
The Perfect and Imperfect Clocks Approach to Performance
Analysis of Basic Timestamp Ordering in Distributed Databases

C. J. Bouras P. G. Spirakis

Department of Computer Science and Engineering
University of Patras, Greece

and Computer Technology Institute, Greece
P.O. Box 1122, 26110 Patras, Greece

Abstract
Locking and timestamping are two popular ap-

proaches to concurrency control in databases sys-
tems. Although more than a dozen analytic perfor-
mance studies of locking techniques have recently ap-
peared in the literature, analytic performance study
of timestamp–based concurrency algorithms largely re-
mains an unexplored area. This work presents a model
of a distributed database system which provides the
framework to study the performance of timestamp or-
dering concurrency control. We exhibit an analytical
solution, which has been tested with extensive simula-
tion. The accuracy seems to be very high. We assume
perfect and also imperfect clocks for synchronization
and quantify the way in which local clock inaccura-
cies affect the phenomenon of transaction conflicts. In
particular, we derive a lot of interesting performance
measures such as probability of abort, throughput and
others.

1 Introduction

Research in the area of concurrency control for
distributed database systems has led to the develop-
ment of many concurrency control algorithms. Most
of these algorithms are based on one of three basic
mechanisms : locking, timestamps and optimistic con-
currency [BG81]. Given the ever–growing number of
available concurrency control algorithms, considerable
research has recently been devoted to evaluating the
performance of concurrency control algorithms. Per-
formance studies of concurrency control algorithms
have been done using simulations as well as analyt-
ical methods [?], [?], [?], [?], [?], [?].

There are two critical points in analyzing the per-
formance of timestamp ordering concurrency control
algorithms in distributed database systems.

• The reordering phenomenon

For obvious reasons, due to variable network de-
lays, transactions do not necessarily arrive at the
system sites in elaborate. From the point of view
of queueing theory this phenomenon has analyzed
in [?], [?], [?]. Our work extends these results
in the field of performance analysis of concur-
rency control algorithms in distributed database
systems.

• The effect of clock drifts
All models up to now assume global time
for timestamping.In contrast real physically dis-
tributed database systems use local clocks which
do not indicate the same time. The effect of clock
drifts is an important point [?]. However, aside
from relativity considerations, it usually holds
that there is some bounded proportion between
elapsed local time spans [?]. Techniques such as
message passing can be used to keep local clocks
almost synchronized [?]. In this work we do as-
sume that local clocks suffer a small bounded
drift.

This work studies the performance of Basic Times-
tamp Ordering(BTO) and compares the numerical re-
sults with results from simulation experiments.

2 The Model
We assume that the distributed database consists

of K sites. The database is not replicated. This means
that each data object exists at only one site. So, in
each site there exists a different Local Data Base. The
number of data objects per site is N . A perfectly reli-
able network is assumed to connect the K sites. A key
parameter in our model is the end–to–end delay which
is the ellapsed time from the sending of a transaction
at its source to the delivery of the transaction at its
destination.

Transactions are generated at different sites as in-
dependent Poisson processes. We assume that local

processing times are negligible compared to communi-
cation delays. We also assume that transaction gener-
ations and communication delays are statistically in-
dependent. Each transaction is assumed to access M
data objects, which belong in the same Local Data
Base. Each Local Data Base accepts an independent
Poisson process of transactions with rate λ. Trans-
actions travel across the network as message packets
of reads and writes (one such packet per transac-
tion). The data objects accessed by each transaction
are equilprobably selected among the N data objects
(uniform access).

In the case of clock drifts we assume an ε–bounded
drift among the clocks. More specifically, if t is the
global time and LC(j, t) the indication of the clock of
site j at t , then there is an ε > 0 such that for all j:

|LC(j, t)− t| < ε (1)

It is obvious that the unique timestamp which each
transaction receives is LC(j, t). Furthermore, the val-
ues of LC(j, t) are assumed to be uniformly and in-
dependently distributed in [t ± ε]. The constant ε is
known from the specification of the underlying hard-
ware clocks. Typically ε is very small, in the order of
10−5 to 10−6. Note that only perfectly synchronized
clocks were considered by the research on the perfor-
mance of timestamps algorithms up to now.

3 Performance Analysis
3.1 The Queueing Problem

Consider one of the sites of the DDBMS. It re-
ceives a sequence of transactions which affect the con-
tents of the Local Data Base. We assume that each
transaction is identified by a timestamp, and that each
site of DDBMS carries out the transactions in times-
tamp order.

Let T1, T2, ...Tn denote a sequence of transactions
which enter the system and which are directed to each
of the DDBMS sites via a communication network,
and let LC(i, tn) denote the timestamp associated
with Tn. In case of perfect clocks LC(i, tn) is equal
to global time tn, where tn is the generation time for
the transaction Tn. Each transaction Tn reaches the
site where it must be executed after a communication
delay yn. Thus at the output of the communication
network the transactions arrive at instants tn + yn,
that do not necessarily respect the timestamp order.
For this reason(the reordering phenomenon), there is
a probability of abort, PA, for each transaction Tn.

So, we have the following queueinq problem:
Every transaction Tn, with generation time tn,

timestamp LC(i, tn) and network delay yn, must fin-
ish before the transactions which will arrive after it,

and there is some fixed conflict probability pc between
them. Which is the probability of abort, PA?

The transaction’s conflict probability, pc is the
probability which measures the following event

• Two or more transactions may access the same
data object and at least one of them is an attempt
to write. Let this happen with probability pc .

We have assumed that each transaction has a con-
stant size M and access these M data objects, out of
N , selected uniformly. Then the probability of two
transactions having at least one common data object
is

pc = 1−

(
N −M

M

)
(

N
M

)
The above expression can be further simplified to:

pc ≈
M2

N
(2)

There are two cases for analysis: the Case I, Perfect
Clocks, and the Case II, Imperfect Clocks.
3.2 Case I: Perfect Clocks

Let us consider a particular transaction T generated
at instant t which is then transmitted to one site. We
assume that the transactions which conflict construct
an independent Poisson process, with rate λc = pcλ
[?]. It is obvious, that in case of perfect clocks, each
transaction must be rejected from transactions which
arrive later than it. So, from Fig. 1, transaction T
arrives at instant t has a network delay d, must be
rejected from each transaction Ti, which generated at
ti, t < ti, and has a delay due to network di. Then an
order reverse will be found between T and each other
from Ti transactions if the following inequality holds:

t + d > ti + di (3)

Let
Event ORi be the inequality t + d > ti + di

Also note that event ORi can be rewritten as

d > di + w (4)

In the sequel we assume that d and di are exponen-
tially distributed with mean µ. The factor w = ti − t
is the time which we must wait until the generation
of ith transaction after the transaction T . It is known
[?] that w has a Gamma distribution with parameters
i and λc,

fw(w) =
λi

cw
i−1e−λcw

(i− 1)!

Figure 1: The order reverse issue in case of Perfect
Clocks

.
The probability of order reverse between transac-

tion T and each one from Ti is then

pi = Prob{ORi}

=
1
2
(

λc

µ + λc
)i (5)

It is straigthforward to observe that the probability of
abort, PA, for each transaction is

PA =
= (1− p1)p1 + (1− p1(1− p1))p2 + ...

=
∞∑

i=1

piπi (6)

where
π1 = (1− p1)

π2 = (1− p1π1)

...

πk = (1− pk−1πk−1)

So, probability of not rejected is,

PNR = 1− PA (7)

Other interesting performance measures are
Throughput(THR)

THR = λPNR (8)

and AbortRatio(AR)

AR = λPA (9)

3.3 Case II: Imperfect Clocks
In this case, due the clock drifts, there is the pos-

sibility that each transaction must be rejected from
transactions which arrive later than it or before. Let
us consider a particular transaction T generated at
site j. Denote by w the time we have to wait until

Figure 2: The order reverse issue in case of Imperfect
Clocks

we see the generation of i–th transaction Ti (say at
site k). Let t and ti be the actual generation times of
T , Ti and LC(j, t), LC(k, ti) the corresponding times-
tamps of T and Ti. If d and di denote the network
delays (transmission plus pipeling) for T and Ti then
an order reverse will be found if and only if one of the
following two sets of inequalities hold:

Either, for future t < ti Fig. 1, T is generated
earlier than Ti and T arrives later than Ti

LC(j, t) < LC(k, ti) and t + d > ti + di

or, for past t > ti Fig. 2, T is generated later than Ti,
the clocks are out of order, but T arrives later than Ti

LC(j, t) < LC(k, ti) and t + d > ti + di (10)

Let
Event Ei

1 be the inequality LC(j, t) < LC(k, ti)
Event Ei

2 be the inequality t + d > ti + di

In this case we define event of order reverse ,ORiε, as

ORiε = (Ei
1 ∧ Ei

2) (11)

Note that all literature up to now considered event
Ei

1 just to be t < ti (thus ignoring the clock synchro-
nization issue). The probability of order reverse, in
case of future, from (11) is then

pf
iε = Prob{ORiε}

= Prob{Ei
2}Prob{Ei

1}
= Prob{d > di + w}Prob{Ei

1}
= piProb{Ei

1} (12)

Also, in case of past we have that

pp
iε = Prob{ORiε}

= pi(1− Prob{Ei
1}) (13)

As far as Prob{Ei
1} is concerned we have the following

two Cases:
Case A (Fig. 3)

Figure 3: Case A

Figure 4: Case B

If t + ε ≤ ti − ε, which means that w = ti − t ≥ 2ε,
then event Ei

1 holds with conditional probability 1
In this case

Prob{event Ei
1 in Case A} =

= e−2ελc

i−1∑
n=o

(2ελc)n

n!
(14)

Case B (Fig. 4)
If t + ε > ti − ε then 2ε > w = ti − t
In this case

Prob{event Ei
1 in Case B} =

= 1− e−2ελc

i−1∑
n=o

(2ελc)n

n!

Also, Fig. 5, conditioning on ti − t = w, 0 ≤ w ≤ 2ε

Prob{Ei
1/Case B} = Prob{A}Prob{Ei

1/A}
+ Prob{B}Prob{Ei

1/B}
+ Prob{C}Prob{Ei

1/C}
+ Prob{D}Prob{Ei

1/D}

It is easy to see that

Prob{E1/A} = 1

Prob{Ei
1/B} = 1

Prob{Ei
1/C} =

1
2

Prob{Ei
1/D} = 1

Also, by counting areas in Fig. 5, we get that

Prob{A} =
(ti − t)(t− ti + 2ε)

4ε2

Figure 5: The four subcases of Case B

Prob{B} =
(ti − t)2

4ε2

Prob{C} =
(t− ti + 2ε)2

4ε2

Prob{D} =
(ti − t)(t− ti + 2ε)

4ε2

Thus, by conditioning on ti − t = w we have that

Prob{Ei
1in Case B} =

=
1−A

8ε2

∫ 2ε

w=0

[
4wε− w2 + 4ε

] λi
cw

i−1e−λcw

(i− 1)!
dw

with

A = e−2ελc

i−1∑
n=o

(2ελc)n

n!

Thus, finally from Cases A and B we have that,

Prob{Ei
1} =

= A +
1−A

8ε2

∫ 2ε

w=0

[
4wε− w2 + 4ε

] λi
cw

i−1e−λcw

(i− 1)!
dw

(15)

We have that

lim
ε→∞

Prob{Ei
1} =

1
2

lim
ε→0

Prob{Ei
1} = 1

lim
i→∞

Prob{Ei
1} = 1

From the above, we conclude that,

1
2
≤ Prob{Ei

1} ≤ 1

It is easy to observe that probability of abort,
PAε,in this case for each transaction is

PAε =
= (1− pf

1ε)p
f
1ε + (1− (1− pf

1ε)p
f
1ε)p

p
1ε + ...

=
∞∑

i=1

(pf
iεπi + pp

iεπi+1) i = 1, 3, 5... (16)

where
π1 = (1− pf

1ε)

π2 = (1− π1p
f
1ε)

...

πk = (1− πk−1p
f
(k−1)ε)

The probability of not rejected, PNRε, is

PNRε = 1− PAε (17)

Also the Throughput(THRε) is,

THRε = λPNRε (18)

and AbortRatio(ARε) is,

ARε = λPAε (19)

3.4 Numerical results and validation
In this section, we present numerical and simula-

tion results for the performance analysis of BTO. We
have compared our analytical results against the re-
sults of the simulation study to validate the accuracy
of our analysis. In all cases the data base size, N , is
equal to 250 and S, A means simulation and analysis
respectively. In all cases we observe that:

• The analysis is very highly accurate.

• The effect of ε is very small for values 10−6, 10−4,
and 10−2. But there exists a significant effect in
all performance measures for ε ≥ 0.5. Also the
effect of ε is insignificant for small network service
rate µ.

4 Conclusions and future work
We have presented a performance analysis of the

timestamp ordering concurrency control algorithm for
distributed database systems. A comparison against
simulation studies shows that the proposed analyti-
cal solution has a very high accuracy for all perfor-
mance measures. The analysis presented in this paper
is the first in the literature, which studies the effect of
imperfect clocks. The phenomenon of order–reverses

Figure 6: BTO analytical and simulation results,λ =
6,M = 4

is the main cause of either delays or restarts in any
timestamp–ordering based concurrency control algo-
rithm. Therefore, the additional effort needed in or-
der to keep local clocks almost synchronized is well
justified since it improves the overall performance of
the scheduler. Our analysis can be generalized to take
into account non–exponential delays and non–uniform
drifts. In fact, one can superimpose a distribution on
ε, making it a random variable and thus parametriz-
ing the quality of clock syncronization protocols. The
effect of the degree of asynchrony on DDB protocol
performance seems to be an important topic for fu-
ture research.

References

[1] R. Agrawal, M. Carey, M. Linvy, “Concurrency
Control Performance Modelling: Alternatives and
Implications”, ACM Transactions on Database
Systems, Vol. 12, No 4, pp. 609–654, 1987

[2] F. Bacelli, E. Gelenbe, B. Plateau, “An end to end
approach to the resequencing problem”, JACM,
Vol. 31, No 3,1984

[3] A. Bernstein, N. Goodman, “Concurrency Con-
trol in Distributed Database Systems”, Computing
Survey, Vol. 13, No. 2, 1981

[4] M. El–Toweissy, N. El–Makky, M. Abougabal,
S. Fouad, “The mean value approach to perfor-
mance evaluation of the time–stamp ordering algo-
rithms”, ICCI, pp. 276–281, 1991, Springer–Verlag
Lectures Notes in Computer Science No 497

[5] W. Feller, An Introduction to Probability Theory
and its Applications, Vol. 1–3, 2nd ed. Wiley, New
York, 1971

[6] C. Fidge , “Logical Time in Distributed Comput-
ing Systems”, IEEE Computer, pp. 28–33, 1991

[7] F. Kamoun, L. Kleinrock, R. Muntz, “Queueing
Analysis of the Ordering Issue in a Distributed
Database Concurrency Control Mechanism”, 2nd
International Conference on Distributed Comput-
ing Systems, pp.13–23,1981

[8] L. Lamport, “Time, Clocks, and the ordering of
Events in Distributed Systems”, CACM, Vol. 21,
No. 7, 1978

[9] M. Singal, “Performance analysis of the ba-
sic timestamp ordering algorithm via Markov
modelling”, Performance Evaluation, 12, pp 17–
41,1991

[10] M. Singal, A. Agrawala, “Performance Analysis
of an Algorithm for Concurrency Control in Repli-
cated Database Systems”, ACM SIGMETRICS,
pp. 216–223, 1986

[11] A. Stafylopatis, E. Gelenbe, “Delay Analysis
of Resequencing Systems with Partial Ordering”,
PERFORMANCE, pp. 433–445, 1987

[12] Y. C. Tay, “A Mean Value Performance Model for
Locking in Databases”, Ph.D. Dissertation, Har-
vard University TR–04–84

[13] P. Vitanyi, “Distributed Algorithms in an
Archimedean Ring of Processors”, ACM STOC,
pp. 542–547, 1984

[14] C. Wang, V. Li, “Queueing analysis of the con-
servative timestamp ordering concurrency control
algorithm”, IEEE International Computing Sym-
posium, pp. 1450–1455, 1986

