with the
lowest, with AAC variations covering the middle. This is
not a surprising result, since SAC will always accept a
request if there are enough resources available, while PBAC
is more oriented towards generating the maximum amount
of resource utilization, rather than treating all requests alike.

Because of the resubmission capability, AACR displays
clearly better performance with regard to this metric. This
result leads us to the conclusion that in environments where
the most significant factor is the satisfaction of the
maximum amount of users regardless of their relative
weight, the good performance of the SAC algorithm
combined with its simplicity make it the most suitable
choice. If resubmissions are desirable and can be supported,
AACR can then be used for its advantages.

In most cases however, all users will not generate the
same revenue for the network provider and a cost scheme
will most probably have to take into account both the
relative weight of each request, and the effort to maximize
the efficiency and utilization of currently available
resources. We have tried to cover this aspect with Figure 6
and Figure 7, which display the total absolute profit
generated for each experiment and the profit per request
respectively. We have chosen to measure the provider’s
profit by calculating the product of a request’s duration (in
time slots used by the ns-2 simulator) times the resource
allocation that a reservation requires.

Network utilization (total profit)

75

80

85

90

95

0 5 10 15 20 25 30 35

M
ill

io
ns

requests per time slot

pr
of

it
/ r

eq
ue

st
 (b

yt
es

 x

tim
e)

PBAC
AAC thr=5
SAC
AAC thr=10
AACR, thr=5, 50%

Figure 6. Network utilization

Network utilization

2000000

3000000

4000000

5000000

6000000

7000000

0 10 20 30 40

requests per time slot

pr
of

it
/ r

eq
ue

st
 (b

yt
es

 x

tim
e)

PBAC
AAC thr=5
SAC
AAC thr=10
AACR, thr=5, 50%

Figure 7. Network utilization per request

We have to mention that in Figure 6 AACR results are
not displayed because they are far larger than all other
results, in order to have better distinguishing capability for
the rest of the algorithms. These results demonstrate the
relative strengths of the price-based approaches, since
PBAC is the most efficient algorithm in this regard,
followed by AAC, with SAC displaying the worst
performance. AAC even surpasses the PBAC performance
in several cases when the request arrival ratio increases. The
most plausible explanation for this result is that the
increased arrival rate of new requests makes the larger size
of the set examined by the PBAC algorithm unnecessary.
Increasing the threshold for the AAC algorithm seems to

have a positive effect on its performance, but comparison
with PBAC shows that a restrained increase in the threshold
value is enough for obtaining equal or superior results.
Therefore, the recommendation for fine-tuning the AAC
algorithm is that it is beneficial to increase the threshold
value as soon as the arrival rate of request increases. As
expected, AACR again displays the best overall
performance, which on the case of total profit exceeds
several times the results of other algorithms.

In most real environments it is expected that a relatively
quick response to a request will be essential. As Figure 8
demonstrates, SAC is extremely responsive as expected.
This also means that there is room for a trade-off that can be
used to improve performance in other areas such as the
utilization of the network resources. PBAC is not efficient
in that regard, as it demands the most time in order to
respond to the reservation requests, a situation that in many
real-world scenarios is unattainable. The adaptive variations
prove to be attractive trade-offs, since for most of the
experiments the additional delay they incur is minimal,
while at the same time they manage to improve the
utilization of the provider’s resources, as demonstrated
above.

Average waiting time

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40

requests per time slot

w
ai

tin
g

tim
e

(ti
m

e
sl

ot
s)

PBAC
AAC thr=5
SAC
AAC thr=10
AACR, thr=5, 50%

Figure 8. Average waiting time

5. CONCLUSION – FUTURE WORK
In this paper we have presented a series of modules

implemented in order to extend the DiffServ functionality of
the ns-2 simulator [18] that are provided free for use. We
believe that such work is important because of the
complexity and cost of implementing such mechanisms and
architectures in real world environments. ns-2 can therefore
be very useful in extracting conclusions for the performance
and feasibility of these protocols and architectures.

Furthermore, our ns-2 implementations have helped us
evaluate more sophisticated architectures for automatic
provisioning of QoS services based on the Bandwidth
Broker concept.

Our future work in this area will be focused on extending
the simulated environments with more realistic
characteristics, extending the scope and variations of the
experiments including federated networks with independent
bandwidth broker instances [17], and also compare the

results from simulations with results from actual
implementations.

6. REFERENCES
[1] S. McCanne and S. Floyd, “ns Network Simulator”, available

at: http://www.isi.edu/nsnam/ns/
[2] S. Blake et al., “An Architecture for Differentiated Services”,

RFC 2475, December 1998
[3] RFC 2638 “A Two-bit Differentiated Services Architecture

for the Internet”, K. Nichols, V. Jackobson, L. Zhang, July
1999

[4] Peter Pieda, Jeremy Ethridge, Mandeep Baines, and Farhan
Shallwani. A Network Simulator, Differentiated Services
Implementation. Open IP, Nortel Networks, 2000.

[5] R. Wielicki, “ns-2 ad-ons page”, found at:
http://thenut.eti.pg.gda.pl/~rafalw/wfq/ (Accessed May 2006)

[6] G. Ahn, “MPLS Network Simulator”, found at:
http://flower.ce.cnu.ac.kr/~fog1/mns/index.htm

[7] S. Jamin, P. B. Danzig, S. Shenker, and L. Zhang,
“Measurement-Based Admission Control for Integrated
Services Packet Networks”, in proceedings of ACM
SIGCOMM'95, pp. 2 – 13, Cambridge, USA, 1995

[8] Academic OPNET Research and Educational Projects,
http://www.utdallas.edu/~lqian/opnet/ (Accessed May 2006)

[9] C. Bouras, D. Primpas, A. Sevasti, A. Varnavas, “Enhancing
the DiffServ Architecture of a Simulation Environment”,
Sixth IEEE International Workshop on Distributed Simulation
and Real Time Applications, Fort Worth, USA, 11-13 Oct.
2002, pp. 108-118

[10] ITU-T, P.59, ‘Artificial conversational speech’, (03/93)
[11] ATM Forum, “Traffic Management Specification”, Version

4.0, af-tm-0056.00, April 1996
[12] Cisco 12000 Series Internet Router: Frequently Asked

Questions,
http://www.cisco.com/warp/public/63/gsrfaq_11085.shtml
(Accessed May 2006)

[13] C. Bouras, K. Stamos, “An Adaptive Admission Control
Algorithm for Bandwidth Brokers”, 3rd IEEE International
Symposium on Network Computing and Applications
(NCA04), Cambridge, MA, USA, August 30-Sept. 1 2004, pp.
243-250

[14] C. Chhabra, T. Erlebach, B.Stiller, D. Vukadinovic “Price-
based Call Admission Control in a Single DiffServ Domain”,
TIK-Report Nr. 135, May 2002

[15] C. Bouras, K. Stamos, “Resubmissions and Partly Defined
Requests in an Adaptive Admission Control Algorithm for
Bandwidth Brokers”, In Proceedings of 5th International
Conference on Networking (ICN 2006), 23-26 April

[16] GLPK (GNU Linear Programming Kit),
http://www.gnu.org/software/glpk/glpk.html (Accessed May
‘06)

[17] C. Bouras, D. Primpas, “Pathfinding architectures for
interdomain Bandwidth Broker operation”, 14th IEEE
International Conference on Networks (ICON 2006),
Singapore, 13 - 15 September 2006

[18] CTI’s NS-2 enhancements, http://ru6.cti.gr/ru6/ns_home.php
(Accessed October 2006)

http://ru6.cti.gr/ru6/ns_home.php

	1. INTRODUCTION
	2. RELATED WORK
	3. DIFFSERV FUNCTIONALITY
	3.1 Background traffic
	3.2 Foreground traffic
	3.3 Leaky Bucket Shaping
	3.4 DiffServ-based tracing
	3.5 Scheduling at the ingress interface
	3.6 MDRR scheduling
	1.
	4. BANDWIDTH BROKERS
	4.1 Implementation in ns-2
	4.2 The supported QoS service
	4.3 Admission control algorithms
	4.4 Evaluation results

	5. CONCLUSION – FUTURE WORK
	6. REFERENCES

