
IV.2

Abstract— In this paper we introduce an equation-based

smooth multicast congestion control for adaptive multimedia
transmission over best-effort wired networks. Target of the
proposed schema is (a) smooth transmission rate, in order to
minimize the Audio-Video (AV) encoding and decoding
distortion and (b) TCP friendly transmission. The “smoothness”
lays in the way the TCP-Friendly transmission rate is filtered.
We integrate the congestion control functions in the RTP
protocol and use the RTCP sender and receiver reports to
provide the necessary feedback information for the sender’s
adaptive transmission rate. The performance evaluation of the
smooth adaptation and TCP-friendliness is conducted through a
number of simulations with the network simulator software
(ns2). Our intention is to use this congestion control in the context
of a proposed framework for multimedia transmission over wired
and wireless networks.

Index Terms— Congestion Control, Multicast, Multimedia
transmission, network simulator (ns2).

I. INTRODUCTION- RELATED WORK
ONGESTION control for multicast transmission of
multimedia data is a challenging research area. In any

proposed solution, one has to find the balance between the
attributes of multimedia applications (bandwidth consuming
applications, tolerant to packet losses, sensitive to delays) and
the need for TCP-friendly behavior. Although, congestion
control for multimedia data transmission involves various
contradictory requirements, we believe that at least the three
following requirements should be satisfied:

• Any proposed congestion control should prevent
oscillations, as much as possible, in order to minimize the
Audio-Video (AV) encoding and decoding distortion.

• Inter-arrival jitter delay should be small in order to meet
the multimedia application's requirements.

• Packet losses should be minimized and when exist they
should have minimal negative results in end user's perception.

Up to now there are promising approaches in the field of the
single layer multicast congestion controls in bibliography.
TFMCC [1], extends the basic mechanisms of TFRC [2] to
support single layer multicast congestion control. The most
important attribute of TFMCC is the suppression of feedback

—————————

Digital Object Identifier inserted by IEEE

receiver reports. TFMCC is using the receiver with the lowest
receiving capacity to act as the representative of the multicast
group. PGMCC [3] uses a window-based TCP controller
based on positive ACKs between the sender and the group
representative. TBRCA [4] targets at maximizing the overall
amount of multimedia data to the whole set of receivers. With
the use of a bandwidth rate control algorithm it dynamically
controls the output rate of the video coder. LDA+ [5] employs
a TCP equation based congestion control for measuring the
TCP friendly bandwidth share in the event of packet losses.
LDA+ uses the RTP protocol [6] for collecting loss and delay
statistics from the receivers. Our work is using RTP/RTCP
protocols for the transmission of the multimedia data and it is
based on the following concept: Exploitation of existing
standard protocols in order to gather feedback information
from the receivers. The main drawback in this approach is the
high value of the time interval between two consecutive RTCP
feedback reports. As a result, the sender does not have fast
reactions in the light of rapid changes of the network
conditions. However, the main objective under the RTP-based
adaptation scheme is to adjust the sender’s transmission rate to
the average available bandwidth and prevent high oscillations
of the transmission rate. This is the case in multimedia data
transmission, when very frequent changes in the transmission
rate may result to serious distortions in AV encoder/decoder.
This may lead to infeasible adaptation rates for the AV
encoder.

We present in this paper the performance evaluation of a
smooth multicast congestion control protocol. Our intention is
to use this congestion control as the rate control protocol in
our proposed framework. We restrict our evaluation in this
work only in the wired portion of the network, as the protocol
has to be modified and enhanced in order to support wireless
receivers. The rest of this paper is organized as follows. Our
proposed protocol and framework are presented in section 2.
Simulation results are presented in section 3. Conclusions and
future work are discussed in section 4.

II. PROPOSED FRAMEWORK – SMOOTH MULTICAST
CONGESTION CONTROL

In this section initially, we briefly describe the proposed
framework for cross-layer adaptation over wired and wireless
networks in the context of which the proposed smooth
congestion control protocol will operate. Following we present

Smooth Multicast Congestion Control for
Adaptive Multimedia Transmission

Christos Bouras1, 2, Apostolos Gkamas1 and Georgios Kioumourtzis2

1Research Academic Computer Technology Institute, Patras, GR26500, Greece
2Computer Engineering and Informatics Department, University of Patras, Patras, GR26500, Greece

C

IV.2

the details of the proposed smooth congestion control
protocol.

A. Proposed Framework
The proposed framework consists of four entities: The

sender, which represents the multimedia server, the proxy,
which is located at the edge of the wired network, the AP,
which co-located with the proxy and can be integrated with
the proxy, and finally the receivers; wired and/or wireless.
This proposed framework separates the wired from the
wireless part of the network by introducing a new entity
named “proxy” between the sender and the wireless receivers.
The sender transmits multimedia data to wired receivers
(proxy is also a wired receiver). The proxy is responsible to
transmit the multimedia data received by the sender to
wireless receivers. The transmission of multimedia data in the
wired portion of the network is performed with a single or a
multi-rate multicast stream. The proxy collects estimations
from the wireless users concerning the conditions of the
wireless medium. It then sends these estimations to the
multimedia sender so that the sender can adjust accordingly its
transmission rate. The interested reader can find a more
detailed description in [7]. The proposed smooth congestion
control protocol will be used for single stream multicast of
multimedia data in the wired part of the proposed framework
(e.g. multimedia transmission among sender, wired receivers
and proxies).

B. Smooth Multicast Congestion Control
Our proposed scheme consists of a single rate multicast

congestion control mechanism, which takes advantage of the
RTCP feedback sender and receiver reports. The innovation in
this work is the way that the multimedia sender adjusts its
transmission rate based on the receiving feedback reports. Our
main objective is to adjust the transmission rate in such way
that oscillations are reduced, following a smooth fashion. A
second important characteristic is the long term TCP-
friendliness, meaning that the multimedia stream consumes no
more bandwidth than a TCP connection, which is traversing
the same path with the multimedia stream. Finally, with the
use of the feedback RTCP reports we provide better
scalability, as the amount of these feedback reports in the
network are controlled by the RTCP protocol and they cannot
exceed a specified threshold as percentage of the total
available bandwidth [6].

A short overview of the functionality of the proposed
congestion control is presented below:

• Each receiver measures the loss event rate based on the
RTP packet sequence numbers (more information in paragraph
II.C).

• The receiver measures the RTT to the sender based on
the receiver’s one-way time measurements and the sender
RTCP feedback reports (more information in paragraph II.D).

• The receiver measures the TCP friendly bandwidth share
with the use of the analytical model of TCP (more information
in paragraph II.E).

• The sender adapts its transmission rate based on the
RTCP feedback reports sent by all receivers that join the
session.

In the following paragraphs we include a detailed
description of the above functions.

C. Measuring the Loss Event Rate
The method for measuring the loss event rate is crucial for

the TCP-friendly rate estimation. The wired receiver measures
the packet losses during an RTT interval, based on the
functionality provided by the RTP protocol. The sequence
numbers in the RTP packet header provide a straightforward
way for the discovery of lost packets. In order to prevent a
single spurious packet loss from having an excessive effect on
the packet loss estimation, the wired receivers smooth the
values of packet loss rate by using the following filter that
computes the weighted average of the m most recent loss rate
values m

il . The following filter has been presented and
evaluated in [8] and provides a good estimation of the packet
loss rate:

1

0

0

m

i i
m i

i m i

i
i

w l
l

w

−

=
−

=

=
∑

∑
 for wired receiver i (1)

Where, m
il is the smooth value of packet loss rate. The

weights iw are chosen so that very recent packet loss rates
receive the same high weights, while the weights gradually
decrease to 0 for older packet loss rate values. We use m=8
and the following values for the weights

 iw : {1,1,1,1,0.8,0.6,0.4,0.2}.
The above values provide satisfactory packet loss filtering
according to [8].

D. Measuring the Round Trip Time (RTT)

When a wired receiver i receives a RTP packet from the
sender, it uses the algorithm described below in order to
estimate the RTT between the sender and the wired receiver.
Assuming that the sender and the wired receiver have
synchronized clocks, the wired receiver can use the timestamp

of the RTP packet (timestampT) and the local time when it

receives that packet (receiverT) to estimate the one way delay
in the path between the sender and the wired receiver

(onewayT):

timestampreceiveroneway TTT −= (2)
If this path were symmetric and had the same delay in both

directions, the RTT between the sender and the wired receiver

would be twice onewayT :

onewayRTT Tt 2= (3)
However, this assumption is not true for the Internet.

Therefore, we use a parameter α in order to perform accurate

RTT estimations (le
RTTt −) and we can write equation (3) as:

oneway
le

RTT Tat)1(+=−
 (4)

The parameter α is used to smooth the estimation of the

IV.2

RTT due to the potential unsynchronized clocks and the
asymmetry of the path between the sender and the wired
receiver.

To estimate the value of parameter α, the wired receivers
need an effective estimation of the RTT, which can be
acquired with the use of the RTCP reports. Thus, the RTCP

receiver report contains two additional fields; the LSRt (the
timestamp of the most recent RTCP sender report) and the

DLSRt (the delay between the reception of the last sender
report and the transmission of the receiver report). As a result
the sender can make an effective RTT measurement for the
path between the sender and a wired receiver by using the
following equation. A is the time when the sender receives
the receiver report from the given wired receiver:

DLSRLSR
ir

RTT ttAt −−=−
 (5)

The sender estimates an effective RTT measurement for a
wired receiver ι, every time it receives a receiver report from
that wired receiver. It then includes this effective RTT
measurement (with the id of the receiver) in the next RTCP
sender report.

When a wired receiver receives the effective RTT
measurement from the sender, it estimates an appropriate
value for the parameter α by using the following equation:

1−=
−

oneway

ir
RTT

T
ta (6)

Furthermore, in order to avoid solely phenomenon of an
instant RTT high value, which will affect the RTT estimations,
we use an exponentially weighted average value.

(1)e l r i e l
RTT RTT RTTt t tβ β− − −= ⋅ + − ⋅ (7)

Where r i
RTTt − is the instantaneous RTT measurement made by

the wired receiver and β=0.5. A high value of β gives more
gravity to the instantaneous RTT measurement and results in
more accurate TCP measurements. The trade-off is the
oscillations of the calculated TCP-friendly rates and those
oscillations are not preferable by multimedia applications.
More on the filter β values can be found in [1] and [2]. Our
performance evaluation shows that the selection of β=0.5
offers a reasonable compromise between smooth transmission
rate and responsiveness to network changes

E. TCP-friendly Bandwidth Share Estimation
 The wired receiver emulates the behavior of a TCP agent

and as such when packet losses occur, it estimates a TCP

friendly bandwidth share
i
tcpr every RTCP report interval

with the use of the following analytical model presented in [9]

22 3min(1,3) (1 32)
3 8

i
tcp

RTT out

Pr
Dl Dlt t l l

=
+ +

 (8)
Where, i

tcpr is the receiver’s i estimation (in bytes/sec), P

is packet size in bytes, l is the packet loss rate, outt is the

TCP retransmission timeout, RTTt is the Round Trip Time
(RTT) of the TCP connection and D is the number of
acknowledged TCP packets by each acknowledgment. In our
implementation we assume that 1D = (each acknowledgment
packet acknowledges one TCP packet) and RTTout tt 4= (the
TCP retransmission timeout is set to be four time the RTT).

As we have already mentioned, the operation of our
proposed smooth multicast congestion control is based on the
functionality provided by the RTP and its associate RTCP
protocols. RTP provides an extension mechanism to allow
individual implementations that allow additional information
to be carried in the RTP data packet header. We use the
extension mechanism of RTP in order to add the following
fields in to RTP header: ir

RTTt − and receiver id: With this field
the sender informs the receiver i about the effective RTT
measurement between this receiver and the sender in order the
receiver to use this value in the above equation.

If the wired receiver has not experienced any packet losses
since the previous RTCP report, i

tcpr must not be increased

more than one P/RTT. For this reason the wired receiver

calculates the new
i

tcpr value from the following equation (in
bytes/sec):

P
t

rr ie
RTT

i
tcp

i
tcp −+= 1

 (9)

In addition, RTCP gives the capability to the participants to
include in the RTCP reports an application specific part (APP)
intended for experimental use. The receivers add to their
receiver reports an application specific part, which contains
their estimations for TCP friendly bandwidth share i

tcpr .

The sender selects as the next transmission rate the
minimum TCP friendly bandwidth share estimations received
by the receivers, with the use the aforementioned extensions to
RTCP.

The sender uses an additional filter in order to further
smooth the calculated bandwidth share, which provides a
smoother reaction to network changes.

(1)ins t
tcp tcp tcpr r rγ γ= ⋅ + − ⋅ (10)

Where, inst
tcpr is the instantaneous estimation of the slowest

transmission rate reported by the receivers and γ a predefined
value between 0 and 1.
 0 1γ< < (11)

The value of γ should be carefully chosen as high values
make the algorithm more insensitive to changing network
conditions. This is again a trade-off between responsiveness to
rapid network changes and smooth oscillations. Our main
objective is to prevent fast oscillations of the transmission
rate. In this way we are able to better adapt and harmonize the
transmission rate with the AV coder. We will elaborate the
behavior of this proposal through simulation results and will
observe how this algorithm behaves under competing traffic

IV.2

sources that increase network congestion in the next section.

F. Modifications to the RTP code in ns2
The ns2 [10] code for the RTP/RTCP implementation is

very generic and provides only the methods for the creation of
sessions between the sender and the receivers. The RTCP
sender and receiver feedback reports do not provide any
functionality except for the basic API for further development.
In this work we extended the ns2 code to include:

• A smooth TCP friendly multicast congestion control
based on the analytical TCP model described in [9]. The
control functions have been integrated inside the existed RTP
source code in ns2, and make use of the RTCP sender and
receiver reports for the external signaling between the sender
and the wired receivers.

• Extensions to the RTP and RTCP packet headers to
include the necessary fields for the feedback reports.

• Additional functionality for the generation of the
RTCP sender and receiver reports.

With the above modification we have fully implement the
RFC 3550 specification in ns-2 simulator in terms of QoS
measurements.

III. PERFORMANCE EVALUATION

A. Simulation Environment and Network Topology set-up
The topology that is used for the evaluation of the proposed

protocol is a Local Area Network (LAN), which consists of
one multimedia sender and six heterogeneous wired receivers
(figure 1). The heterogeneity of the receivers lays in the
variation of the link capacity, which connects the receivers
with the sender.

We have intentionally created a “bottleneck” between
routers 1 and 2, in order to create two different sets of wired
receivers. The first set of receivers (Nodes 1, 2, 3 “fast
receivers”) is able to receive at higher bit rates than the second
set (Nodes 4, 5, 6 “slow receivers”). The server transmits a
single multicast stream to the set of all the wired receivers
(fast and slow receivers) that join the session. The initial
transmission rate was set to 150 Kb/s. All the receivers join
the multicast stream at the same time. Figure 1 depicts the
network topology for the simulated scenario.

We evaluate the behavior of the proposed multicast
congestion control with a number of simulations to
investigate:

• The TCP-friendly behavior towards competing TCP
traffic.

• The smooth transmission rates.
• The suitability of our proposed congestion control for

multimedia data transmission.
• The responsiveness to network changes due to

congestion that is caused by other competing traffics.

B. TCP-fairness
In this simulation, we analyze the fairness towards

competing TCP traffic without using the smooth function that
is expressed in Equation (10). Node 7 (TCP Agent) starts
transmitting TCP traffic to Node 8 (TCPSink), through the
congested path from router 2 to router 3. The initial sending
rate for the TCP traffic is set to 150 Kb/s.

0

100

200

300

400

500

600

3

16
.8

30
.6

44
.4

58
.2 72

85
.8

99
.6

11
3

12
7

14
1

15
5

16
9

18
2

19
6

simulation time (sec)

re
ce

iv
in

g
ra

te
 (K

b/
s)

fast receiver slow receiver TCP

Fig. 2. TCP-fairness - Receiving rates

We use in our evaluation Random Early Drop (RED) queue
in the routers to avoid synchronization in the routers’ queues
that will affect the evaluation results. With this approach we
ensure that all the transmitted streams will receiver similar
packet losses. A RED gateway, detects upcoming congestion
by computing the average queue size. When the average queue
size exceeds a preset minimum threshold the router drops each
incoming packet with some probability. Exceeding a second
maximum threshold leads to dropping all arriving packets.
This approach not only keeps the average queue length low
but also ensures that all flows receive the same loss ratio and
avoids synchronization among the flows.

As we observe in the simulation results (Figure 2), in the
beginning of the simulation, the server backs off and reduces
its transmission rate, as it encounters the first packet losses. In
the remaining of the simulation time we observe that the TCP
traffic is transmitted with even higher rates than the initial
rate, confirming the TCP-friendly behavior of our congestion
control protocol.

Fig. 1. Simulated Network Topology.

IV.2

0

2

4

6

8

10

2

17
.6

33
.2

48
.8

64
.4 80

95
.6

11
1

12
7

14
2

15
8

17
4

18
9

simulation time (sec)

nu
m

be
r o

f p
ac

ke
ts

 lo
st

fast receiver slow receiver

Fig. 3. TCP-fairness - Packet losses

0

0.005

0.01

0.015

0.02

0.025

2

17
.3

32
.6

47
.9

63
.2

78
.5

93
.8

10
9

12
4

14
0

15
5

17
0

18
6

simulation time (sec)

de
la

y
jit

te
r (

se
c)

fast receiver slow receiver

Fig. 4. TCP-fairness - Delay jitter

Fast and slow receivers enjoy the same receiving rates.
However, our proposed solution is more than TCP-friendly
that it ought to be. As we have previously explained, we try to
integrate a TCP-friendly behavior based on RTCP sender and
receiver feedback reports. The RTCP feedback reports are
transmitted roughly every 5 seconds, making the sender react
slowly to rapid networks changes. TCP responses are faster
than our protocol and as a result TCP occupies a larger portion
of the available bandwidth.

However, we confirm that in the event of competing traffic
the server transmits multimedia data to the wired receivers at
rates that provide acceptable receiving rates for multimedia
data in terms of QoS. Figure 3 depicts the observed packet
losses in the two representative nodes from the “fast” and
“low” receiver’s sets. Fast receivers present zero packet
losses, whereas slow receivers present very low packet losses.
Delay jitter in fast receivers is close to zero (it cannot even
been projected in the simulation result chart), while in slow
receivers the jitter values are between 1 to 23 milliseconds
(figure 4).

C. Smooth Behavior
In this simulation we investigate whether or not our

proposed solution for smooth transmission rates, can indeed
meet our design objectives, without challenging the
performance of TCP traffic. This simulation scenario has exact
the same network attributes as our previous simulation in
order to achieve a fair comparison.

We observe from the simulation results (Figure 5) that TCP
traffic enjoys steady and high receiving rates. This is a first
encouraged indication that a smooth adaptive transmission rate
is a desired attribute not only for the multimedia server and the
serving receivers but also for TCP traffic. We observe also in
the same figure that the receiving rates in slow and fast
receivers are smoother without seriously increasing the packet
losses (Figure 6). We regard the amount of packets lost as low
for a multimedia application. Forward Error Correction (FEC)
can address to this amount of packet losses. Delay jitter values
are similar to the previous simulation (figure 7). Fast receivers
enjoy almost zero jitter delays.

Next in figure 8 we present the comparison of the
transmission rates with and without the smooth rate

0

100

200

300

400

500

3 18 33 48 63 78 93 10
8

12
3

13
8

15
3

16
8

18
3

19
8

simulation time (sec)

re
ce

iv
in

g
ra

te
 (K

b/
s)

fast receiver slow receiver tcp

Fig. 5. Smooth behavior - Receiving rates

0

2

4

6

8

2

18
.2

34
.4

50
.6

66
.8 83

99
.2

11
5

13
2

14
8

16
4

18
0

19
6

simulation time (sec)

nu
m

be
r o

f p
ac

kt
s

lo
st

fast receiver slow receiver

Fig. 6. Smooth behavior - Packet losses

0

0.005

0.01

0.015

0.02

0.025

2 17 32 47 62 77 92 10
7

12
2

13
7

15
2

16
7

18
2

19
7

simulation time (sec)

de
la

y
jit

te
r (

se
c)

fast receiver slow receiver

Fig. 7. Smooth behavior - Delay jitter

IV.2

adaptation. It is clearly shown that, smooth transmission rates
prevent oscillations and as such they are more suitable for
multimedia data transmission, due to the minimal distortion in
AV encoding and decoding. The only drawback one can see is
the slightest increase of packet losses due to the fact that the
protocol cannot respond rapidly to instantaneous network
changes.

0

50

100

150

200

250

300

350

3

17
.4

31
.8

46
.2

60
.6 75

89
.4

10
4

11
8

13
3

14
7

16
1

17
6

19
0

simulation time (sec)

tra
ns

m
is

si
on

 ra
te

 (K
b/

s)

smooth no-smooth

Fig. 8. Smooth rate vs non-smooth

D. Responsiveness to Changes
An important attribute of any congestion control algorithm is

its responsiveness to changes of the network conditions (e.g.
congestion created by competing traffic, transmission errors).
This behavior is investigated through a new set of simulations
in which we add competing Constant Bit Rate (CBR) traffic.
We use the same simulation scenario with the previous
simulation, but this time in addition to RTP and TCP traffic
we transmit UDP packets at a rate of 150 Kb/s via the
“bottleneck” path between routers 1 and 2. The UDP source
starts transmitting at the 30th simulation second and then stops
the transmission at the 100th simulation second. Our objective
is to investigate how the range of values between 0 and 1 of
filter γ affect the protocol’s behavior at the start and the end
of UDP transmission. We run various simulation sets with
different values for γ . We present, though, for easier
observation, only a subset of these results by taking two
representative values for γ . We observe in figure 9 that for
small γ values (γ =0.3) the protocol reacts faster, adopting its
transmission rates more rapidly than it does for large γ values
(γ =0.8). We notice however, that large γ values provide
some “resistance” to competing UDP traffic. Moreover, for
the same large γ values the protocol’s reaction time is not as
high as we expected to be when the UDP source stops its
transmission. The results are very encouraging as we can
assume that we managed to tune the protocol in such way that
it adapts the network changes in a smooth manner without
seriously reducing its responsiveness. Packet losses are not so
that dramatically different (figure 10). We observe of course
that large γ values (γ =0.8) cause more packet losses but the
total amount is still acceptable for multimedia data
transmission. Delay jitter is smooth and low for both large and
small γ values (figure 11). The case when γ =0.8, presents an

even smoother delay jitter, which is a desired attribute in
multimedia applications.

0
50

100
150

200
250
300
350
400
450

3

19
.2

35
.4

51
.6

67
.8 84 10
0

11
6

13
3

14
9

16
5

18
1

19
7

simulation time (sec)

tra
ns

m
is

si
on

 ra
te

 (K
b/

s)

γ=0.8 udp γ=0.3

Fig. 9. Responsiveness –transmission rates

0
1

2
3

4
5

6

2

17
.9

33
.8

49
.7

65
.6

81
.5

97
.4

11
3

12
9

14
5

16
1

17
7

19
3

simulation time (sec)

nu
m

be
r o

f p
ac

ke
s

lo
st

γ=0.8 γ=0.3

Fig. 10. Responsiveness – Packet losses

E. Selecting γ values

We have seen in the previous simulations how the selection

of the value γ affects the behavior of our proposed protocol. In
this work we have used a heuristic method for the selection
of γ values based on simulation results. We have run several
simulation sets in an effort to find a value for γ that presents
an optimal performance in terms of packet losses, delay jitter,
responsiveness to network changes, TCP fairness and finally
smooth behavior. A good compromise was found for values
between 0.5 and 0.8, in which the protocol seems to perform

0

0.005

0.01

0.015

0.02

0.025

0.03

2

17
.3

32
.6

47
.9

63
.2

78
.5

93
.8

10
9

12
4

14
0

15
5

17
0

18
6

simulation time (sec)

de
la

y
jit

te
r (

se
c)

γ=0.8 γ=0.3

 Fig. 11. Responsiveness – Delay jitter

IV.2

better and keeps a smooth transmission rate, preventing high
oscillations and packet losses. We can see in figure 12 that for
γ =0.8 we have a steady transmission rate with all the
characteristics mentioned above.

0
50

100
150
200
250
300
350
400
450

3 18 33 48 63 78 93 10
8

12
3

13
8

15
3

16
8

18
3

19
8

simulation time (sec)

tra
ns

m
is

si
on

 ra
te

 (K
b/

s)

γ=0.3 γ=0.5 γ=0.8

Fig. 12. Filter (γ) values

And optimized method for defining the value for filter γ

would have been to dynamically adjust that value to the
network changes. This method would emulate Equation (1)
that is used for the estimation of the packet smooth loss rate.
The weighted m values could be found by collecting statistical
data concerning the network conditions. This part was left for
future work.

IV. CONCLUSIONS - FUTURE WORK
In this paper we presented an algorithm for adaptive

multimedia transmission that is TCP-friendly. Our solution
relies on the RTCP sender and receiver reports, which
eliminate the need for additional feedback reports. The
outcome of this approach is higher bandwidth utilization for
user data. We have implemented a smooth adaptive algorithm
to minimize oscillations of the transmission rates that may
lead to infeasible adaptation of the AV coders.

Measurements and simulation results suggested that our
proposed solution maintains its TCP-friendly behavior,
although the feedback reports (e.g. RTCP reports in our
proposal) are transmitted on much slower scale than other
TCP-friendly solutions.

Even though our proposed solution cannot antagonize other
multicast control schemes, due to infrequent feedback reports,
the whole concept for smoothing the transmission rates may
be suitable to be used in a multicast control framework,
especially if someone focus on end user perception and
minimal AV encoding and decoding distortion.

In our future work we will work on protocol enhancements
so that the value of filter γ will be dynamically chosen based
on network statistics. We will also investigate deeper the
effect of “smoothens” on other competing traffic types and
loss error schemes. Finally, it is our intention to use our
solution as part of the congestion control mechanism in our
proposed framework presented in [7]

V. ACNOWLEDGEMENT
We thank the anonymous EURO-NGI 2008 reviewers for

their helpful comments.

REFERENCES
[1] J. Widmer and M. Handley, “Extending equation-based congestion

control to multicast applications,” in Proc. of ACM SIGCOMM ’01,
2001.

[2] RFC 3448, M. Handley, S. Floyd, J. Padhye, J. Widmer, “TCP Friendly
Rate Control (TFRC)”, Network Working Group, January 2003.

[3] L. Rizzo, “pgmcc: A TCP-friendly single-rate multicast congestion
control scheme,” in Proc. of ACM SIGCOMM ’00, 2000.

[4] Smith, H., Mutka, M., Rover, D. A Feedback based Rate Control
Algorithm for Multicast Transmitted Video Conferencing, Accepted for
publication in the Journal of High Speed Networks.

[5] Sisalem D., Wolisz A., “LDA + TCP - Friendly Adaptation: A
Measurement and Comparison Study,” in the 10th International
Workshop on Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV’2000), June 25 - 28, 2000, Chapel
Hill,NC, USA.

[6] RFC 3550, RTP: A Transport Protocol for Real-Time Applications, H.
Schulzrinne, S. Casner, R. Frederick, V. Jacobson, July 2003.

[7] C. Bouras, A. Gkamas, G. Kioumourtzis, "A Framework for Cross Layer
Adaptation for Multimedia Transmission over Wired and Wireless
Networks”, The 2007 International Conference on Internet Computing
(ICOMP’07), Las Vegas, Nevada, USA, 25 - 28 June 2007.

[8] L. Vicisiano, L. Rizzo, J. Crowcroft, "TCP - like congestion control for
layered multicast data transfer", in IEEE INFOCOM, March 1998, pp.
996 - 1003.

[9] J. Pandhye, J. Kurose, D. Towsley, R. Koodli, "A model based TCP
friendly rate control protocol", Proc. International Workshop on
Network and Operating System Support for Digital Audio and Video
(NOSSDAV), Basking Ridge, NJ, June 1999.

[10] http://www.isi.edu/nsnam/ns/

