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Abstract— In this paper we introduce an equation-based 

smooth multicast congestion control for adaptive multimedia 
transmission over best-effort wired networks. Target of the 
proposed schema is (a) smooth transmission rate, in order to 
minimize the Audio-Video (AV) encoding and decoding 
distortion and (b) TCP friendly transmission. The “smoothness” 
lays in the way the TCP-Friendly transmission rate is filtered. 
We integrate the congestion control functions in the RTP 
protocol and use the RTCP sender and receiver reports to 
provide the necessary feedback information for the sender’s 
adaptive transmission rate. The performance evaluation of the 
smooth adaptation and TCP-friendliness is conducted through a 
number of simulations with the network simulator software 
(ns2). Our intention is to use this congestion control in the context 
of a proposed framework for multimedia transmission over wired 
and wireless networks.  
 

Index Terms— Congestion Control, Multicast, Multimedia 
transmission, network simulator (ns2). 
 

I. INTRODUCTION- RELATED WORK 
ONGESTION control for multicast transmission of 
multimedia data is a challenging research area. In any 

proposed solution, one has to find the balance between the 
attributes of multimedia applications (bandwidth consuming 
applications, tolerant to packet losses, sensitive to delays) and 
the need for TCP-friendly behavior. Although, congestion 
control for multimedia data transmission involves various 
contradictory requirements, we believe that at least the three 
following requirements should be satisfied: 

• Any proposed congestion control should prevent 
oscillations, as much as possible, in order to minimize the 
Audio-Video (AV) encoding and decoding distortion. 

• Inter-arrival jitter delay should be small in order to meet 
the multimedia application's requirements. 

• Packet losses should be minimized and when exist they 
should have minimal negative results in end user's perception. 

Up to now there are promising approaches in the field of the 
single layer multicast congestion controls in bibliography. 
TFMCC [1], extends the basic mechanisms of TFRC [2] to 
support single layer multicast congestion control. The most 
important attribute of TFMCC is the suppression of feedback 
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receiver reports. TFMCC is using the receiver with the lowest 
receiving capacity to act as the representative of the multicast 
group. PGMCC [3] uses a window-based TCP controller 
based on positive ACKs between the sender and the group 
representative. TBRCA [4] targets at maximizing the overall 
amount of multimedia data to the whole set of receivers. With 
the use of a bandwidth rate control algorithm it dynamically 
controls the output rate of the video coder. LDA+ [5] employs 
a TCP equation based congestion control for measuring the 
TCP friendly bandwidth share in the event of packet losses. 
LDA+ uses the RTP protocol [6] for collecting loss and delay 
statistics from the receivers. Our work is using RTP/RTCP 
protocols for the transmission of the multimedia data and it is 
based on the following concept: Exploitation of existing 
standard protocols in order to gather feedback information 
from the receivers. The main drawback in this approach is the 
high value of the time interval between two consecutive RTCP 
feedback reports. As a result, the sender does not have fast 
reactions in the light of rapid changes of the network 
conditions. However, the main objective under the RTP-based 
adaptation scheme is to adjust the sender’s transmission rate to 
the average available bandwidth and prevent high oscillations 
of the transmission rate. This is the case in multimedia data 
transmission, when very frequent changes in the transmission 
rate may result to serious distortions in AV encoder/decoder. 
This may lead to infeasible adaptation rates for the AV 
encoder.  

We present in this paper the performance evaluation of a 
smooth multicast congestion control protocol. Our intention is 
to use this congestion control as the rate control protocol in 
our proposed framework. We restrict our evaluation in this 
work only in the wired portion of the network, as the protocol 
has to be modified and enhanced in order to support wireless 
receivers. The rest of this paper is organized as follows. Our 
proposed protocol and framework are presented in section 2. 
Simulation results are presented in section 3. Conclusions and 
future work are discussed in section 4. 

II. PROPOSED FRAMEWORK – SMOOTH MULTICAST 
CONGESTION CONTROL 

In this section initially, we briefly describe the proposed 
framework for cross-layer adaptation over wired and wireless 
networks in the context of which the proposed smooth 
congestion control protocol will operate. Following we present 
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the details of the proposed smooth congestion control 
protocol. 

A. Proposed Framework 
The proposed framework consists of four entities: The 

sender, which represents the multimedia server, the proxy, 
which is located at the edge of the wired network, the AP, 
which co-located with the proxy and can be integrated with 
the proxy, and finally the receivers; wired and/or wireless. 
This proposed framework separates the wired from the 
wireless part of the network by introducing a new entity 
named “proxy” between the sender and the wireless receivers. 
The sender transmits multimedia data to wired receivers 
(proxy is also a wired receiver). The proxy is responsible to 
transmit the multimedia data received by the sender to 
wireless receivers. The transmission of multimedia data in the 
wired portion of the network is performed with a single or a 
multi-rate multicast stream. The proxy collects estimations 
from the wireless users concerning the conditions of the 
wireless medium. It then sends these estimations to the 
multimedia sender so that the sender can adjust accordingly its 
transmission rate. The interested reader can find a more 
detailed description in [7]. The proposed smooth congestion 
control protocol will be used for single stream multicast of 
multimedia data in the wired part of the proposed framework 
(e.g. multimedia transmission among sender, wired receivers 
and proxies). 

B. Smooth Multicast Congestion Control 
Our proposed scheme consists of a single rate multicast 

congestion control mechanism, which takes advantage of the 
RTCP feedback sender and receiver reports. The innovation in 
this work is the way that the multimedia sender adjusts its 
transmission rate based on the receiving feedback reports. Our 
main objective is to adjust the transmission rate in such way 
that oscillations are reduced, following a smooth fashion. A 
second important characteristic is the long term TCP-
friendliness, meaning that the multimedia stream consumes no 
more bandwidth than a TCP connection, which is traversing 
the same path with the multimedia stream. Finally, with the 
use of the feedback RTCP reports we provide better 
scalability, as the amount of these feedback reports in the 
network are controlled by the RTCP protocol and they cannot 
exceed a specified threshold as percentage of the total 
available bandwidth [6].  

A short overview of the functionality of the proposed 
congestion control is presented below: 

• Each receiver measures the loss event rate based on the 
RTP packet sequence numbers (more information in paragraph 
II.C). 

• The receiver measures the RTT to the sender based on 
the receiver’s one-way time measurements and the sender 
RTCP feedback reports (more information in paragraph II.D). 

• The receiver measures the TCP friendly bandwidth share 
with the use of the analytical model of TCP (more information 
in paragraph II.E). 

• The sender adapts its transmission rate based on the 
RTCP feedback reports sent by all receivers that join the 
session. 

In the following paragraphs we include a detailed 
description of the above functions. 

C. Measuring the Loss Event Rate 
The method for measuring the loss event rate is crucial for 

the TCP-friendly rate estimation. The wired receiver measures 
the packet losses during an RTT interval, based on the 
functionality provided by the RTP protocol. The sequence 
numbers in the RTP packet header provide a straightforward 
way for the discovery of lost packets. In order to prevent a 
single spurious packet loss from having an excessive effect on 
the packet loss estimation, the wired receivers smooth the 
values of packet loss rate by using the following filter that 
computes the weighted average of the m most recent loss rate 
values m

il . The following filter has been presented and 
evaluated in [8] and provides a good estimation of the packet 
loss rate:  
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Where, m
il  is the smooth value of packet loss rate. The 

weights iw  are chosen so that very recent packet loss rates 
receive the same high weights, while the weights gradually 
decrease to 0 for older packet loss rate values. We use m=8 
and the following values for the weights 

 iw : {1,1,1,1,0.8,0.6,0.4,0.2}.  
The above values provide satisfactory packet loss filtering 
according to [8]. 

D. Measuring the Round Trip Time (RTT) 

When a wired receiver i  receives a RTP packet from the 
sender, it uses the algorithm described below in order to 
estimate the RTT between the sender and the wired receiver. 
Assuming that the sender and the wired receiver have 
synchronized clocks, the wired receiver can use the timestamp 

of the RTP packet ( timestampT ) and the local time when it 

receives that packet ( receiverT ) to estimate the one way delay 
in the path between the sender and the wired receiver 

( onewayT ):  

timestampreceiveroneway TTT −=  (2) 
If this path were symmetric and had the same delay in both 

directions, the RTT between the sender and the wired receiver 

would be twice onewayT :  

onewayRTT Tt 2=  (3) 
However, this assumption is not true for the Internet. 

Therefore, we use a parameter α in order to perform accurate 

RTT estimations ( le
RTTt − ) and we can write equation (3) as: 

oneway
le

RTT Tat )1( +=−
 (4) 

The parameter α is used to smooth the estimation of the 
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RTT due to the potential unsynchronized clocks and the 
asymmetry of the path between the sender and the wired 
receiver.  

To estimate the value of parameter α, the wired receivers 
need an effective estimation of the RTT, which can be 
acquired with the use of the RTCP reports. Thus, the RTCP 

receiver report contains two additional fields; the LSRt  (the 
timestamp of the most recent RTCP sender report) and the 

DLSRt  (the delay between the reception of the last sender 
report and the transmission of the receiver report). As a result 
the sender can make an effective RTT measurement for the 
path between the sender and a wired receiver by using the 
following equation. A  is the time when the sender receives 
the receiver report from the given wired receiver:  

DLSRLSR
ir

RTT ttAt −−=−
   (5) 

The sender estimates an effective RTT measurement for a 
wired receiver ι, every time it receives a receiver report from 
that wired receiver. It then includes this effective RTT 
measurement (with the id of the receiver) in the next RTCP 
sender report. 

When a wired receiver receives the effective RTT 
measurement from the sender, it estimates an appropriate 
value for the parameter α by using the following equation: 

1−=
−

oneway

ir
RTT

T
ta     (6) 

Furthermore, in order to avoid solely phenomenon of an 
instant RTT high value, which will affect the RTT estimations, 
we use an exponentially weighted average value.  

(1 )e l r i e l
RTT RTT RTTt t tβ β− − −= ⋅ + − ⋅                 (7) 

Where r i
RTTt −  is the instantaneous RTT measurement made by 

the wired receiver and β=0.5. A high value of β gives more 
gravity to the instantaneous RTT measurement and results in 
more accurate TCP measurements. The trade-off is the 
oscillations of the calculated TCP-friendly rates and those 
oscillations are not preferable by multimedia applications. 
More on the filter β values can be found in [1] and [2]. Our 
performance evaluation shows that the selection of β=0.5 
offers a reasonable compromise between smooth transmission 
rate and responsiveness to network changes 

E. TCP-friendly Bandwidth Share Estimation 
 The wired receiver emulates the behavior of a TCP agent 

and as such when packet losses occur, it estimates a TCP 

friendly bandwidth share 
i
tcpr  every RTCP report interval 

with the use of the following analytical model presented in [9]  

22 3min(1,3 ) (1 32 )
3 8

i
tcp

RTT out

Pr
Dl Dlt t l l

=
+ +

 (8) 
Where, i

tcpr is the receiver’s i estimation (in bytes/sec), P  

is packet size in bytes, l  is the packet loss rate, outt  is the 

TCP retransmission timeout, RTTt  is the Round Trip Time 
(RTT) of the TCP connection and D  is the number of 
acknowledged TCP packets by each acknowledgment. In our 
implementation we assume that 1D =  (each acknowledgment 
packet acknowledges one TCP packet) and RTTout tt 4= (the 
TCP retransmission timeout is set to be four time the RTT). 

As we have already mentioned, the operation of our 
proposed smooth multicast congestion control is based on the 
functionality provided by the RTP and its associate RTCP 
protocols. RTP provides an extension mechanism to allow 
individual implementations that allow additional information 
to be carried in the RTP data packet header. We use the 
extension mechanism of RTP in order to add the following 
fields in to RTP header: ir

RTTt −  and receiver id: With this field 
the sender informs the receiver i  about the effective RTT 
measurement between this receiver and the sender in order the 
receiver to use this value in the above equation.  

If the wired receiver has not experienced any packet losses 
since the previous RTCP report, i

tcpr  must not be increased 

more than one P/RTT. For this reason the wired receiver 

calculates the new 
i

tcpr value from the following equation (in 
bytes/sec): 

P
t

rr ie
RTT

i
tcp

i
tcp −+= 1

 (9) 

In addition, RTCP gives the capability to the participants to 
include in the RTCP reports an application specific part (APP) 
intended for experimental use. The receivers add to their 
receiver reports an application specific part, which contains 
their estimations for TCP friendly bandwidth share i

tcpr . 

The sender selects as the next transmission rate the 
minimum TCP friendly bandwidth share estimations received 
by the receivers, with the use the aforementioned extensions to 
RTCP. 

The sender uses an additional filter in order to further 
smooth the calculated bandwidth share, which provides a 
smoother reaction to network changes.  

(1 )ins t
tcp tcp tcpr r rγ γ= ⋅ + − ⋅           (10) 

Where, inst
tcpr  is the instantaneous estimation of the slowest 

transmission rate reported by the receivers and γ  a predefined 
value between 0 and 1. 
 0 1γ< <                      (11) 

The value of γ  should be carefully chosen as high values 
make the algorithm more insensitive to changing network 
conditions. This is again a trade-off between responsiveness to 
rapid network changes and smooth oscillations. Our main 
objective is to prevent fast oscillations of the transmission 
rate. In this way we are able to better adapt and harmonize the 
transmission rate with the AV coder. We will elaborate the 
behavior of this proposal through simulation results and will 
observe how this algorithm behaves under competing traffic 
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sources that increase network congestion in the next section. 

F. Modifications to the RTP code in ns2 
The ns2 [10] code for the RTP/RTCP implementation is 

very generic and provides only the methods for the creation of 
sessions between the sender and the receivers. The RTCP 
sender and receiver feedback reports do not provide any 
functionality except for the basic API for further development. 
In this work we extended the ns2 code to include: 

• A smooth TCP friendly multicast congestion control 
based on the analytical TCP model described in [9]. The 
control functions have been integrated inside the existed RTP 
source code in ns2, and make use of the RTCP sender and 
receiver reports for the external signaling between the sender 
and the wired receivers. 

• Extensions to the RTP and RTCP packet headers to 
include the necessary fields for the feedback reports. 

• Additional functionality for the generation of the 
RTCP sender and receiver reports.  

With the above modification we have fully implement the 
RFC 3550 specification in ns-2 simulator in terms of QoS 
measurements. 

III. PERFORMANCE EVALUATION  

A. Simulation Environment and Network Topology set-up 
The topology that is used for the evaluation of the proposed 

protocol is a Local Area Network (LAN), which consists of 
one multimedia sender and six heterogeneous wired receivers 
(figure 1). The heterogeneity of the receivers lays in the 
variation of the link capacity, which connects the receivers 
with the sender.  

We have intentionally created a “bottleneck” between 
routers 1 and 2, in order to create two different sets of wired 
receivers. The first set of receivers (Nodes 1, 2, 3 “fast 
receivers”) is able to receive at higher bit rates than the second 
set (Nodes 4, 5, 6 “slow receivers”). The server transmits a 
single multicast stream to the set of all the wired receivers 
(fast and slow receivers) that join the session. The initial 
transmission rate was set to 150 Kb/s. All the receivers join 
the multicast stream at the same time. Figure 1 depicts the 
network topology for the simulated scenario. 

We evaluate the behavior of the proposed multicast 
congestion control with a number of simulations to 
investigate: 

• The TCP-friendly behavior towards competing TCP 
traffic. 

• The smooth transmission rates. 
• The suitability of our proposed congestion control for 

multimedia data transmission. 
• The responsiveness to network changes due to 

congestion that is caused by other competing traffics. 

B. TCP-fairness 
In this simulation, we analyze the fairness towards 

competing TCP traffic without using the smooth function that 
is expressed in Equation (10). Node 7 (TCP Agent) starts 
transmitting TCP traffic to Node 8 (TCPSink), through the 
congested path from router 2 to router 3. The initial sending 
rate for the TCP traffic is set to 150 Kb/s. 
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Fig. 2.  TCP-fairness - Receiving rates 

We use in our evaluation Random Early Drop (RED) queue 
in the routers to avoid synchronization in the routers’ queues 
that will affect the evaluation results. With this approach we 
ensure that all the transmitted streams will receiver similar 
packet losses. A RED gateway, detects upcoming congestion 
by computing the average queue size. When the average queue 
size exceeds a preset minimum threshold the router drops each 
incoming packet with some probability. Exceeding a second 
maximum threshold leads to dropping all arriving packets. 
This approach not only keeps the average queue length low 
but also ensures that all flows receive the same loss ratio and 
avoids synchronization among the flows. 

As we observe in the simulation results (Figure 2), in the 
beginning of the simulation, the server backs off and reduces 
its transmission rate, as it encounters the first packet losses. In 
the remaining of the simulation time we observe that the TCP 
traffic is transmitted with even higher rates than the initial 
rate, confirming the TCP-friendly behavior of our congestion 
control protocol. 

Fig. 1.  Simulated Network Topology. 
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Fig. 3.  TCP-fairness - Packet losses 
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Fig. 4.  TCP-fairness - Delay jitter 

Fast and slow receivers enjoy the same receiving rates. 
However, our proposed solution is more than TCP-friendly 
that it ought to be. As we have previously explained, we try to 
integrate a TCP-friendly behavior based on RTCP sender and 
receiver feedback reports. The RTCP feedback reports are 
transmitted roughly every 5 seconds, making the sender react 
slowly to rapid networks changes. TCP responses are faster 
than our protocol and as a result TCP occupies a larger portion 
of the available bandwidth. 

However, we confirm that in the event of competing traffic 
the server transmits multimedia data to the wired receivers at 
rates that provide acceptable receiving rates for multimedia 
data in terms of QoS. Figure 3 depicts the observed packet 
losses in the two representative nodes from the “fast” and 
“low” receiver’s sets. Fast receivers present zero packet 
losses, whereas slow receivers present very low packet losses. 
Delay jitter in fast receivers is close to zero (it cannot even 
been projected in the simulation result chart), while in slow 
receivers the jitter values are between 1 to 23 milliseconds 
(figure 4). 

C. Smooth Behavior 
In this simulation we investigate whether or not our 

proposed solution for smooth transmission rates, can indeed 
meet our design objectives, without challenging the 
performance of TCP traffic. This simulation scenario has exact 
the same network attributes as our previous simulation in 
order to achieve a fair comparison.  

We observe from the simulation results (Figure 5) that TCP 
traffic enjoys steady and high receiving rates. This is a first 
encouraged indication that a smooth adaptive transmission rate 
is a desired attribute not only for the multimedia server and the 
serving receivers but also for TCP traffic. We observe also in 
the same figure that the receiving rates in slow and fast 
receivers are smoother without seriously increasing the packet 
losses (Figure 6). We regard the amount of packets lost as low 
for a multimedia application. Forward Error Correction (FEC) 
can address to this amount of packet losses. Delay jitter values 
are similar to the previous simulation (figure 7). Fast receivers 
enjoy almost zero jitter delays. 

Next in figure 8 we present the comparison of the 
transmission rates with and without the smooth rate 
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Fig. 5.  Smooth behavior - Receiving rates 
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Fig. 6.  Smooth behavior - Packet losses 
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adaptation. It is clearly shown that, smooth transmission rates 
prevent oscillations and as such they are more suitable for 
multimedia data transmission, due to the minimal distortion in 
AV encoding and decoding. The only drawback one can see is 
the slightest increase of packet losses due to the fact that the 
protocol cannot respond rapidly to instantaneous network 
changes. 

0

50

100

150

200

250

300

350

3

17
.4

31
.8

46
.2

60
.6 75

89
.4

10
4

11
8

13
3

14
7

16
1

17
6

19
0

simulation time (sec)

tra
ns

m
is

si
on

 ra
te

 (K
b/

s)

smooth no-smooth

 
Fig. 8.  Smooth rate vs non-smooth 

D. Responsiveness to Changes 
An important attribute of any congestion control algorithm is 

its responsiveness to changes of the network conditions (e.g. 
congestion created by competing traffic, transmission errors). 
This behavior is investigated through a new set of simulations 
in which we add competing Constant Bit Rate (CBR) traffic. 
We use the same simulation scenario with the previous 
simulation, but this time in addition to RTP and TCP traffic 
we transmit UDP packets at a rate of 150 Kb/s via the 
“bottleneck” path between routers 1 and 2. The UDP source 
starts transmitting at the 30th simulation second and then stops 
the transmission at the 100th simulation second. Our objective 
is to investigate how the range of values between 0 and 1 of 
filter γ  affect the protocol’s behavior at the start and the end 
of UDP transmission. We run various simulation sets with 
different values for γ . We present, though, for easier 
observation, only a subset of these results by taking two 
representative values for γ . We observe in figure 9 that for 
small γ  values ( γ =0.3) the protocol reacts faster, adopting its 
transmission rates more rapidly than it does for large γ  values 
( γ =0.8). We notice however, that large γ  values provide 
some “resistance” to competing UDP traffic. Moreover, for 
the same large γ  values the protocol’s reaction time is not as 
high as we expected to be when the UDP source stops its 
transmission. The results are very encouraging as we can 
assume that we managed to tune the protocol in such way that 
it adapts the network changes in a smooth manner without 
seriously reducing its responsiveness. Packet losses are not so 
that dramatically different (figure 10). We observe of course 
that large γ  values ( γ =0.8) cause more packet losses but the 
total amount is still acceptable for multimedia data 
transmission. Delay jitter is smooth and low for both large and 
small γ  values (figure 11). The case when γ =0.8, presents an 

even smoother delay jitter, which is a desired attribute in 
multimedia applications. 
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Fig. 9.  Responsiveness –transmission rates 
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Fig. 10.  Responsiveness – Packet losses 

E. Selecting γ  values 

We have seen in the previous simulations how the selection 

of the value γ affects the behavior of our proposed protocol. In 
this work we have used a heuristic method for the selection 
of γ values based on simulation results. We have run several 
simulation sets in an effort to find a value for γ  that presents 
an optimal performance in terms of packet losses, delay jitter, 
responsiveness to network changes, TCP fairness and finally 
smooth behavior. A good compromise was found for values 
between 0.5 and 0.8, in which the protocol seems to perform 
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better and keeps a smooth transmission rate, preventing high 
oscillations and packet losses. We can see in figure 12 that for 
γ =0.8 we have a steady transmission rate with all the 
characteristics mentioned above.  
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Fig. 12.  Filter (γ) values 

 
And optimized method for defining the value for filter γ 

would have been to dynamically adjust that value to the 
network changes. This method would emulate Equation (1) 
that is used for the estimation of the packet smooth loss rate. 
The weighted m values could be found by collecting statistical 
data concerning the network conditions. This part was left for 
future work. 

IV. CONCLUSIONS - FUTURE WORK  
In this paper we presented an algorithm for adaptive 

multimedia transmission that is TCP-friendly. Our solution 
relies on the RTCP sender and receiver reports, which 
eliminate the need for additional feedback reports. The 
outcome of this approach is higher bandwidth utilization for 
user data. We have implemented a smooth adaptive algorithm 
to minimize oscillations of the transmission rates that may 
lead to infeasible adaptation of the AV coders.  

Measurements and simulation results suggested that our 
proposed solution maintains its TCP-friendly behavior, 
although the feedback reports (e.g. RTCP reports in our 
proposal) are transmitted on much slower scale than other 
TCP-friendly solutions. 

Even though our proposed solution cannot antagonize other 
multicast control schemes, due to infrequent feedback reports, 
the whole concept for smoothing the transmission rates may 
be suitable to be used in a multicast control framework, 
especially if someone focus on end user perception and 
minimal AV encoding and decoding distortion. 

In our future work we will work on protocol enhancements 
so that the value of filter γ  will be dynamically chosen based 
on network statistics. We will also investigate deeper the 
effect of “smoothens” on other competing traffic types and 
loss error schemes. Finally, it is our intention to use our 
solution as part of the congestion control mechanism in our 
proposed framework presented in [7] 
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