
THE PERFORMANCE OF QUEUING THEORETIC VIDEO ON
DEMAND ALGORITHMS

BOURAS C.(1)(2), GAROFALAKIS J.(1)(2), PETRIDIS P.(1), TZIMAS G.(1)(2),

(1)Department of Computer Engineering and Informatics,
University of Patras, 26500 Patras, Greece

(2)Computer Technology Institute,
 P.O. Box 1122, 26110 Patras,Greece

KEYWORDS
Video On Demand (VOD), Performance of

Algorithms, Simulation, Modeling

ABSTRACT
Video On Demand (VOD) Systems comprise an

emerging new technology, which is expected to
significantly affect everyday life. The implementation of
effective commercial VOD systems has to overcome some
technical limitations, such as the low bandwidth offered
by the existing communication channels. In our work we
present some simple queuing theoretic algorithms for the
optimal use of a limited number of communication
channels keeping a fair policy for the users requests. We
compare our algorithms with well-known algorithms, by
means of simulation.

1. INTRODUCTION
Based on the advances of the telecommunication

technology as well as on the huge progress within
electronic industry, in the last few years several software
intensive systems have been developed providing real-
time or near real-time provision of services. One of these
services that is based on state-of-the-art technologies is
Video On Demand (VOD).

A Video On Demand System provides on demand
choice of movies to a set of users. The only difference
between a VOD and a VCR (VideoCassette Recorder) is
that the user doesn't have VCR equipment or any
videotape. The movies are stored in a central video server,
which is connected through a high-speed network with
local service provision nodes. Every local node is
connected through co-axial cables with the user homes
providing on demand transmission of TV programme.

Depending on the interaction degree, a VOD system
can be categorized as follows [1]:

Ø Quasi-Video-on-Demand: In this case the users are
grouped based on their interests. A user can choose
between different programmes by changing user
teams.

Ø Near-Video-on-Demand: The same programme is
retransmitted in fixed time slots thus enabling
functions such as forward and reverse play.

Ø True-Video-on-Demand: The user has full control over
the presentation of the programme. The T-VOD fully
simulates a VCR enabling functions such as forward
and reverse play, freeze and random positioning.

Ø Adaptive-Video-on-Demand: In this case the user
submits a request for a movie and the decision is made
through a routing algorithm.

In figure 1 the physical architecture of a VOD system
is depicted [1]:

User interface and
Display

Network interface

Local
Server

Local Database

Multimedia Archive

High Speed
Backbone

Multimedia Archive
and Distributor

Figure 1: The physical architecture of a general VOD
system.

As we can see a local database and a local video
server, which is connected by a high bandwidth network
with the user's homes, composes a VOD system. The user
interacts with the system by using a common computer
keyboard. A data file is transmitted to the local nodes
where it is cached and forwarded to the users.

The following features characterize the above model:

Ø It enables a distributed implementation thus providing
higher reliability and availability.

Ø The users can access the information by the local
nodes ensuring a lower cost.

Ø Easier management because of the distributed nature
of the system.

Ø The system is easily expandable.

In this paper we propose four new queuing algorithms
that improve the performance of Adaptive Video on
Demand (A-VOD) systems. In section 2 we give the
current state-of-the-art on VOD algorithms. In section 3
we present our approach for the improvement of the
performance of A-VOD systems. In section 4 we describe
the simulation process and in section 5 we present our
results and comparison with the known algorithms.
Finally, in section 6 we present the conclusions of our
work.

2. KNOWN ALGORITHMS FOR VIDEO
ON DEMAND

In figure 2 we present the model of a VOD system [2]:

movie 1
2
.
.
m

Channel
1
2
.
.

c
user

1
user

2
user

u

Server

Figure 2: The model of a VOD system.

One of the biggest problems in the implementation of
a VOD system is the distribution of the available
resources. In the above architecture there are two main
problems:

1. The limited number of transmission channels within a
co-axial cable that is used for many users.

2. The number of files that the server can transmit
concurrently [3].

Let M be the set of m movies, U the set of u users, C
the set of c channels, T the duration of a movie (it is the
same for all the movies), ô the maximum delay between a
request and the beginning of a job and n the maximum
delay between a request and the corresponding response
(n≤ô≤Ô). In our case we assume that n=ô. We also define
m=u/c. The request is characterized by the triple: time of
the request, the user and the job and the response is
characterized by the time (≤time of the request+n), the
user, the channel and the service time (time≤service
time≤time of the request+ô). When the service time is
negative, the request is rejected.

The decision for the acceptance or rejection of a
request is made through a routing algorithm. Here we
present two well-known routing algorithms used for VOD
systems.

The Harmonic Algorithm [2]

The C available channels are divided in m sets S1,

S2,…, Sm. In every set Si,
mH*i

C
 channels are made

available. Where Hm is the harmonic number defined as

follows ∑
=

=
m

i i
Hm

1

1
. Every channel within Si serves at

least i requests concurrently. The Harmonic Algorithm
decides for the acceptance of the requests as follows:
Every job mj corresponds with a queue Qj in which the
requests for the specific job are stored. At the beginning
the queue is empty for every j. When a request is made for
a job mj it is stored in Qj. The queues aim is to concentrate
as many requests as possible in order for them to be
served in one transmission. A time start(Qj) corresponds
with every Qj that is the arrival time of the first request in
the queue. At the time start(Qj)+n the algorithm decides
whether it is going to serve the k requests. If there is a free
channel in the Si set with i≤k the transmission of the mj

movie takes place and serves the k requests. In the case
that there isn't any free channel with i≤k the algorithm
rejects the requests started at start(Qj) and start(Qj)
initializes based on the earliest request within Qj.

The SF (Serve a Fraction) Algorithm [4]

We suppose that the notification time and the movie
duration are related linearly, that is n=T/l, where l is a
constant. The SF Algorithm is executed as follows: the
time is divided in predefined time slots of n length. The
requests are queued in every time slot and in the end of it
the decision is made based on the following criterion. In
every movie mj corresponds a weight wj. The movies with
higher weights are served first. As weight we can define
the probability of a movie to be selected. In every time
slot the SF algorithm provides at a maximum C/l channels
for the transmission of the jobs.

3. SIMPLE QUEUING THEORETIC
ALGORITHMS FOR VIDEO ON DEMAND

In this section we present four new algorithms based
on Queuing Theory for VOD systems. These algorithms
try to improve the performance of VOD systems and to
establish a new approach in this field.

Every job mj is related with a queue Qj in which the
requests for the specific job are queued. At the beginning
the queue is empty for every j. When a request is made for
a job mj it is stored in Qj. The queues aim is to concentrate
as many requests as possible in order for them to be
served in one transmission. A time start(Qj) corresponds
with every Qj that is the arrival time of the first request in
the queue.

The FCFS (first come first serve) algorithm

The FCFS algorithm is based on the following
approach: Whenever one of the C channels is free, it
transmits the mj movie that corresponds to queue Qj for
that j that has minimum start(Qj), that is the queue that has
the earliest request is served first. In the case that there
isn't any free channel at start(Qj)+n the algorithm rejects
the requests started at start(Qj) and start(Qj) initializes
based on the earliest request within Qj.

The MRM (maximum requests for movie) algorithm

In the case of the MRM algorithm we have the
following: Whenever one of the C channels is free, it
transmits the mj movie that corresponds to queue Qj for
that j that we have max|Qj|, that is the queue that has the
maximum number of requests is served first. In the case
that there isn't any free channel at that moment the Qj's
requests made at start(Qj) are rejected and start(Qj)
initializes based on the earliest request within Qj.

The FCFSN (first come first serve after N minutes)
algorithm

At the time start(Qj)+n the algorithm decides to serve
the Qj requests for that j that has minimum start(Qj), that
is the queue that has the earliest request is served first. If
there is a free channel the movie mj is transmitted and the
requests are served. In the case that there isn't any free
channel at that moment the Qj's requests made at start(Qj)
are rejected and start(Qj) initializes based on the earliest
request within Qj.

The MRMN (maximum requests for movie after N
minutes) algorithm

At the time start(Qj)+n, for that j that has minimum
start(Qj), the algorithm decides to serve the requests in the
Qk queue where we have max|Qk|, that is the queue that
has the maximum number of requests is served first. If
there is a free channel then the movie mk is transmitted. In
the case that there isn't any free channel or j≠k, at that
moment the Qj's requests made at start(Qj) are rejected
and start(Qj) initializes based on the earliest request
within Qj.

4 THE SIMULATOR
In what follows we present the simulator [5]

implemented for the verification of the results and the
comparison between the various algorithms. The model
simulated can be seen in the following diagram:

Queue
Channels

ë

Figure 3: The Simulators model

In order to implement the general model we made the
following assumptions:

Ø We have a queuing system with C servers with the
following functionality: The time between successive
arrivals of requests follows exponential distribution
with mean value ë. The model implemented follows
the Zipf distribution [6] with parameter è=0.271 where

() ()ϑ−== 1i

c
iXP . The queue has a Q length and

when it is not empty we decide to serve several
requests based on a specific algorithm and one of the
C channels is reserved.

Ø The events characterising our model are the following:

1. The arrival request
2. The departure of served requests

Ø Our input is a sequence of requests for a set of M jobs
that will be served through the C channels. The
requests are sorted based on their arrival time and a
request is dropped if it hasn’t been served for a time
period n.

Ø The number of users is u=T/ë where ë is the mean
time between the arrivals and Ô is the movie length.

The input parameters are the following: T: the jobs
duration, ë: the time between successive arrival requests,
N: the maximum delay between a users request and the
systems response, C: the number of channels, M: the
number of jobs, Q: the maximum queues length, and m:
the number of sets that the C channels will be divided in
the case of the harmonic algorithm

The performance metrics that were calculated during
the simulation are the following:

ô: The mean delay for the served requests

q: The mean length of the queue

rs: The total number of served requests

rl: The total number of dropped requests

rms: The number of served requests per job

rml: The number of dropped requests per job

cs: The number of requests served by every channel

p: The percentage of the channels usability

The parameters used for the execution of the
simulation are listed below: Movie_time = 120 min.,
simulation_end = 10080 min, movie_set = 100 min

L Number of Users Load
0.1 1200 Small
0.05 2400 Moderate
0.025 4800 Big

Also, n takes the values 5, 10, 15 min and the channel
size (CS) takes values from the following list: 50, 100, …,
1000 having a 50 step. The simulation was executed for
1080 times (180 times for each algorithm).

Some indicative graphs generated by the simulator for
the various cases of algorithms are shown below. The
following abbreviations are used within the graphs: L:
mean interarrival, N: notification time, CS: channel size,
PRS: probability request served, MNSRC: mean number
of served requests for channel and MPCU: mean percent
channel was used.

5. RESULTS AND COMPARISONS
In the next table we can see the results for the six

algorithms simulated having as performance metric the
probability to serve a request.

In spite of the simple model that we used to simulate
the VOD algorithms our final results are very interesting:

1. In the case that we have more channels available than
the minimum number of channels needed to achieve
serving probability which approaches the maximum
value that can be achieved by the specific algorithm,
the redundant channels are not used and therefore the
mean utilization of the channels is decreased. When
we increase the number of available channels then the
algorithms SF , Harmonic , FCFSN , FCFS , MRM
can always achieve maximum serving probability
equal to one. Algorithm MRMN can approach the
maximum serving probability that is equal to one, only
if we increase the notification time concurrently with
the number of available channels.

2. The algorithms FCFSN and FCFS achieve the best
behavior by means of serving fairness.

3. For all the cases the increase of n has as a result the
increase of serving probability but it also increases the
mean serving delay.

4. The MRM and FCFS do not have significant
differences due to the fact that they serve when a free
channel exists.

5. The MRMN algorithm behaves well only in the case
that there are a few channels compared to the load. On
the contrary the FCFSN algorithm is a better choice in
the case of a large number of channels.

6. The SF and Harmonic algorithms have a better
behavior in comparison to the other algorithms but
they have increased mean delay serving time. The SF
has better channel utilization compared to Harmonic
but in the case that n and CS take large values
Harmonic is better.

7. The FCFSN algorithm, although less complex than
algorithms such as SF and Harmonic, is more fair
since it serves the request depending on the waiting
time and not on the job popularity.

8. The MRMN behaves well only when there are limited
resources, thus making us to try to improve the VOD
system performance by serving the most popular jobs
request.

9. The SF and Harmonic algorithms are more stable
independently of the number of requests. Also, the
existence of the notification time improves the
performance of an algorithm and is valuable in the
case of jobs that have an increased probability [7] to
be selected.

Load Notification
Time

Number of
Channels

Results

Small Small Small 1. SF 2. Harmonic 3. MRMN 4. FCFSN 5. FCFS 6. MRM
Small Small Moderate 1. Harmonic 2. SF 3. FCFSN 4. MRMN 5. FCFS 6. MRM
Small Small Big 1. Harmonic 2. SF 3. FCFSN 4. FCFS 5. MRM 6. MRMN
Small Moderate Small 1. SF 2. Harmonic 3. MRMN 4. FCFSN 5. FCFS 6. MRM
Small Moderate Moderate 1. Harmonic 2. SF 3. FCFSN 4. MRMN 5. FCFS 6. MRM
Small Moderate Big 1. Harmonic 2. SF 3. FCFSN 4. FCFS 5. MRM 6. MRMN
Small Big Small 1. SF 2. Harmonic 3. MRMN 4. FCFSN 5. FCFS 6. MRM
Small Big Moderate 1. Harmonic 2. SF 3. FCFSN 4. MRMN 5. FCFS 6. MRM
Small Big Big 1. Harmonic 2. SF 3. FCFSN 4. FCFS 5. MRM 6. MRMN
Moderate Small Small 1. SF 2. Harmonic 3. MRMN 4. FCFSN 5. FCFS 6. MRM
Moderate Small Moderate 1. Harmonic 2. SF 3. MRMN 4. FCFSN 5. FCFS 6. MRM
Moderate Small Big 1. Harmonic 2. SF 3. FCFSN 4. MRMN 5. FCFS 6. MRM
Moderate Moderate Small 1. SF 2. Harmonic 3. MRMN 4. FCFSN 5. FCFS 6. MRM
Moderate Moderate Moderate 1. Harmonic 2. SF 3. MRMN 4. FCFSN 5. FCFS 6. MRM
Moderate Moderate Big 1. Harmonic 2. SF 3. FCFSN 4. MRMN 5. FCFS 6. MRM
Moderate Big Small 1. SF 2. Harmonic 3. MRMN 4. FCFSN 5. FCFS 6. MRM
Moderate Big Moderate 1. Harmonic 2. SF 3. FCFSN 4. MRMN 5. FCFS 6. MRM
Moderate Big Big 1. Harmonic 2. SF 3. FCFSN 4. MRMN 5. FCFS 6. MRM
Big Small Small 1. SF 2. Harmonic 3. MRMN 4. FCFSN 5. FCFS 6. MRM
Big Small Moderate 1. SF 2. Harmonic 3. MRMN 4. FCFSN 5. FCFS 6. MRM
Big Small Big 1. SF 2. Harmonic 3. MRMN 4. FCFSN 5. FCFS 6. MRM
Big Moderate Small 1. SF 2. Harmonic 3. MRMN 4. FCFSN 5. FCFS 6. MRM
Big Moderate Moderate 1. Harmonic 2. SF 3. FCFSN 4. MRMN 5. FCFS 6. MRM
Big Moderate Big 1. FCFSN 2. Harmonic 3. SF 4. MRMN 5. FCFS 6. MRM
Big Big Small 1. SF 2. Harmonic 3. FCFSN 4.MRMN 5. FCFS 6. Mtm
Big Big Moderate 1. Harmonic 2. SF 3. FCFSN 4. MRMN 5. FCFS 6. MRM
Big Big Big 1. FCFSN 2. Harmonic 3. SF 4. MRMN 5. FCFS 6. MRM

Table 1: Comparison based on the serving probability

6. CONCLUSIONS
As we have seen all the algorithms have relatively similar
performance if the available resources are satisfying
compared to the expected incoming request stream. If the
number of incoming requests (load) is higher than
expected the SF and Harmonic algorithms are more stable,
without meaning that the FCFSN or MRMN algorithms
could not be used as an alternative.

In the future we plan to extend our work for the case of
distributed VOD servers, where the movies are distributed
among them. Moreover, it would be interesting to find
analytical solutions for the problems we have formulated
and extend the results.

7. REFERENCES
[1] A.D. Gelman, H. Kobrinski, L.S. Smoot, S.B.

Weinstein, M. Fortier, D. Lemay, A Store and
Forward Architecture for Video on Demand Service,
Proc. IEEE ICC, 1991, 27.3.1-27.3.5.

[2] S. Aggatwal, J.A. Garay, A. Herzberg, Adaptive
Video on Demand, 3rd Ann. European Symposium on
Algorithms, 1995, 538-553.

[3] Steven M. McCarthy, Integrating Telco Interoffice
Fiber Transport with Coaxial Distribution, Proc.
SPIE-Int. Soc. OPT. Eng., 1993, 1786: 23-33.

[4] Bar-Noy, J.A. Garay, A. Herzberg, Shating Video on
Demand – Constant Competitive Ratio with Long
Notification Time, Electronic Engineering Times,
1993.

[5] Avetill M. Low, W. David Kelton, Simulation
Modeling and Analysis, Mc Graw-Hill Inc., 1991.

[6] A, Dian, D. Sitiram, P. Shahabiddin, Scheduling
Policies for an On-Demand Video Server with
Batcing, Electronic Engineering Times, 1993, 72.

[7] C. Bouras, V. Kapoulas, T. Pantziou, P. Spirakis,
Randomized Adaptive Video on Demand, Personal
Communicatio, Short Abstract appeared in Proc 15th

Annual ACM Symp. on the Principles of Distributed
Computing, 1996

