JI. of Educational Multimedia and Hypermedia (2002) 11(4), 363-385

An Environment for the Annotation of Multimedia
Material by Younger Children

CHRISTOS BOURAS, APOSTOLOS GKAMAS,
AND AFRODITE SEVASTI
Research Academic Computer Technology Institute and University of Patras
Greece
bouras@scti.gr
gkamas@ucti.gr
sevastia@cti.gr

The exceptional advent of interactive multimedia applica-
tions has led to the need for their exploitation for educational
purposes. In this article, the design and implementation of a
multimedia annotation environment for young children is
presented. This environment was developed to provide chil-
dren aged 4 - 8 with the opportunity to reflect upon and an-
notate episodes from their everyday life. The aim was to ex-
ploit the latest technological developments in the field of
multimedia, to build an annotation environment where chil-
dren would be able to add multimedia annotations to videos.
Apart from the environment itself, design choices, interface
realization, as well as media handling methods and perfor-
mance issues are also presented.

The fields of multimedia editing and annotating are rapidly evolving
fields in the development of Instructional Computer Technology. Multime-
dia editing, to begin with, has been recognized as awidely promising tool in
educational procedures. Several commercial authoring applications in the
field of multimedia editing and storyboarding for younger children exist.
However, educational software rarely offers either the child or the adult fa-
cilitator options for “deeper interaction” and it hardly ever exploits powerful
computer technologies.

364 Bouras, Gkamas, and Sevasti

In this article the implementation work that took place within the frame-
work of project “Today’s Stories,” part of the Long Term Research Task
4.4, (i3 —ESE, Project Nr. 29312) is presented. According to the “Today’s
Stories” project definition (Today’s Stories, 2001), one technological objec-
tive of the project is the development a multimedia editing tool that enables
children to annotate a recorded episode with what they see, think, and expe-
rience. Annotation uses expressive media, symbols (e.g., stylised faces to
express various emotional states), or sound-effects (e.g., specia effects to
highlight for example surprise or fear). The resulting multi-medial document
is to be kept as a memory and a document for future reference. This work
also took into consideration, the pedagogical issues that are involved in the
nature and use of such an application, as they have been approached by the
“Today’s Stories” consortium (see also the notion of personal autonomy as a
central educational aim in (Aviram, 1993)).

For the implementation of this video exploring and annotating applica-
tion, referred to from now on as the Diary Composer (DC), the Java plat-
form was selected. More specificaly, the Java 2 SDK, Standard Edition, v
1.2.2, developed by Sun Microsystems, Inc. and the Java Media Framework
(JMF) 2.0 API developed by Sun Microsystems, Inc. and IBM were used.

Concerning efforts related to our work, a worthwhile approach to the
standardization of multimedia annotating is the work of the EBU/SMPTE
Task Force for Harmonized Standards for the Exchange of Program Materi-
al as Bit streams. The Task Force (EBU/SMPTE, 1998) gives a thorough
terminology and structure for how physical media (video, audio, data of var-
ious kinds including captions, graphics, still images, text, etc.) can be linked
together, for streaming program material and stored in file systems and on
servers.

Another attempt towards the direction of standards for multimedia an-
notation was made by the Workshop on MMI (Metadata for Multimedia In-
formation) conducted by the European Committee for Standardisation and
Information Society Standardisation System (CEN/ISSS) from February,
1998 until June, 1999. The workshop resulted in deliverables on the require-
ments and amodel for metadata for multimedia information.

MPEG-7 is an ISO/IEC standard being developed by Moving Picture
Experts Group (MPEG), formally named “Multimedia Content Description
Interface.” It aimsto create a standard for describing the multimedia content
data that will support some degree of interpretation of the information’s mean-
ing, which can be passed onto, or accessed by, a device or a computer code. In
Ghinea & Thomas (1998), it is stated that MPEG-7 must accommodate audio-
visual materia and take advantage of the ability to associate descriptive infor-
mation within video streams at various stages of video production. Based on

An Environment for the Annotation of Multimedia Material 365

these principles among others, MPEG-7 will work on making a global stan-
dardisation for multimedia annotations.

Apart from standardisation efforts, alot of research is performed in the
field of video editing and multimedia annotation. An interesting work that
dealt mainly with nonlinear video navigation and organization is presented
in Geissler (1995). The author introduced the notion of “hypermovies’: hy-
per-documents that only consist of movie nodes. These nodes are entities
comprised of the video as content, and also additional cinematic informa-
tion, which is synchronized with the video and can be made visible on de-
mand to support navigation.

The multiple tracks provided by the QuickTime format, are also utilized
for the development of a Movie Authoring and Design system called
“MAD,” which is presented in Baecker, Rosenthal, Friedlander, Smith, and
Cohen (1996). MAD facilitates the process of creating dynamic visua pre-
sentations by simultaneously allowing easy structure creation or modifica-
tion of motion pictures and visualization of the result of those modifications.

An effort to reinforce a document design methodology to a hypermedia
document is presented in (Santos, Soares, deSouza, & Courtiat, 1998). Here,
the authors pointed out that hypermedia applications are real-time, dynamic,
and depend on user interactions. Moreover, they emphasize the fact that hy-
permedia documents can contain inconsistencies, which are stemming from
the temporal constraints that are applied to their components through vari-
ous relationships among anchors.

Another interesting work, the results of which were seriously taken into
account while developing our DC application, is presented in Ghinea and
Thomas (1998). Here, the authors investigated the users’ assimilation and
understanding of the informational content of multimedia clips, to conclude a
significant result: The quality of video clips can be severely degraded without
the user having to perceive any significant loss of informational content.

The authors Ponceleon, Sriniyasan, Amir, Petkovic, and Diklic (1998),
developed “CueVideo” to provide a solution to effective video cataloguing
and browsing. The first phase of the “CueVideo” system involves the so-
called integrated catal oguing, which includes segmenting the video files into
shots and adding image, text, speech, and so forth as annotations. An inter-
active video authoring system that supports the video object annotation ca-
pability is presented in Chiueh, Mitra, Neogi, and Yang (1998). The so-
called “Zodiac” system allows users to associate annotations, such as text,
image, and audio, to move objectsin avideo sequence.

The approach followed in the ACTS project no. AC082, called DIANE
(Design, Implementation and Operation of a Distributed Annotation Environ-
ment) (Benz, Besder, Fischer, Hager, & Mecklenburg, 1997a; Benz, Fischer,

366 Bouras, Gkamas, and Sevasti

Mecklenburg, & Dermler, 1997b), was to allow the recording of an arbitrary
application output as the basic content of a multimedia document and to an-
notate it with all kinds of media available to the user. Finaly, a brief but
thorough presentation of commercial authoring applications in the fields of
multimedia editing for young children is given in Bouras et a. (2000).

In this article, after this presentation of the standardization, research,
and implementation attempts in the field of multimedia annotation, an over-
view of the DC design and architecture is presented, briefly describing the
functionality provided by the application. The remainder of the article analy-
ses the implementation techniques that were used for implementing that
functionality as well as the limitations that were imposed by the platform
used for the implementation, accompanied by performance issues. Finaly,
the future work on this application is described.

APPLICATION OVERVIEW
The Diary Composer

The DC application was designed so that it provides two distinct com-
ponents and corresponding interfaces. one for making the video recordings
accessible to the DC users, allowing navigation and selection of the video/
videos to be annotated and one for providing the tools and infrastructure for
annotation. We call the first component of the application the “Video Ex-
plorer” and the second one the “ Annotation Panel.”

The Video Explorer

The Video Explorer was designed to provide functionality for browsing
through previously shot videos to as many as three different users/children
simultaneously. The best way to represent a video file (presupposing that
file naming is prohibited due to the fact that written word should be avoid-
ed), is by using a still image from the videos contents: an image that will de-
pict one of the most characteristic events recorded in the video file. For the
purposes of the DC application, the display of a representative frame (actu-
ally thefirst frame) from each video recording stored in the DC system, was
adopted. These frames are called “thumbnails’ and are stored asimage files,
separate from the corresponding video filesin the system.

Once the thumbnails are created, they have to be appropriately dis-
played on the workstation’s screen so that the Video Explorer will act as an

An Environment for the Annotation of Multimedia Material 367

efficient browser of the video archives for its users. According to Yoo
(1995), all authoring interfaces use authoring metaphors for their implemen-
tation such as a slide-show metaphor, a book metaphor, a timeline metaphor,
an icon metaphor, and so forth. For the implementation of the Video Explor-
er, the timeline metaphor was adopted. Video thumbnails are organized in
groups according to the identity of their owner, in other words, according to
which child shot them. Each group of video thumbnails is then distributed
along a timeline, which in interface terms is represented by a straight line
extending from one point of real-world time to another. The distribution of
video thumbnails along the timeline is proportional to the shooting time of
each video recording. For videos that have already been annotated, small
icons on the bottom of the corresponding thumbnails depict their annota-
tions' nature (see the video on the upper timeline of Figure 1).

The “Today’s Stories’ system infrastructure anticipates for automatic
authentication of the users as soon as they approach the DC system (by the
use of infra-red beacons and receivers), however it was necessary to imple-
ment a mechanism for the users' orientation within the Video Explorer inter-
face. This mechanism allows the DC user to define a digitised photograph or
image as his representative within the DC user interface and a colour to
identify his material (Figure 1).

The Video Explorer supports simultaneous use of more than one user,
by presenting more than one timeline in cases where more than one child
shares the same workspace (Figure 1). During the videos' storing procedure,
meta-data that indicate which of the videos are shootings of the same inci-
dent by different children, are also stored in the system.

Figure 1. The video explorer layout

368 Bouras, Gkamas, and Sevasti

In agroup of two or three interrelated videos of the same incident, one
isidentified as “parent,” and all of them are related in a precise manner. In
Figure 1, the two video thumbnails from the two timelines consist of record-
ings of the same incident from different perspectives and are therefore visu-
ally related with a light blue rectangle that surrounds them. This rectangle
also depicts the fact that these videos are to be annotated together, later on
during the annotation procedure. In this way, video files of the same incident
shot from different perspectives, form a so-called “hyper-video” in the DC.
This hyper-video, containing one, two, or three separate video filesis the en-
tity handled by the annotation methods of our DC application.

The Video Explorer interface has been implemented in such away that
the user can click anywhere on a “hyper-video” and initialise an annotation
session by opening the second component of the DC application, the Anno-
tation Panel.

The Annotation Panel

The second component of the DC has as its main function to provide
the user with the tools to add image and sound annotations to the video/vid-
eos aready selected through the Video Explorer (Sevasti & Bouras, 2000).
The main role of the annotation activity is to classify an episode so it could
be kept in the different categories of the database. It also enables children to
schematically express their immediate reactions to an episode.

The dominant, still controversial features of the Annotation Panel im-
plementation are its dynamic nature and simplicity. Bearing in mind that the
tool aims at very young children and that the procedure of annotation actual-
ly can be broken into two phases (adding/removing annotations and play-
back of the video in its current state, containing all annotations previously
added), appropriate methods had to be implemented.

The design choice made was to merge the annotating and playback pro-
cedures so that the two distinct phases would become transparent to the us-
ers of the DC. The DC application allows for steps of the annotation proce-
dure to be interrupted for initialising a playback procedure and vice versa. In
other words, the user is provided with the ability to interrupt the annotation
procedure, to go back and find out how he/she has done so far, but during
playback he/she can still pause the video reproduction and add annotations.
We have called this “dynamic annotation.”

In the Annotation Panel environment, the video thumbnails are enlarged
and occupy one, two or three corresponding playback screens (Figure 2).
They are in fact not thumbnails anymore. They comprise small display

An Environment for the Annotation of Multimedia Material 369

screens of the hyper-video embedded in the Annotation Panel environment.
These screens are used as canvases for the users to add their annotations.

Thus, the users can directly associate objects or actions displayed in the
videos comprising a hyper-video, by placing above or right behind them the
corresponding annotation (either facial expression or sound). Three simple
video control buttons are provided to the user for controlling playback of the
hyper-video being annotated. These video control buttons are placed on one
control panel, which is common to all the videos that are being annotated at
the moment. From the implementation point of view, this approach required
video synchronization techniques. All buttons have the same effect on the
video displays within the Annotation Panel interface environment, so that
when for example the user presses the Play button, playback of al the three
videos (in the case of Figure 2) starts simultaneously.

Figure 2. The annotation panel layout

For the current version of the DC, two types of annotation palettes were
implemented: one for image annotations and one for sound annotations (rep-
resented by images as well for the purposes of the DC interface). The first
palette (see bottom left of Figure 2), contains image annotations while the
second one (see bottom right of Figure 2) contains image annotations that
are depicting sounds. The user is provided with the functionality of pausing
the hyper-video video at any moment (by pressing the Stop button) and add-
ing to it an unlimited number of image and sound annotations, to comment
on the incident that has been recorded.

370 Bouras, Gkamas, and Sevasti

Apart from the predefined set of sound annotations, new sound annota-
tions (e.g., spoken words, and sounds that express emotions) can also be in-
serted to the current hyper-video. The application in its current version also
supports the feature of “scrolling palettes’ for browsing through multiple an-
notation categories. Defining this dynamic set of annotationsis a functional-
ity provided by the Custom Annotations tool described later.

The Annotation Panel screen also offers users a text box for adding a
brief text message (100 characters) as an annotation to the videos being an-
notated at any moment. Finally, on the top left corner of the Annotation Pan-
el interface, a Back button exists that can be used for usersto finish their an-
notating session and return to the Video Explorer either for further naviga-
tion through videos or for choosing another hyper-video to annotate. At the
moment when the users presses the Back button all new annotation additions
and/or removals are recorded as final and the system’s database is updated
accordingly.

Initialisation Applications

Initialisation applications are used for the insertion of initial values in
the system’s database, so that they will be used by the DC application later.
Three initialisation applications have been implemented: (a) the Teacher ini-
tialisation application, (b) the Administrator initialisation application, (C)
and the Kid initialisation application, for teachers, technical people, and kids
to be able to initialise and configure the DC application themselves. A de-
tailed description of each initialisation application is provided in the follow-
ing sections.

Teacher Initialisation Application

Teachers can use the Teacher initialisation application, to insert into
the system’s database, information about the system’s entities. The Teacher
initialisation application consists of the following modules: (a) the applica-
tion frame which is the main module of the Teacher initialisation application
and appears when the application starts, hosting all the other components of
the application. (b) the “insert to database” modules that are responsible for
inserting data to the system’s database and comprise individual panels and
(c) the “delete and update” modules, which are responsible for deleting and
updating data to system’s database. The user can access the latter from the

An Environment for the Annotation of Multimedia Material 371

delete and update panel, which provides a list with all the database data that
are available for deleting or updating. The delete modules provide the capa-
bility for teachers to delete data from the system’s database (if thisis possi-
ble) with the use of database routines that the application frame module offers.

Database access is only provided through the application frame module
to avoid having many database connections open at the same time. Thus, da-
tabase access is kept centralised and simple.

Administrator Initialisation Application

Technical staff can use the Administrator initialisation application to
insert into the system’s database, information concerning for example, the
multimedia file formats supported by the DC application. The Administrator
initialisation application has the same architecture as the Teacher initialisa-
tion application and consists of the following modules: (a) application
frame, (b) insert to database modules and (c) delete and update modules.

Kid Initialisation Application

The Kid initialisation application “recognises’ akid carrying an infra-
red beacon and displays on screen: (a) the kid's name in afancy way, (b) the
representative image of the kid (if it has already been inserted to the sys-
tem’s database by the kid himself or the teacher), and (c) the representative
colour of the kid (if it has already been inserted to the system’s database by
the kid himself or the teacher). If one or both of the latest two entities (rep-
resentative image of the kid and representative colour of the kid) has not
been already inserted to the database or the kid wants to update/modify the
existent entries, the Kid initialisation application provides each kid the func-
tionality to: (a) choose an image that he/she would like to be represented by
inside the DC environment and (b) choose a colour that he/she would like to
be represented by inside the DC environment. Figure 3 shows the Kid ini-
tialisation application interface.

The Kid initialisation application consists of the following modules: (a)
the application frame, which is the main module of the application and
frame appears when the application starts, hosting all the other components
of the Kid initialisation application; (b) the name panel that displays the
name and the current image of the kid; (c) the “select image” panel, which
provides an interface to each kid for him/her to select a new image and in-
sert it to the system’ s database (with the use of database routines that the

372 Bouras, Gkamas, and Sevasti

application frame modul e offers); (d) the “select colour” panel that provides
an interface to each kid for him/her to select a new colour and insert it to the
system’s database (with the use of database routines that the Application
frame module offers); and finally (€) the colour Panel that displays the cur-
rent colour of the kid.

Figure 3. Kid initialisation application

The Custom Annotations application

The purpose that the Custom Annotations environment servesiis that of
allowing teachers, in cooperation with kids, to preview previously digitised
material (images and sounds) and denote them either as image annotations
or as sound annotations within the DC application.

The Custom Annotations environment is comprised mainly of the fol-
lowing components:

o theimage palette, where the annotations of each image annotations' cate-
gory are displayed and the scrolling arrows of the image palette;

o the sound palette, where the annotations of each sound annotations' cate-
gory are displayed and the scrolling arrows of the sound pal ette;

o thescrolling panel, where all image files (*.gif or *.jpg files) existent in a
system directory are displayed and the clipboard where images chosen

An Environment for the Annotation of Multimedia Material 373

from the scrolling panel to become annotations in the pal ettes are tempo-
rarily placed; and

o the dustbin where annotations from the palettes and candidate annota-
tions for the clipboard can be dragged-and-dropped to be del eted.

In Figure 4, these components are explicitly labelled. There are certain
rules behind the operation of the Custom Annotations application. There are
two kinds of annotations that users can define: image annotations and sound
annotations. Image annotations can be displayed on the image palette (see
Figure 4) while sound annotations are displayed on the sound palette (see
Figure 4). At the same time, both image and sound annotations are orga-
nized in categories so for example, a set of image annotations that are dis-
played on the same image palette while scrolling through the image palette
contents, belong to one image category.

Figure 4. The components of the custom annotations environment

The set of annotations and categories that are currently existent every
time the user terminates a session in the Custom Annotations environment,
are the ones that can be used in the Annotation Panel of the Diary Compos-
er. This means that the Custom Annotations environment also support auto-
matic saving of the users’ work.

Through the Custom Annotations environment, the users can browse
through the existent set of annotation categories and their contents. The pro-
cedure of inserting digital material to the Custom Annotations environment

374 Bouras, Gkamas, and Sevasti

isvery simple and falls mainly in the responsibility of teachers. For such im-
age files to be accessible by the Custom Annotations environment, users
have to store them in a specific directory. In that way, all custom image files
existing or recently stored in the aforementioned directory, appear in the
Scrolling Panel of the Custom Annotations environment (see Figure 4) and
can be used to create image and sound annotations.

Teachers, in cooperation with children, can also record digitised sounds
and store them in a specific directory. In that way, all sound files existing or
recently stored in the aforementioned directory, will be available later on,
when creating a new sound annotation (or updating an old one), as a selec-
tion of sound for the user to choose from. Adding a new sound annotation
also involves choosing a sound to associate the new annotation with from a
window that pops-up, enabling users to preview sound files.

The user can choose to insert a new annotation to the current set of im-
age or sound annotations either in an existent category or in the empty cate-
gory (thus initiating a new images/sounds category). Furthermore, the user
can remove one or more annotations from their categories one by one, by
dragging and dropping them on the Dustbin. However, if the user triesto re-
move an annotation that has been attached to one of the videos of the Diary
Composer system, he/sheis not allowed to do so.

The Video Retrieval Application

To enable a continuous elaboration and reflection of the life episodes,
their observation from different perspectives of time and children and shar-
ing with others, it was also necessary to enable children to “revisit” distin-
guished video episodes selected according to certain criteria. This raised the
need for a Video Retrieval tool within the DC environment, which is de-
scribed in this section.

The Video retrieval application provides the capability for users to
search into the DC system’s database for videos according to various criteria
and combinations of criteria. The Video retrieval application supports
searching based on the following criteria (or any combination of them): (a)
searching by Year, (b) searching by Month, (c) searching by Day of Week,
(d) searching by Image or Sound Annotation, and (€) searching by Keyword.
Figure 5 shows the Video retrieval application layout. The following para-
graph describes the architecture and implementation of the application.

The Video retrieval application consists of the following modules: (a)
the application frame, which is the main module of the application and ap-
pears when the application initiates, hosting all the other components of the

An Environment for the Annotation of Multimedia Material 375

application; (b) the search panel modules that provide the user with the ca-
pability to specify the search criteria; each of these modules consists of a
panel to select and deselect search criteria. (3) The results panel module,
which is responsible for presenting to the users the videos that match the se-
lected criteria; for each selected video the system presents the video's
thumbnail picture; and (d) the interface component that consists of the anno-
tation movement module and the exit application module.

Figure 5. Video retrieval application

IMPLEMENTATION ISSUES
Annotation

For the implementation of the annotation functionality in the DC appli-
cation, the authors co-estimated the related work presented in an earlier sec-
tion of this article and the requirements specified by the “Today’s Stories”
consortium as far as the multimedia annotating application to be developed
was concerned.

Due to the lack of mature standards and to achieve acceptable perfor-
mance and platform independence in application execution and video sup-
ported formats, an open and configurable annotation system was designed.
The main idea was to create transparent to the end user data structures that
would hold hyper-videos and all kinds of multimedia annotations attached to

376 Bouras, Gkamas, and Sevasti

them in an efficient and consistent way. Thisway, the limitations and perfor-
mance issues arising from all the attempts to encode video and annotations
together were bypassed.

All of the annotation methods follow the principle of associating an an-
notation with the frame of the video to which the annotation was added. In
this way, predefined images and sounds as well as recorded sounds are asso-
ciated in dynamic data structures with the video frame being annotated by
them. During the application runtime, this association is dynamic and con-
figurable. This approach makes the feature of dynamic annotation described
earlier feasible.

The annotation procedure can be interrupted by the user at any time for
him/her to be able to preview hisher annotations so far. The application
then reads from those dynamic data structures to represent the annotated hy-
per-video playback to the user. This is achieved by displaying images and
opening sound players at those positions during playback, where the data
structures’ contents appoint. At any moment, the user can remove any anno-
tation he/she wishes. This functionality isinternally implemented by remov-
ing the correspondent entries from these data structures and reordering the
data structures’ contents.

All these dynamic interactions are possible during an annotation ses-
sion. As soon as the user wishes to interrupt the annotating procedure, anno-
tation data together with the hyper-videos they refer to, are stored perma-
nently in the system for future use. For the current version of the application,
aproprietary scheme for storing al this information has been implemented.

The implementation approach described here has the following
advantages:

e supportsawide variety of video formats for the video files that are anno-
tated within the application (in [Sun Microsystems, 1999], a list of the
supported by the IMF APl mediaformatsis provided);

e anunlimited set of different kinds and formats of multimedia data can be
used as annotations (images, sounds etc.); and

o performance is preserved in satisfactory levels independently of the
amount/type of annotations inserted, due to the fact that annotations are
stored separately from the raw video data and not encoded within it.

The main disadvantage of our implementation approach is the fact that
annotated hyper-videos are stored in a proprietary format, readable by our
application alone.

An Environment for the Annotation of Multimedia Material 377

User Interface

For the purposes of the annotation functionality, the implementation
procedure exploited the potentials of the JFC/Swing Lightweight Compo-
nent Framework and Containment Model (Pantham, 1999; Piroumian, 1999)
so that the DC application was developed on a multi-containment, multi-lay-
er infrastructure. The JFC/Swing Lightweight Component Framework and
Containment Model were two of the major enhancements of Swing over the
Abstract Window Toolkit (AWT) that the Java platform used to provide for
User Interface (Ul) development. Actually, the DC application would be im-
possible to implement without these two features of Swing.

The Lightweight Component Framework facilitated the implementation
procedure in the sense that the application was organized in many different
components, the most complicated of which contained the smpler ones, thus
acting as containers. All methods implementing objects’ behaviour within
the application itself and the application Ul were accessible by the appropri-
ate levels of containment hierarchy in order to provide a consistent and reli-
ablelook and fedl throughout the application. An indicative diagram that de-
picts alarge proportion of the containment hierarchy of the DC implementa-
tion objectsis shown in Figure 6.

Root containers of the containment hierarchy have been implemented in
such a way that act as mediators among their components. They listen for
events from certain components (e.g. amouse “click” event on a video con-
trol object) and generate other events according to the application’s func-
tionality protocol (e.g. starting, stopping or rewinding of the initiated video
player/s depending on which video control object was triggered). In this
way, leaf components of the containment hierarchy do not communicate di-
rectly with each other. Instead, each event climbs up in the hierarchy tree so
that al listener objects are informed about it in order for the appropriate
methods to be called.

378 Bouras, Gkamas, and Sevasti

Application
Frame Container
Toolbar Video Explorer/Annotation Panel
JFrame Container JFrame Container

Help Diary Dustbin Annotation Palette || Video Control Video
JPanel JPanel JPanel JPanel Component JPanel Component |1 JinternalFrame
Component Component Component P P Component
Image Annotation Sound Annotation
JPanel Component JPanel Component

Figure 6. The multi-containment infrastructure

The JFC/Swing Containment Model allows for organizing components
in different layers within their container. Actually, this feature is provided
by the group of the heavyweight container classes in Swing and is referred
to as the nested-container hierarchy in (Piroumian, 1999). According to this
infrastructure, the Annotation Panel container was organized in layers. the
background component controls and coordinates all other layers. Videos and
video controls are placed two layers above on the so-called Modal layer
while annotations are placed on the topmost Drag layer (Figure 7).

Background
@ContentPane

A

Video-Video Controls u <

@LayeredPane_ MODAL_LAYER

An notatio(

@LayeredPane DRAG_LAYER
Figure 7. The multi-layer infrastructure

An Environment for the Annotation of Multimedia Material 379

This Ul architecture was adopted for several reasons and resolved most
of the implementation problems. One of these reasons was to make the
heavyweight visual component of each video player cooperate with the rest
of the application, being placed over the Ul background and under the anno-
tations' layer at the same time. Of course, this architecture facilitated the im-
plementation of the drag and drop behaviour of annotations and the “ Genie”
object in the best possible way. Annotation and Genie objects behaviour is
defined by a set of methods that allow them to move on the Ul drag layer,
thus creating the impression that they “float” over all other Ul components.
Their drag-and-drop behaviour was implemented over the mouse listening
interface that the Java 2 SDK provides.

Media Handling

The release of version 2.0 of the Java Media Framework (JMF) API
from Sun Microsystems, Inc. and IBM has undoubtedly provided Java plat-
form programmers with a much wider set of features for inserting and han-
dling multimediain their applications. The major challenges that the DC im-
plementation had to face was to ensure the best quality possible while load-
ing more than one video/audio players, synchronize these players, and moni-
tor their behaviour throughout the application runtime. In this section, how
the IMF APl was used for the DC implementation and the design choices
made in order to achieve the desired functionality is presented.

According to Sun Microsystems (1998), the IMF specification defines
APIs for displaying time-based media. IMF players share a common model
for timekeeping and synchronization and JMF clocks define the basic timing
and synchronization operations. Also, according to Carmo (1999), IMF does
not build the functionality of constant media progression tracking into each
media player. Based on this, several mechanisms for accessing video data by
frame number instead of mediatime, for keeping track of the video data pro-
gression in frame numbers and for generating events according to the current
video frame number had to be implemented.

One of the dominant components for video/audio management within
the DC was the Frame Positioning Control (FPC) interface of the IMF API
(Carmo, 1999; Sun Microsystems, 1999). This interface was used for ac-
cessing the individual frames of each video file, afeature that is not built-in
within IMF. For the annotation feature of the DC to be implemented, we had
to keep track of the video progression in frame numbers or, in other words,
be aware of the number of the current video frame being displayed on

380 Bouras, Gkamas, and Sevasti

screen, during the annotation/playback procedure. Whenever video playback
is paused and annotations are added to or removed from it, the current frame
number is used to associate annotations with the video, as it has already
been explained.

However, keeping track of the video progression in terms of frame
number, required the combination of the FPC interface and its mapTime-
ToFrame method. Actually, caling this method on the FPC interface of a
video player is the only way to monitor a video player's progression in
frame numbers within IMF. This procedure is often performed during the
DC runtime and more specifically every time the application needs to be in-
formed about the exact video frame number to which one or more annota-
tions have been added. This fact could not be ignored by the implementation
and it is one of the mgjor performance drawbacks of the DC application.

Things become even more complicated if we attempt to introduce the
functionality of displaying annotations previously added to a video file dur-
ing playback. This functionality requires constant monitoring of the video
player’s current frame number, so that an annotation display event is initiat-
ed when the video playback approaches the video frame number where the
annotation was added. For this functionality and since JIMF players cannot
produce such events themselves, a thread running in parallel to the video
player/s had to be implemented.

This thread has as its main duty to monitor the player status, and place
annotations to their position inside a video's visual component, according to
the data recorded during the annotation procedure. It receives as input, the
content of the data structures, where data, associating video frames with an-
notations, are stored. These data are referred to as annotation data entries
(ADE) from now on. Each ADE, consists of an annotation’ s insertion frame
number (AIFN) and an annotation identifier (Al). In fact, the thread imple-
mented complies with the following algorithm:

Thread activatesitself only when video player isin “ Started” state

Thread polls the video player for the current video frame number
(CVFN)

Thread compares CVFN with the subset of ADEs for which
AIFN<CVFN

WHILE (AIFN<CVFN+4 and AIFN>CVFN-4)

Add the annotation referred to by this ADE’s Al to the video’s visual
component

An Environment for the Annotation of Multimedia Material 381

This algorithm ensures that although annotations are actually added to
one frame of the videos (AIFN), they are displayed for a window of eight
video frames (starting from four frames before the AIFN and finishing at
four frames after the AIFN) so that the user can perceive their existence.
The main drawback of this approach has turned out to be the burden placed
upon the application’ s performance by the thread introduced.

The implementation of the annotation functionality within the DC envi-
ronment includes also synchronization techniques for the cases when two or
three videos forming a hyper-video are being simultaneously annotated.
Generally speaking, JMF provides the functionality of synchronization of
multiple players in such a way that the programmer has to define a master
player, the controls of which are responsible for all other players stated as
“slaves.” For the DC purposes methods that designated as master player in a
group of two or three videos the one with the maximum duration had to be
implemented. Also several experiments were made that resulted in the con-
clusion that equal frame rates among the members of a video group are en-
suring best synchronization and performance behaviour.

Finally, the IMF API does not provide a reliable mechanism for inter-
fering with the video players' playback rate. In fact, not al players are guar-
anteed to allow their playback rate to be adjusted that is reduced or in-
creased. This fact prevented being able to provide videos' fast forward and
rewind functionality within the application in its current version. This issue
is part of future work and might also be resolved in future versions of the
JMF API.

Performance Issues-Memory Management

A lot of performance issues occurred during the implementation proce-
dure of the DC application, some of which have already been mentioned in
previous sections of this article. A quantitative amount of experimenting
took place to determine the appropriate video format characteristics that
would allow qualitative simultaneous playback of three different video files
in the Annotation Panel component. Results indicated as the only solution
recommended for good performance was that of reducing the video files
frame rate to numbers less than or equal to 15 frames per second. According
to the results of Ghinea and Thomas (1998), we are allowed to do so for the
sake of playback quality, without putting at stake significant loss of informa-
tiona content.

Another significant issue related to performance that had to be dealt
with, was that of memory management. The nature of the DC application

382 Bouras, Gkamas, and Sevasti

requires that tentative memory interactions and extensive care had to be tak-
en for the introduction of efficient memory management into the application.
Keeping in mind that Java does not provide synchronous mechanisms for
memory management and garbage disposal, several methods were imple-
mented for disposal of the extensive memory resources occupied by video
players. These methods anticipate for master-slave relationships between
video players and clean up most of the system’'s memory resources each
time an annotation session is terminated.

Search Engine Implementation of Video Retrieval Application

The following expression describes the operation of Video retrieval ap-
plication’s search engine:

Search Result = Cat-1(Item-1 OR Item-2 OR ... OR Item-n) AND Cat-
2(Item-1 OR Item-2 OR ... OR Item-n) AND ... AND Cat-N(ltem-1 OR
I[tem-2 OR ... OR Item-n)

Where:

e Cat-1, Cat-2, ..., Cat-n are of the following categories: Year, Month,
Day of Week, Annotation, Key word.

e Item-1, Item-2,..., Item-n are the selected items of the specified (Cat-x)
category. For example if the specified category is the Days of Week cate-
gory the items will be one or more from the following list: Monday,
Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday

The selection operation has been implemented as follows:

o Step 1—Start: All the available videos from the system’s database and
the selected videos are stored in a vector named Results

o Step 2—Refine Keywords: If the user has inserted a keyword as a search
criterion, the system selects all the videos that match the given keyword
(with the use of the following SQL command: select * from text where
text like ‘%Keyword-1%' OR ‘%Keyword-2%' ... OR ‘%Keyword-
n%’) and stores them to Keyword vector. The Results vector is updated
to contain only the videos that previously appeared both to the Result
vector and to Keywords vector.

e Step 3—Refine Annotations: If the user has selected annotations as
search criteria, the system selects all the videos that match the given an-
notations (with the use of the following SQL command: select * from
video annotations where item_id in (annotation-1, annotation-2,..., an-

An Environment for the Annotation of Multimedia Material 383

notation-n) and stores them to the Annotations vector. The Results vector
is updated to contain only the videos that previously appeared both to the
Result Vector and to the Annotations Vector.

o Step 4—Refine Years: If the user has selected years as search criteria,
the Results vector is updated to contain the videos that appear to the Re-
sults vector and were shot during the selected years.

o Step 5—Refine Months: If the user has selected months as search crite-
rig, the Results vector is updated to contain the videos that previously ap-
peared to the Results vector and were shot during the selected months.

o Step 6—Refine Days of Week: If the user has selected days of week as
search criteria, the Results vector is updated to contain the videos that
previously appeared to the Results vector and were shot during the se-
lected days of week.

e Step 7—Final Result: The Result vector contains the videos that match
all the selected search criteria.

FUTURE WORK—CONCLUSIONS

The DC application presented in this article is comprised of the first
fully functional version of a tool that has been gradually enhanced with
functionality and improved according to the feedback that has been provided
from trialsin school environments within the “Today’ s Stories’ project time
plan and the pedagogical analysis of the application’s use and nature.

Apart from adding functionality to the existent tool (such as making the
DC environment accessible over the Internet), our future work will also in-
vestigate the possihilities to introduce multimedia annotations in widely ac-
cepted video content types such as QuickTime. QuickTime architecture and
file format offer themselves to annotation insertion, since they organize me-
dia data in synchronized tracks. However, there are still limitations to the
data types that can be used as annotations and of course to the platforms
over which an annotated QuickTime movie can be presented. We are cur-
rently working with the QuickTime for Java API to make QuickTime and its
annotation techniques accessible to all the Java compliant platforms.

Generally speaking, we can conclude that our work and al other efforts
should move towards the direction of multimedia annotations' standardiza
tion. It isfor sure that the MPEG-7 standard will contribute significantly to-
wards this direction.

384 Bouras, Gkamas, and Sevasti

References

Aviram, A. (1993). Personal autonomy and the flexible school. Internation-
al Review of Education, 39(5), 419-433. The Netherlands: Kluwer Academic.

Baecker, R., Rosenthal, AJ., Friedlander, N., Smith, E., & Cohen, A.
(1996). A multimedia system for authoring motion pictures. In Pro-
ceedings of the 4th ACM International Multimedia Conference, (pp.
31-42). Boston, MA: ACM Press.

Benz, H., Bessler, S., Fischer, S., Hager, M., & Mecklenburg, R. (1997a).
DIANE: A multimedia annotation system. In Proceedings of the Sec-
ond European Conference on Multimedia Applications, Services and
Techniques (ECMAST’ 97). Milan, Italy.

Benz, H., Fischer, S., Mecklenburg, R., & Dermler, G. (1997b). DIANE -
Hypermedia documents in a distributed annotation environment. In
Proceedings of the Conference on Hypertext - Information Retrieval -
Multimedia (HIM’ 97). Dortmund, Germany.

Bouras, C., Kapoulas, V., Konidaris, A., Ramahlo, M., Sevasti, A., & Van
de Velde, W. (2000). Diary composer: Supporting reflection on past
events for young children. In Proceedings of World Conference on Ed-
ucational Multimedia, Hypermedia & Telecommunications, Montréal,
Canada (pp. 105-110). Charlottesville, VA: Association for the Ad-
vancement of Computing in Education.

Carmo, L.D. (1999). Core Java media framework, Upper Saddle River, NJ:
Prentice Hall.

Chiueh, T., Mitra, T., Neogi, A., & Yang, CK. (1998). Zodiac: A history
interactive video authoring system. In Proceedings of the 6th ACM In-
ternational Multimedia Conference (Multimedia’ 98), (pp. 435-443).
Bristol, UK: ACM Press.

EBU/SMPTE-Task Force for Harmonized Standards for the Exchange of
Programme Material as Bitstreams (1998). Final report: Analyses and
results. Author.

Geissler, J. (1995). Surfing the movie space: Advanced navigation in mov-
ie-only hypermedia. In Proceedings of the 3rd ACM International Mul-
timedia Conference (Multimedia’95), (pp. 391-400). San Francisco,
CA: ACM Press.

Ghinea, G., & Thomas, JP. (1998). QoS impact on user perception and un-
derstanding of multimedia video clips. In Proceedings of the 6th ACM
International Multimedia Conference (Multimedia’ 98), (pp. 49-54).
Bristol, UK: ACM Press.

MPEG-7 Applications Document v.9 (1999). In A. Lindsay (Ed.), ISO/IEC
JTC1/SC29/WG11/N2861. Vancouver, Canada: International Organisa-
tion For Standardisation Requirements Group.

Pantham, S. (1999). Pure JFC swing, Indianapolis, IN: Sams Publishing.

An Environment for the Annotation of Multimedia Material 385

Piroumian, V. (1999). Java GUI development: The authoritative solution,
Indianapolis, IN: Sams Publishing.

Ponceleon, D., Srinivasan, S., Amir, A., Petkovic, D., & Diklic, D. (1998).
Key to effective video retrieval: Effective cataloging and browsing. In
Proceedings of the 6th ACM International Multimedia Conference
(Multimedia’ 98), (pp. 99-107). Bristol, UK: ACM Press.

Santos, C.A.S., Soares, L.F.G., de Souza, G.L., & Courtiat, J.P. (1998).
Design methodology for formal validation of hypermedia documents.
In Proceedings of the 6th ACM International Multimedia Conference
(Multimedia’ 98), (pp. 39-48). Bristol, UK: ACM Press.

Sevasti, A., & Bouras, C. (2000). Using Java to implement a multimedia
annotation environment for young children. In Proceedings of the 8th
ACM International Multimedia Conference, (pp. 187-194). Los Ange-
les, CA: ACM Press.

Sun Microsystems Inc. (1999). Java media framework API guide. Retrieved
March 2002 from: http://java.sun.com/products/java-media/jmf/2.1.1/
guide/

Sun Microsystems Inc., Silicon Graphics Inc. & Intel Corporation (1998).
Java media players. Retrieved March 2002 from: http://java.sun.com/
products/java-media/jmf/1.0/guide/index.html

Today’s Stories i3 —ESE (Long Term Research Task 4.4) Project Nr. 29312
(2001) [Online]. Available: http://stories.starlab.org/about.htm

Y00, S. (1995). Multimedia authoring/scripting. Course seminar. Retrieved March
2001 from: http://mmlab.snu.ac.kr/course/mmseminar/temp/Y sPres.html

