
Adding IPv6 support to H323: Gnomemeeting/openH323 port

Ch. Bouras1,2, A. Gkamas1,2, S. Josset3, K. Stamos1,2∗

1 Computer Engineering and Informatics Dept., Univ. of Patras, GR-26500 Patras, Greece
2 Research Academic Computer Technology Institute, Riga Feraiou 61, GR-26221 Patras, Greece

3 Alcatel Space, 26 avenue J-F Champollion, 31037 Toulouse Cedex1, France
e-mail: {bouras, gkamas, stamos}@cti.gr
email: sebastien.josset@space.alcatel.fr

∗ The authors are presented in alphabetical order

Abstract: This article deals with the port towards the new IPv6
Internet network of voice and multi-media over IP applications.
We explain in detail our experience in porting Gnomemeeting,
the well-known Linux based videoconference software, and
more particularly the H323 library which implements the
signaling protocols (call establishment, transfer, codec
negotiation,…).

1. INTRODUCTION

One of the major problems the Internet network will have

to face in the near future, is the shortage of IPv4 addresses,
the unique identifier of a machine on the network. If we
consider the latest technological developments (like 3G
Networks, UMTS, always on devices, embedded systems,
etc), we can safely forecast that in the future the number of
hosts will increase dramatically. We could run out of new
addresses, as each new generation mobile terminal proposing
Internet services requires the use of a new Internet address.
The deployment of an IPv6 Internet is a natural solution for
this problem of shortage of IPv4 addresses.

As a full replacement at a fixed time of every IPv4 address
by an IPv6 address is not possible, the IPv6 network is set up
gradually, in parallel with the IPv4 network. During this
transition phase, a large effort must be dedicated on the
applications, which have to be able to use either the IPv4
network, or the IPv6 network, and ideally both, to provide
application bridges. Without applications, the wide
addressing of the IPv6 network does not have any reason to
be used one day.

Although many articles explain how to port an IPv4
program to IPv6, few are dealing with the simultaneous
support of both IPv4 and IPv6. In [1] and [2] for example,
some general instructions are given on porting applications to
IPv6, while [1] presents a porting methodology based on the
experience with the OpenH323 library.

In the case of the videoconference application Gnomeeting
and openH323 library, we started with a pure IPv6 port that
proved to be relatively easy and fast. Then, after having
acquired some knowledge about the code design, we started

to work on the simultaneous support of IPv6 and IPv4, which
proved to be much more difficult.

This article starts with a presentation of the impacts of the
simultaneous support of IPv4 and IPv6 on the H323 network
architecture, then continues with the methodology of the port,
the software design and the encountered technical difficulties.

2. H.323 VOICE AND VIDEO NETWORK

2.1 H.323 calls

H.323 is an ITU recommendation, which defines a network

architecture and the associated protocols necessary to voice
and multi-media calls establishment. H.323 is defined for a
packet-based network, and does not impose any network
protocol, which can as well be IPv4 as IPv6 or IPX. H.323
architecture makes it possible to carry out direct calls
between two multimedia phones connected on the Internet or
a local area network. In this case, it is necessary to know the
IP address of the called party.

The main entities of an H.323 based video network are the
following:
• End points: These are the H.323 clients, which are used
by the end users. They can propose phone, video, fax, and
application sharing functionalities.
• Gateways: Gateways can be used for the interconnection
between different networks (for example an IP phone
network and a traditional phone network).
• Gatekeepers: Gatekeeper makes it possible to be freed
from the knowledge of called party IP address. It is then
possible to call someone by his name. The gatekeeper is also
able to manage the billing, and call filtering/authorization.
• Multipoint Control Units (MCUs): A Multipoint Control
Unit (MCU) makes it possible to manage a conference of
more than two end points. Each user connects to the MCU
and then is able to discuss with all the other connected
people.

Using a Gatekeeper or not, an H.323 phone call always
follows the same logical order (see also):
1. Optional registration to a gatekeeper (H.225)

mailto:sebastien.josset@space.alcatel.fr
mailto:stamos}@cti.gr
mailto:sebastien.josset@space.alcatel.fr

2. Call setup, direct or thanks to gatekeeper (H.225)
3. Initial communication and capability exchange (H.245)
4. Establishment of audiovisual communication (H.245)
5. Call services (H.245, H.225)
6. Call termination (H.245, H.225)

The initial communication (3) is done directly between the
two phones. Those will thus have to use addresses
understandable by both.

Gatekeeper

cloud

2 (optionnal),
3, 4, 5, 6

1, 2 1, 2

Figure 2: Call phases

2.2 Impact of simultaneous IPv4 & IPv6 address on

H.323

The current specification of the H323 protocol makes it

possible to manage calls independently of the network type.
An H323 transmission channel is defined by two
communication terminations named endpoints: A source and
a destination, which are defined by an address (IPv4, IPv6,
IPX, …) and a Service Access Port (TCP/UDP Port).

In general, it is possible to achieve communication
between IPv4 and IPv6 hosts, as shown on Figure 3.

 IPv4 server IPv6 server

IPv
4

client

Communicate using
IPv4

Communicate
using IPv4, server
sees IPv4-mapped

IPv6 address

IPv
6

client

Can communicate
using IPv4 if the IPv6
client uses an IPv4-

mapped IPv6 address

Communicate
using IPv6

Figure 3: Interoperability between IPv4 and IPv6
versions running on dual-stack hosts

It can however be a challenge to have an H.323 Call
seamlessly using both IPv4 and IPv6 networks. When an IP
phone software starts, it opens a communication port (Service
Access Port) on which it could receive H.323 signaling. A
dual-stack terminal can choose to open an IPv4 port, an IPv6
port or a dual protocol port. A dual port makes it able to
receive both IPv4 and IPv6 call at the same time. On the
other hand if it registers at a Gatekeeper, it has to make a
choice and to specify an IPv4 or IPv6 address network.

As a gatekeeper maintains a list of the connected users
(names or aliases), and corresponding endpoints
(address+port), a dual terminal stack could be registered
twice, once in IPv4 and another in IPv6.

It is possible to carry out an IPv4 and IPv6 mixed call
between two dual stack terminals. Terminal A opens an IPv4
port and calls the terminal B, which opens an IPv6 port. The
messages from A to B will be carried by the IPv6 network,
and the messages from B to A will be in IPv4.

Gatekeeper

cloud

2 (optionnal),
3, 4, 5, 6

1, 2 1, 2

IPv4/IPv6
Gateway

2 (optionnal),
3, 4, 5, 6IPv4 Phone IPv6 Phone

Figure 4: Call thanks to an IPv4/IPv6 Gateway

Problems arise if one wants to carry out a call between a
pure IPv4 terminal and a pure IPv6 terminal. The use of
mapped addresses is not possible, as H.225 messages at
application layer clearly exchange IPv6 addresses.

A solution could be to use a gatekeeper connected to each
network, able to detect this conflict and being used as
Gateway for the transmission between the two networks.

Another solution could be to use at least one dual stack
H323 client, able to detect an IPv4 only party, and sending
the corresponding IPv4 address in H.225 messages instead of
the mapped IPv6 address it is listening on.

3. GNOMEMEETING & OPENH323 PROJECT

The main objective of the openH323 project [4] is to

develop and provide the Internet community with a library
implementing the H323 recommendation. This library,
distributed under MPL license (Mozilla public license), can
be used for free in commercial software. This project is led
by Equivalence Pty Ltd, an Australian company.

The applications that have been developed on top of the
OpenH323 library include a command line H.323 client, an
H.323 videoconferencing server (MCU), H.323 answering
machine, H.323 gatekeeper, H.323 to PSTN and fax modem
to T.38 gateways, and GnomeMeeting, a graphical H.323
client for Unix.

The openH323 library is written in C++, and implements
more than 100 classes in more than 350.000 lines of code. It
proposes classes to handle H.323, H.225, H.245, RTP
protocols, some audio codecs and video such as G.711 or
G.722. The library is divided in two parts, one being
generated from the IDL definition of the standards, the other
implementing the behavior of these generated classes in C++.

The openh323 library relies on the PWLib library for all its
systems calls. PWLib offers platform independent C++
classes for socket management, thread, tables, sort
algorithms, null strings... It is thus possible to compile at the
same time on a Unix platform and a Windows platform
without modifying a single line of code. This library contains

more than 300 classes implemented in more than 150.000
lines of source code.

Gnomemeeting [5] is the most famous Linux based
videoconference software used over the Internet. Developed
by the University of Leuven, it is an open source H.323
software which can interoperate with popular H.323 products
including Microsoft’s Netmeeting. It relies on the openh323
library for the H.323 protocol management.

A p p l i c a t i o n s

H 3 2 3 c l i e n t , G n o m e m e e t i n g , o p e n A M ,
o p e n M C U , P S T N g w

O p e n H 3 2 3 l i b r a r y
H 3 2 3 E n d P o i n t , H 3 2 3 T r a n s p o r t ,

H 3 2 3 L i s t e n e r , H 3 2 3 C o n n e c t i o n …

P W L i b l i b r a r y
P s o c k e t , P c h a n n e l , P p r o c e s s , P t h r e a d ,

P S o u n d …

U n i x
S o c k e t , I O ,
p t h r e a d s …

W i n d o w s
W i n s o c k s , I / O ,

t h r e a d s …

Figure 6: OpenH323 function stack

4. METHODOLOGY OF AN IPV6 PORT

4.1 Need for a Methodology

After having taken the decision to carry out the IPv6 port

of the Gnomemeeting software, and thus the port of
openH323 and pwlib libraries, we found ourselves facing a
mountain of more than 500.000 lines of source code. Without
a clear methodology of work this task was dedicated to
failure.

Below we present a step-by-step methodology that can be
used in order to port a large project to IPv6:
• Study and understand the source code, highlighting the

points where a change in the program’s logic is probably
necessary.

• Parse the source code with an automatic tool like
Checkv4.exe [6].

• Modify the source code lines reported by the automatic
tool, which are probably going to be rather
straightforward.

• Make any other necessary modifications in more subtle
places not reported by the automatic tool.

• Test and debug the code, correcting any issues that arise.
• Verify completeness of porting effort.

4.2 Simple Windows 2000 Both IPv4 &IPv6 support

The first thing to be made was to cut out work in small

tasks. We thus focused initially on the port of a basic
application using the openH323 library: simpleH323, a voice
only internet phone without graphical interface, which uses
only a subset of H.323 functionalities and which works
perfectly over IPv4.

We carried out this port in the Microsoft Visual Studio 6
development environment, under Windows 2000 with IPv6
SDK. We have incorporated the IPv6 modifications using
conditional compilation directives, directly modifying the
code of the H.323 classes, even those that had been generated
from IDL files of the H.323 standard. The library thus
compiled was IPv4 only, or IPv6 only. This port was
relatively short, about a few days. Really useful in this phase
can be an automatic tool like Microsoft’s Checkv4.exe [6]
that parses the source code and reports IPv4 dependencies,
and a text editor with ‘find keyword in file’ functionality able
to recursively search in the whole source tree.. We then could
make a summary of the modifications to be done for a
simultaneous support of IPv4 and IPv6.

We then set out again of a clean and synchronized CVS
snapshot of the sources. We incorporated the modifications
needed to limit the redundancies and not to modify the
generated files. This phase was relatively long (many weeks).
The results were incorporated in the OpenH323 project’s
CVS repository.

4.3 Simple Linux and GnomeMeeting Both IPv4 &IPv6

support

Once the current CVS sources were validated under

Windows 2000 with a simple application, we started to work
under Linux. Almost no modification was necessary for the
simple set of functions necessary to the simpleH323
application. We then tested another simple applications:
openAM, which is a vocal answering machine. The
compilation of the current CVS version of Gnomemeeting
required very recent versions of the graphic libraries, and we
had to upgrade our entire Linux platform. The first tests
showed us that we needed more functions than those already
validated by the simpleH323 application.

4.4 Results & Mailing list

Communicating regularly our results on the openH323

mailing list allowed us to exchange with other teams
interested by the subject and ready to make tests. To allow
the realization of these tests by a maximum of readers of the
mailing list, we wrote an ‘openH323 IPv6 how to’, and the
binaries were placed at the disposal on Internet. Part of this
‘how to’ is now included in the openH323 ‘readme.txt’ file.

A public IPv6 answering machine was deployed in the
context of the IST project Satip6 [5]. This answering machine
allows everybody to test remote IPv6 phone connections.

5. SOFTWARE DESIGN FOR IPV6 & IPV4
SUPPORT

5.1 Software Design

Facing the great number of possibilities ahead of us at the

time of the software redesign, the main selection criteria was
systematically the backward compatibility with the already
existing IPv4 applications.
Because the applications use the OpenH323 classes that give
an abstract view of the networking facilities, SimpleH323 and
openAM did not require modifications of their source code,
except for the makefiles. Some light modifications are
necessary for Gnomemeeting.

The code of the openH323 library that is automatically
generated from the already IPv6 aware H323 IDL files did
not have to be modified, on the other hand we had to add
handlers for the effective handling of the IPv6 addresses.

The core of the openH323 library relying on the PWLib
classes to handle addresses and UDP/TCP connections only
needed some light modifications in its internal management
of the addresses.

The most significant modifications were made in the
PWLib library, which provides a PIPSocket class allowing
the handling of the sockets. This PIPSocket class was
strongly redesigned., as can be seen in the Appendix.
PIPSockets are IPv4 by default They turn into an IPv6 socket
only when they are explicitly mapped onto an IPv6 address.

5.2 Impact of Multi-platform support

Most of the functions related to IPv6 addresses are defined

in RFC 2553 and are common to all the platforms, although
there are minor incompatibilities and differences between the
platforms [6].

On the other hand network related functions do not have a
common API. It is then necessary not only to implement calls
specific to the platforms, but generally specific to the IPv6
SDK and the version of the platform.

Thus the management of the IPv6 routing tables, or the
lists of IPv6 networks interfaces, is not implemented the
same way under Linux, Sun, Windows 2000 and XP.

5.3 Use and set of #Define

As PWLib and openH323 libraries have to continue to

work on systems being not IPv6, the use of conditional
compilation directives was the natural solution.

The major disadvantage is the very strong need for
distributing a version of the libraries compiled with the same
options as the applications.

Thus, we encountered problems while trying to use the
Gnomemeeting application compiled without the IPv6 flag,
with openH323 and PWLib libraries compiled with this flag.

The Sockets and H323 classes defined in Gnomemeeting
and openH323 had neither the same sizes, nor the same
offsets for the method calls. Memory leaks and crashes at
runtime when methods are called make such bugs difficult to
identify.

Such a problem is due to a difference in the compilation
flags setting strategy, between openH323 and the
applications. Under Linux, openH323 determines itself its
default options by testing the system, and thus compiles the
library with IPv6 if the machine is IPv6 enabled (detection of
/proc/af_inet6). Gnomemeeting requires a manual
configuration of the IPv6 flags.

The solutions would be that the library could specify its
compilation flags to the applications.

5.4 Textual address translation

Most of the modifications relate to the management of the

addresses for End Points. In particular conversion between
addresses in text formats towards binary addresses.

An H.323 IPv4 endpoint is internally stored as a textual
string '256.56.34.92:5010', to specify 256.56.34.92 as the IP
address and 5010 as the TCP or UDP port. The internal
parsers just seek to the first double dot to split this string in
two sub-strings.

An H.323 IPv6 endpoint being internally written
‘[x:x:x:x:x::x]:8080’, it is necessary to rewrite these parsers
as the first double dot is in the middle of the IPv6 address.
The task becomes more complicated with IPv6 scoped
addresses that can be written ‘[x:x:x:x:x:x%le0]:8080’, and
require in addition to manage the percent sign.

6. DEVELOPMENT CONCERNS

6.1 IPv6 SDK and RFC compliance

The IPv6 standard having evolved quickly, the IPv6 SDK

are not all up to date and not always compatible with the IPv6
drivers of the operating system kernel.

Thus Linux 2.2 kernel and glibc, and Visual C++ 6 define
the old RFC 2133 sockaddr_in6 structure that does make only
24 bytes, when the RFC 2553 requires a 28 bytes structure.

It is necessary to upgrade to Linux 2.4, and patch manually
Visual C++ 6 to be RFC 2553 compliant, which defines the
field sin6_scope_id necessary to the support of the scoped
addresses. In the same time, the IPv6 kernel drivers of

Windows 2000 are RFC 2553 compliant, and wait for 28
bytes structure parameters.

6.2 Address resolution with and without square

brackets

The choice to implement a function as platform dependent

or independent is sometimes clever. Even if the interface is
identical, the behavior of some name resolution functions
under the various platforms is not homogeneous. Linux
accepts the IPv6 addresses with or without the square bracket
(e.g. [x:x:x:x::x]), whereas Windows manages only clean
addresses without the square bracket (e.g. x:x:x:x::x).

The solution here is to systematically clean the addresses
on all the platforms, even if it is not really needed.

7. APPLICATIONS

During the IPv6 port, we focussed on three applications.

Pre-compilated binary for Windows and Linux are available
on Internet for tests:
• SimpleH323: SimpleH323 proved to be very useful as
very simple. It enabled us to focus on the H323 library. It is
now fully functional under IPv6 and IPv4.
• OpenAM: OpenAM wasn’t more complicated than
simpleH323, it proved to be useful for both local and remote
tests. It enabled us to start the first IPv6 debugging of
Gnomemeeting with a stable remote IPv6 phone with a
predictable behavior.
• Gnomemeeting: This application proved to be the most
complex in particular because it uses almost all
functionalities of the h323 library and many advanced
functions of pwlib.

8. CONCLUSION & FUTURE WORK

The porting of the Gnomemeeting software and the

openH323 and PWLib libraries, lead us to focus on some
technical points that must be taken into account while in the
design phase of an application, when this application is
supposed to benefit from the new IPv6 networks.

It appears clearly that the use of an object software
architecture based on a class able to manage simultaneously
IPv4 and IPv6 networks makes it possible to develop
applications for IPv4 which require very few modifications to
work also on IPv6 simultaneously.

Currently only the IPv6 and IPv4 addresses are stored in
the PIPSocket::Address class. An additional field scope
should be added so that scoped addresses can be taken into
account. Also, many parts of the PWLib library are not used
by GnomeMeeting and probably contain IPv4 dependencies
that have to be identified and modified.

9. REFERENCES

[1] “Adding IPv6 capability to Windows Socket
Applications”, Microsoft Corporation

[2] “Porting Networking Applications to the IPv6 APIs”,
Sun Microsystems

[3] C. Bouras, A. Gkamas, K. Stamos, “From IPv4 to
IPv6: The case of OpenH323 Library”, in Proceedings
of SAINT 2003 Workshop, 2003

[4] OpenH323 project, http://www.openh323.org
[5] GnomeMeeting, http://www.gnomemeeting.org/
[6] Microsoft IPv6 Technology Preview for W2000,

http://msdn.microsoft.com/downloads/sdks/platform/t
pipv6.asp

[7] IST SatIP6, http://satip6.tilab.com

10. APPENDIX: DEFINITIONS IN SOURCE

TransportAddress ::= CHOICE
{

ipAddress SEQUENCE
{

ip OCTET STRING (SIZE(4)),
port INTEGER(0..65535)

},
ip6Address SEQUENCE
{

ip OCTET STRING (SIZE(16)),
port INTEGER(0..65535),

},
…

}

ASN definition of an H225 transport address (h225.asn)

class PIPSocket : public PSocket
{

class Address : public PObject {
unsigned version;

union {
in_addr four;

#if P_HAS_IPV6
in6_addr six;

#endif
} v;

} ;
}

C++ partial definition of the PIPSocket class (ipsock.h)

It was necessary to allow the choice between the use of the

structures 'sockaddr_in' or ' sockaddr_in6 ' at the call time for
many functions, such as getpeername, bind, getnameinfo,
accept, recvfrom... Rather than to use conditional
compilation, we defined a Psockaddr class, shown below,
based on 'sockaddr_storage', which was dynamically casted
in 'sockaddr_in' or 'sockaddr_in6 '.

class Psockaddr
{

public:
Psockaddr(const PIPSocket::Address & ip, WORD port);
…
socklen_t GetSize() const;
PIPSocket::Address GetIP() const;
WORD GetPort() const;

private:
sockaddr_storage storage;

};

C++ partial definition of the local Psockaddr class (sockets.cpp)

http://www.openh323.org/
http://www.gnomemeeting.org/
http://msdn.microsoft.com/downloads/sdks/platform/tpipv6.asp
http://msdn.microsoft.com/downloads/sdks/platform/tpipv6.asp
http://www.mobilesummit2003.org/

