
Multimedia Tools and Applications, 25, 85–110, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Architecture and Performance Evaluation
for Redundant Multicast Transmission
Supporting Adaptive QoS

C. BOURAS bouras@cti.gr
A. GKAMAS gkamas@cti.gr
A. KARALIOTAS karaliot@cti.gr
K. STAMOS stamos@cti.gr
Computer Engineering and Informatics Department, University of Patras, GR-26500 Patras, Greece; Research
Academic Computer Technology Institute, Riga Feraiou 61, GR-26221 Patras, Greece

Abstract. In this paper we describe the architecture of an application that was developed for the transmission
of multimedia data, using the multicast mechanism, over the Internet. There are two major issues that have to be
considered when designing and implementing such a service, the fairness and the adaptation schemes. The fairness
problem results from the fact that Clients with different capabilities have to be served. In our application we use
a mechanism that categorizes the Clients into a number of groups according to each Client’s capabilities and (the
mechanism) serves each group of Clients with a different multicast stream. With the term “capabilities” we do
not only mean the processing power of the Client, but also the capacity and the condition of the network path
towards that Client. Because of today’s Internet heterogeneity and the lack of Quality of Service (QoS) support,
the Server cannot assume that the Clients will permanently be able to handle a specific bit rate. We have therefore
implemented an additional mechanism for the intra-stream bit rate adaptation. The proposed mechanism uses a
“friendly” to the network users congestion control policy to control the transmission of the data. We evaluate
the adaptive multicast transmission mechanism through a number of experiments and a number of simulations in
order to examine its behaviour to a heterogeneous group of Clients and its behaviour against TCP and UDP data
streams.

Keywords: IP based networks and services, multimedia systems and services, multicast, Quality of Service,
adaptation mechanisms, CORBA

1. Introduction—Related work

The heterogeneous network environment that Internet provides to the real time applications
as well as the lack of sufficient Quality of Service (QoS) guarantees, many times forces
applications to embody adaptation elements in order to work efficiently. The main goal
of such an approach is to adapt the data rate that is sent to the network every time that
network conditions change. The decision whether the rate will increase or decrease is based
on feedback information that the Clients send back to the Server. Many researchers believe
that this end-to-end control scheme must be implemented in the endpoints because today’s
Internet architecture does not provide such a mechanism in the network layer [11, 22].

The implementation of adaptation mechanisms in the applications is often criticized. The
main arguments that rise against it, are that the technologies that are used today for the
implementation of the core networks provide capabilities to support QoS; as a result the

86 BOURAS ET AL.

network should offer to the applications QoS guarantees. This is generally true but there is a
big problem about it: Today’s Internet is divided into thousands of different administration
domains. The QoS strategies that are implemented on each one are certainly different (for
example QoS based on DiffServ Concept [21], QoS based on IntServ Concept [5], QoS
based on IPv6 infrastructure [10]), and in many cases no QoS strategy is implemented at
all. So the multimedia data flows that have to traverse many of these different domains in
order to reach the end user don’t have a sufficient QoS support. The proposed mechanism
provides an adaptation service which does not require any QoS support from the network,
and runs in any IP multicast network. Another idea widely supported among network
administrators, is that the cost of exhaustive monitoring of the network as well as the
upgrade of the links that constrain the entire network domain (bottlenecks and critical links)
cost less than the deployment of QoS schemes (Research, testing and personnel training)
[11].

In addition, any application that transmits data over the Internet should have a friendly
behaviour towards the other flows that coexist in today’s Internet and especially towards the
TCP flows that comprise the majority of flows. We define as TCP friendly flow, a flow that
consumes no more bandwidth than a TCP connection, which is traversing the same path
with that flow [22].

The system we propose is based on multicast video transmission with the use of RTP/
RTCP [24]. The main perspectives we tried to fulfil are (1) each Client should receive the
best video quality that it is capable of and (2) the generated multicast data flow should not
be a constraint for the other flows.

In order to achieve the first goal, we create n different streams (in most network conditions
a small number of different streams is enough—typically 3 or 4 streams), each one within
certain bandwidth limits. All the streams carry the same video information, each one of them
having a different quality. Clients join in the appropriate stream depending on the condition
of the network path towards them and the processing power of each one. If meanwhile the
Client detects that the stream it has joined isn’t suitable for it any more another implemented
mechanism is used in order to provide the Clients with the capability of moving into another
stream.

In order to achieve the second goal, we deploy the Additive Increase Multiple Decrease
(AIMD) scheme in the inter-stream adaptation algorithm. The adaptation mechanism adapts
the rate of each stream taking into account the number of the Clients that are congested
or unloaded. In addition, if the capabilities of a Client aren’t suitable for the stream it has
joined, it moves to another stream with lower or higher bandwidth limits.

The most prominent feature of the proposed mechanism is its transmission rate estimation
algorithm, which is based not only to packet loss rate estimations (as the other AIMD
algorithms do) but also to the delay jitter estimations. As our experiments and simulation
show, delay jitter can be used successfully as congestion indication. In addition we have
implement a prototype based on the proposed mechanism and we have evaluate the proposed
mechanism not only in a simulator environment but also in a real network.

The methods proposed for the multicast transmission of time sensitive data in the Internet
can be generally divided in three main categories, depending on the number of multicast
streams used:

ARCHITECTURE AND PERFORMANCE EVALUATION 87

• The Server uses a single multicast stream for all Clients [1, 24, 27, 28, 33]. This results
to the most effective use of the network resources, but on the other hand the fairness
problem arises.

• Simulcast: The Server transmits versions of the same video encoded in varying degrees
of quality. This results to the creation of a small number of multicast streams with dif-
ferent rates, responsible for a range of Clients with similar capabilities [9, 15]. The
different streams carry the same video information but in each one the video is en-
coded with different bit rates, and even different video formats (MPEG, H263, JPEG).
So each Client joins in the stream that carries the video quality, in terms of bit rate,
that it is capable of receiving. The main disadvantage in this case is that the same
video information is replicated over the network but recent research [16] has shown
that under some condition simulcast behaves better than transmission of layered encoded
video.

• The Server uses layered encoded video, which is video that can be reconstructed from a
number of discrete data streams and transmits each layer into different multicast stream
[6, 8, 19, 31]. The video is divided in to one basic stream and more additional streams.
The basic stream provides the basic quality and the quality improves with each layer
added. The Clients subscribe to one or more multicast streams depending on the available
bandwidth into the network path to the Server.

This work is based on the simulcast approach [9] and it is an extension of the work, which
has been presented in [2] and [4]. The discussion of the limitations of simulcast approach
(compared, e.g., to transmission of layered encoded video) is beyond the scope of this
paper. The rest of this paper is organised as follows: Section 2 presents the architecture of
the implemented prototype. In Section 3, we give a detailed description of the operation
of our prototype application. Section 4 presents some implementation issues. In Section 5,
we present the performance evaluation of the implemented prototype. Finally, Section 6
concludes the paper and discusses some of our future work.

2. System architecture

The proposed mechanism is based on the simulcast transmission of video, follows the
client—server architecture and uses the RTP/RTCP protocol for the transmission of
the data. The transmission rate within each stream is adapting within its limits accord-
ing to the capabilities and the state of the Clients participating in it.

The Server is unique and responsible of: (1) creating the n different multicast streams
(in our performance evaluation we use three multicast streams), (2) setting each one’s
bandwidth limits, (3) tracking if there are any Clients that are not handled with fairness and
(4) providing the mechanisms to the Clients to change stream whenever they consider that
they should be in another stream closer to their capabilities.

Figure 1 shows the organisation and the architecture of the Server entity. The Server
generates n different Stream Managers. In each Stream Manager an arbitrary number of
Client Managers is assigned. Each Client Manager corresponds to a unique Client that
has joined the stream controlled by this Stream Manager. The Synchronisation Server is

88 BOURAS ET AL.

Figure 1. The architecture and the data flow of the Server.

responsible for the management, synchronization and intercommunication between Stream
Managers.

The Stream Manager entity is responsible for the maintenance and the monitoring of one
of the n different multicast streams that are generated in the beginning of the application.
Also the Stream Manager entity has all the intra-stream adaptation mechanisms for the
adjustment of the transmission rate. The Stream Manager periodically gathers the states
reported by all Client Managers belonging to it at the end of a specific, fixed time period
(from now on called an epoch). It then uses an algorithm described in a following paragraph
that tries to improve fairness between Clients by determining whether a lower or a higher
bit rate is more appropriate. Whenever a Client cannot be satisfied by a stream due to the
fact that most of the other Clients have much higher or much lower reception capabilities,
the Stream Manager informs it that it has to move to a lower or higher quality stream.

Each Client Manager corresponds to a unique Client. It processes the RTCP reports
generated by the Client and can be considered as a representative of the Client at the side of
the Server. It can interact only with one Stream Manager at a given time, the Stream Manager
controlling the stream from which the Client is receiving the video. Client Manager receives
the RTCP reports from the Client and processes them based on packet loss rate and delay
jitter information. It then makes an estimation of the state of the Client, based on the current
and a few previous reports that it stores in a buffer. The exact operation of the algorithm is
described in the following paragraph.

The Client architecture consists of the following modules:

• Client buffer: Multimedia data received are first stored in this module, and presentation
does not begin unless there is a necessary amount of data stored in the Client buffer.
In order to achieve smooth media presentation to the user, this buffer’s capacity has to
exceed the maximum delay jitter during data transmission.

• Feedback: This is the module that produces the information necessary for the Client
Manager at the Server to estimate the Client’s state. Control information is transmitted

ARCHITECTURE AND PERFORMANCE EVALUATION 89

with RTCP reports, which include, as mentioned earlier, information about packet loss
rate and delay jitter.

• Decoder: This module takes the data packets from the Client buffer as input, decodes
them and outputs them suitable for presentation. The quality of the presented video is
higher when the receiving data rate is high. Video quality can also be affected by packet
loss and delay. Presentation can come to a complete stop if data in the Client buffer drops
below the required minimum.

• User display: The module responsible for the presentation of the video to the user, which
can be a computer monitor.

3. Description of system operation and algorithms

The Server initially constructs a number of streams. When a Client joins a multicast stream,
a dedicated Client Manager is created to represent the Client at the side of the Server
and manipulates the RTCP reports of that Client. Information in RTCP reports contains
two values that describe the quality of the transmission: packet loss rate and delay jitter.
These values are passed through the following filters used to avoid wrong estimations and
determine the aggressiveness of the Client Manager: For the packet loss rate:

LRnew = a ∗ LRold + (1 − a) ∗ LRnet

Where: LRnew: The new filtered value of packet loss rate. LRold: The previous filtered value
of packet loss rate (for the first report after the start of transmission, this value is 0). LRnet:
The packet loss value that was contained in the RTCP report received from the Client. a: a
parameter that determines the aggressiveness of the adaptation concerning the packet loss
value (its value ranges from 0 to 1 and during our evaluation we set a = 0.75). For delay
jitter:

Jnew = b ∗ Jold + (1 − b) ∗ Jnet

where: Jnew: The new filtered value of delay jitter. Jold: The previous filtered value of delay
jitter (for the first report after the start of transmission, this value is 0). Jnet: The delay
jitter that was contained in the RTCP report received from the Client. b: a parameter that
determines the aggressiveness of the adaptation concerning the delay jitter value (its value
ranges from 0 to 1 and during our evaluation we set b = 0.8).

With the use of the above filters, we prevent a single spurious packet loss or packet
delay having an excessive effect on the packet loss rate or delay jitter estimation. We have
evaluated the good performance of the above filters through experiments presented in [2].
Instead of the above filters, other filters, which have good smoothing behavior, can be used.

For the sake of clarity, a distinction has to be made between two kinds of states, that
both can take the values of UNLOADED, LOADED or CONGESTED: we call the first
one the “unprocessed state” and the second the “processed state”. The unprocessed state is
derived directly from the filtered values of packet loss rate and delay jitter, according to the

90 BOURAS ET AL.

following rules:

if (LRnew ≥ LRc) unprocessedstate = CONGESTED

if (LRu < LRnew < LRc) unprocessedstate = LOADED

if (LRnew <= LRu) unprocessedstate = UNLOADED

if (Jnew > γ ∗ Jold) unprocessedstate = CONGESTED

We have defined LRu as the maximum value of the unloaded packet loss rate and LRc as the
minimum value of the congested packet loss rate. Where γ is a parameter, which specifies
how aggressive the Client Manager will be to the increase of delay jitter. The values of the
above parameters depends on the network where the proposed mechanism is going to run
and can be obtained through experiments.

The state that will be reported to the Stream Manager is called the processed state. It is
computed by taking into account the last n unprocessed states, which are held in an n-sized
buffer in the Client Manager. This buffering mechanism contributes to the conservative
behaviour of the Client Manager. A CONGESTED unprocessed state does not necessarily
impose that the processed state will also be congested, especially if the majority of the
previous “unprocessed states” were UNLOADED. The way the processed state is computed
is presented below: We first introduce a new variable, USV (Unprocessed State Variable),
which takes a new value for each unprocessed state as shown:

if (unprocessed statei == CONGESTED) then USVi = −1

if (unprocessed statei == LOADED) then USVi = 0

if (unprocessed statei == UNLOADED) then USVi = 1

The processed state is then determined by the value of

f (i) = USVi ∗ wi + USVi−1 ∗ wi−1 + · · · + USVi−n+2

∗ wi−n+2 + USVi−n+1 ∗ wi−n+1

where w1 < w2 < · · · < wn are weights used to quantify the decreasing importance of old
unprocessed states. We have chosen 1/wi = (1/wi−1) − 1, with w1 = 1/n, although any
monotonous increasing sequence could have been used. During our evaluation, we observe
that all states i − k where k > 5 have no real significance in estimating the current state
because they are too old. So we chose n equal to 5. Then the processed state is computed
based on the following equations:

if (f (i) < 0) then processed statei = CONGESTED

if (f (i) == 0) then processed statei = LOADED

if (f (i) > 0) then processed statei = UNLOADED

Information update in Client Managers is made asynchronously, every time an RTCP report
arrives. We have chosen to completely ignore the first RTCP report since the moment a Client

ARCHITECTURE AND PERFORMANCE EVALUATION 91

joins a new stream, because we observed that this report usually contains a very high packet
loss rate value. That value is due to temporary transition load and does not reflect an actual
congestion reason. Had we taken it into account, it would force the next few processed states
to be found CONGESTED, and would therefore tend to invoke a new unwanted transition
towards a lower stream. Stream Managers update their rates synchronously and therefore
time in system operation is divided in epochs of certain length. At the end of an epoch,
each Stream Manager polls the states of all the Client Managers that correspond to a Client
receiving this stream and determines the improvement or degradation in this stream’s video
quality. Whether there will be an improvement or degradation is determined as follows: If
all Clients (the number n of the Clients can easily computed by the RTCP protocol) are in the
UNLOADED state, video quality is improved. If more than a certain threshold of Clients is
CONGESTED, video quality is degraded. In other cases, we keep the current video quality.
The threshold used for our simulations was one-second of all Clients listening to the stream.

The new bit rate is estimated using an Additive Increase, Multiplicative Decrease (AIMD)
algorithm, just like TCP. Increase is achieved by adding a standard small value to the previous
bit rate, and is therefore quite conservative in bandwidth consumption, while decrease is
achieved by multiplying the previous bit rate with a number in the range of 0. . . 1 and so
the algorithm is more aggressive when trying to react to congestion.

There are three cases in this phase that will lead to a Client’s transition towards another
stream:

• If the stream from which the Client is currently receiving video has already reached its
lowest transmitting rate and the Client is still in CONGESTED state then the Client stops
listening to this stream and joins the stream of a lower quality stream (if such a stream
exists).

• If the stream from which the Client is currently receiving video has already reached its
highest transmitting rate and the Client is still in UNLOADED state then the Client stops
listening to this stream and joins the stream of a higher quality stream (if such a stream
exists).

• The third case applies to a Client that co-exists in a stream with low capacity Clients
but is capable of handling better quality video, so it has been unable to improve the
video quality of the current stream. The mechanism used aims in making the protocol
more conservative and operates by counting the number of consecutive times the Client
was UNLOADED but failed to improve the video quality. When this number exceeds
a certain limit (for our simulations this number was set to 4 which results a minimum
of 20 seconds1 between stream change which is a time space enough in order to take a
justified decision), we assume that the Client has indeed higher capabilities and move
it to a better quality stream. Transition from one stream to another also means that the
Client’s corresponding Client Manager module will now interact with the new Stream
Manager.

We declare as unsuccessful stream change the situation when a Client joins a stream with
higher transmission rate (or a lower transmission rate) and after a sort time period (Tchange)
returns to the previous stream. During our performance evaluation, we observe that the
unsuccessful stream changes by the Clients cause instability to the operation of the proposed

92 BOURAS ET AL.

mechanism and must be avoided. In order to avoid unsuccessful stream changes by the
Clients, when a Client makes an unsuccessful stream change we avert the Client to make
the stream change, which was unsuccessful for the next 2k ∗Tchange time (where k the number
of continuant unsuccessful stream changes since the last successful stream change). Due
to fact that Tchange affects linearly the value 2k ∗ Tchange time and the k affects the value of
2k ∗ Tchange exponentially, during our evaluation we set Tchange to 20 seconds but also other
values of Tchange can be used.

We have to point out that Clients make transitions between streams synchronized at the
end of each epoch. This helps us avoid possible problems that could be caused for example
by two Clients sitting behind the same link and receiving different bit rates.

The conservatism our protocol exhibits has two advantages: (1) We successfully avoid
unnecessary stream changes through the tracking of Clients’ unsuccessful stream changes.
(2) Our protocol is TCP-friendly, because it only consumes excessive bandwidth when it is
absolutely certain that this bandwidth can be handled, and furthermore uses the conservative
AIMD algorithm.

4. Implementation issues

For the implementation of our system we used the Java Programming Language, and in
particular the Java Media Framework API [13]. Java’s object-oriented model fits our design
and JMF offers a convenient level of abstraction, which allows the developer to concentrate
on high-level issues, thus making it an ideal platform for experimental research. In particular,
JMF provides support for RTP transmission and reception of real-time media streams across
the network. It offers some very useful classes and interfaces, like the Session Manager,
that encapsulates the creation, maintenance and closing of an RTP session, the Processor
that encapsulates processing and control of time-based media data and the DataSource that
encapsulates media protocol-handlers. Our JMF-based implementation is represented by
figures 2 and 3. Figure 4 shows the Graphical User Interface of the Client.

All communication between the Server and the Clients is achieved using CORBA. This
technology allows a module written in any language that supports CORBA to be integrated
seamlessly in our system, as long as it implements a small number of functions necessary
for remote communication.

CORBA communication between the Server and the Clients also requires a third entity,
the Naming Service. It can be located on the same host as the Server or on any other host in

Figure 2. The Server operation.

ARCHITECTURE AND PERFORMANCE EVALUATION 93

Figure 3. The client operation.

Figure 4. Client’s GUI.

the network. All Clients and the Server, however, must know its location. When the Server
is initialised, it registers itself and all the Stream Managers it creates to the Naming Service
using a hierarchical representation similar to an operating system’s file structure. When a
Client is started it uses the Naming Service to request a reference to the Stream Manager it
wishes to receive data from. Every time the Client makes a transition to a different stream, it
uses the Naming Service to get a reference to the new Stream Manager. Since communication
may also be directed from the Client to the Server, during initialisation every Client also
registers itself to the Naming Service. This way the Client Manager module (which is part
of the Server entity) can locate its corresponding Client and order it to move to a different
stream whenever necessary.

These choices generally indicate our purpose for this implementation to be experiment-
and flexibility-oriented, rather than performance-oriented and therefore it can be improved
in terms of resource optimisation.

5. Performance evaluation

5.1. Performance evaluation through experiments

In order to evaluate the performance of the implemented prototype, we run three different
experiments, each with a different configuration, over a controlled networking test-bed,

94 BOURAS ET AL.

Figure 5. Experiments topology.

which we have implemented over the campus network of University of Patras in Greece.
We connect each participant (the Server and the six Clients) with connections of different
capacity to our network test-bed with the use of traffic policy on the access router of each
participant in the test-bed. Figure 5 shows the experiments topology and Table 1 shows the
experiments common parameters. Aim of the performance evaluation through experiments
was the proven of the proposed concept and the evaluation of the proper operation of the
implemented prototype. Our future work includes the detail validation of the implemented
prototype through test over the Internet with use of large participants groups.

5.1.1. First experiment: Transmission into a heterogeneous group of clients. During this
experiment we investigate the behaviour of the implemented prototype with a heterogeneous
group of Clients. Table 2 provides the first experiment configuration and results.

The behaviour of the implemented prototype was as expected, for example Client 6 and
Client 1, which share the same link with 500 Kbps capacity, join stream one, one after the
other. After some time Client 6 and Client 1 join stream two almost at the same time point
(145th second). Finally at 321st second Client 6 joins the third stream because of the high
capacity of the link (500 Kbps) that connects Client 6 to the test-bed. As figure 7 shows, All
the Clients, depending on the capacity of the link that connects them to the network test-bed,
join the appropriate stream and the Server treats all Clients with fairness. An exception is

Table 1. Experiments common parameters.

Server One Server transmitting three streams.

Clients Six Clients all initially connected in stream one.

Server stream limits Stream one 10–100 Kbps, Stream two 100–200 Kbps, Stream three 200–300 Kbps.

Server parameters a = 0.5, b = 0.8, γ = 2, LRu = 0.02, LRc = 0.05 and Tchange = 20 sec, streams
increasing transmission rate: 25 Kbps, streams decreasing transmission rate 50%.

ARCHITECTURE AND PERFORMANCE EVALUATION 95

Table 2. First experiment configuration and results.

Topology Topology of figure 5.

Duration—Scenario 360 seconds—Server initially transmits only the stream. The Clients join
the video transmission with the following order: Client 3, Client 2,
Client 4, Client 6, Client 1, Client 5.

Results In general, the behaviour of the implemented prototype was as expected.
All the Clients, depending on the capacity of the link that connects them
to the network test-bed, join the appropriate stream and the Server treats
all Clients with fairness.

Figures Figure 6 shows the transmission rates of Server streams and figure 7 shows
the reception rates of all the Clients.

Figure 6. Transmission rates of Server streams during first experiment.

the behaviour of Client 1 between the 264th second and 307th second. During the above
period, we expected that Client 1 would join stream three but Client 1 moved to stream
one. We believe that the above behaviour of Client 1 is a result of low resources in the
workstation that Client 1 was running on. The allocation of the Clients to the appropriate
stream takes some time. This is because of the conservative operation of the implemented
prototype in order to be TCP-friendly as the following experiment shows.

5.1.2. Second experiment: Transmission with background TCP traffic. In this exper-
iment, we transmit at the same time multimedia data with the use of the implemented
prototype and TCP traffic in the same link. During this experiment, we investigate the be-
haviour of the implemented prototype against TCP traffic. Table 3 shows second experiment
configuration and results.

As figure 8 shows the implemented prototype has friendly behaviour towards TCP traffic:
When the transmission of video starts, Client 5 joins stream one of the Server and TCP
traffic reduces its transmission rate due to the congestion, which takes place to the link
of Client 5. After some time Client 5 tries to join stream two with a higher transmission
rate. This action of Client 5 produces congestion to the link and Client 5 backs off and
returns to stream one in order to release bandwidth for the TCP traffic. The above described
behaviour continues until the end of the experiment. During this experiment the TCP traffic

96 BOURAS ET AL.

F
ig

ur
e

7.
C

lie
nt

s
re

ce
pt

io
n

ra
te

du
ri

ng
fir

st
ex

pe
ri

m
en

t.

ARCHITECTURE AND PERFORMANCE EVALUATION 97

Table 3. Second experiment configuration and results.

Topology The topology of figure 5, except that the capacity of the link, which connects
Client 5 with the network test-bed, has been increased to 300 Kbps.

Duration—Scenario 600 seconds—Same scenario with first experiment except that we simultaneously
transmit to the link of Client 5 TCP traffic with initial rate of 280 Kbps. (TCP
traffic was generated by the LanTrafficV2a traffic generator, configured to send
packets of 1436 bytes each (the Ethernet MTU) every 40 ms).

Results During this experiment the TCP traffic has transmission rate of more than
100 Kbps and maximum transmission rate more than 200 Kbps, which is good
performance for TCP connection.

Figures Figure 8 shows the transmission rate of TCP traffic and the reception rate of
Client 5 during the second experiment.

ahttp://www.zti.fr.

Figure 8. Transmission rate of TCP traffic and the implemented prototype.

has transmission rate of more than 100 Kbps and maximum transmission rate more than
200 Kbps, which is good performance for TCP connection.

5.1.3. Third experiment: Transmission with background UDP traffic. In this experiment,
we transmit at the same time multimedia data with the use of the implemented prototype
and UDP traffic in the same link. During this experiment, we investigate the behaviour of
the implemented prototype against heavily congested conditions, which are produced by
UDP traffic that does not implement any congestion control policy. Table 4 provides third
experiment configuration and results.

As figure 9 shows, when the experiment starts, UDP traffic occupies all the available band-
width. When the implemented prototype starts video transmission (70th second), Client 5
joins stream one of the Server and the UDP traffic reduces its transmission rate. Although
UDP traffic reduces its transmission rate, this reduction is not sufficient and the UDP traffic
continues to dominate the available bandwidth. At 204th, 262nd and 342nd seconds we
changed the parameters of the traffic generator in order to reduce the transmission rate of
UDP traffic (at the above time periods we briefly stopped the transmission rate of UDP traffic
in order to change the parameters of the traffic generator). Gradually the video transmission

98 BOURAS ET AL.

Table 4. Third experiment configuration and results.

Topology The topology of figure 5, except that the capacity of the link, which connects
Client 5 with the network test-bed, has been increased to 300 Kbps.

Duration—Scenario 420 seconds—Same scenario with first experiment except that we simultaneously
transmit to the link of Client 5 UDP traffic with initial rate of 280 Kbps. UDP
traffic began at a rate of 280 Kbps, and we later decreased it to 250, 200 and
175 Kbps. UDP traffic was generated by the LanTrafficV2 traffic generator,
configured to send packets of 1436 bytes each (the Ethernet MTU) every 40, 45,
55 and 60 ms, according to the sending rate we wanted to achieve.

Results UDP traffic dominates the link capacity due to the fact that the UDP traffic does
not use any congestion control policy.

Figures Figure 9 shows the transmission rate of UDP traffic and the reception rate of
Client 5 during the third experiment.

Figure 9. Transmission rate of UDP traffic and the implemented prototype.

reserves more bandwidth in the link but again the UDP traffic dominates the link capacity.
The above described behaviour of the implemented prototype is as expected because dur-
ing the design of the implemented prototype we focused on implementing a TCP friendly
application. The fact that the UDP traffic does not use any congestion control policy and
the implemented prototype reduces its transmission rate by 50% during congestion periods
leads to the above described behaviour. We can improve the behaviour of the implemented
prototype against UDP traffic by making the implemented prototype more aggressive into
congestion (for example by decreasing the transmission rate only by 15% during conges-
tion periods) but this will have a negative influence to the behaviour of the implemented
prototype against TCP traffic, which is not desirable.

5.2. Performance evaluation through simulations

In this section, we present a number of simulations that we made in order to analyze the
behavior of the implemented prototype during the multicast transmission of multimedia
data with the use of simulcast approach. Primary aims of the simulations were the study

ARCHITECTURE AND PERFORMANCE EVALUATION 99

Table 5. Simulations common parameters.

Server One Server transmitting three streams.

Clients Five to twenty Clients all initially connected in stream one.

Server Stream Limits Stream one: 100–600 Kbps, Stream two: 600–1100 Kbps and Stream three:
1100–1600 Kbps.

Server parameters a = 0.75, b = 0.8, γ = 2, LRu = 0.01, LRc = 0.055 and Tchange = 20 sec,
stream one increasing transmission rate: 50 Kbps, stream two increasing
transmission rate: 70 Kbps, stream three increasing transmission rate:
100 Kbps, decreasing transmission rate for all the streams: 50%.

of implemented mechanism fairness regarding the group of Clients and mechanism’s be-
havior regarding the dominant traffic model of today’s Internet (TCP and UDP traffic). We
implemented our mechanism and run simulations in the LBNL network simulator ns-2 [19].

We choose to evaluate the multicast operation of the implemented prototype through
simulation because it is not easy to implement a controlled network test bed with many
users in today’s Internet. In addition we have the opportunity to compare the operation
of the implemented prototype in a network environment and in simulation environment.
Table 5 shows the simulations common parameters.

5.2.1. First simulation: Transmission into a multicast distribution tree with shared links.
In this simulation we investigate the performance of the proposed mechanism in a hetero-
geneous multicast environment with a multicast distribution tree that is shared among the
Clients. With this approach, we investigate the behavior of the proposed mechanism, when
the actions of one Client affect other Clients. Table 6 provides first simulation configuration
and results.

Each router (n2, n3, n4) of the simulation topology is shared between the Server streams
and an uncorrelated background traffic, which consumes maximally the 50% of the router
capacity. In order to produce the uncorrelated background traffic, we use a traffic generator
with active and idle periods. During the active periods the transmission rate of the traffic

Table 6. First simulation configuration and results.

Topology Topology of figure 10: one Server (S), which transmits multimedia data to a
group of 5 Clients (C1-C5). The routers of simulation topology are using the
drop-taila (FIFO) policy.

Duration—Scenario 1000 seconds—Server starts transmitting the stream one with transmission rate
100 Kbps, the stream two with transmission rate 600 Kbps and the stream
three with transmission rate 1100 Kbps. Clients join randomly the stream
one during the first 3 seconds of the simulation.

Results After some seconds each Client joins the stream, which we expect and receives
also a bandwidth share close to the bandwidth share, which we expect.

Figures Figure 11 shows the bandwidth share of the Clients 1 to 5 and figure 12 shows
the stream changes of the Clients 1 to 5.

aDrop-tail is the most common queue policy to Internet routers.

100 BOURAS ET AL.

Figure 10. Simulation topology of first simulation.

generator follows a Pareto distribution with a scale factor of 1.1 and a mean of 20 packets.
Active transfer phases are then followed by idle periods drawn by a Pareto distribution with
a scale factor of 1.8 and a mean 0.5 seconds. As [23] suggests the above traffic generator
models background web traffic.

With the above simulation topology, we expect that Client 1 will receive the stream three
of the Server, Client 2 and Client 4 will receive the stream two of the Server and Client 3 and
Client 5 will receive the stream one of the Server. Moreover the Clients, which we expect
to receive the same Server stream, are connected to the Server through paths with different
RTT delays and in addition the actions of some Client affect the bandwidth share of other
Client (for example the actions of Client 4 affects the bandwidth share of Client 5).

As figures 11 and 12 suggest after some seconds each Client joins the stream, which
we expect and receives also a bandwidth share close to the bandwidth share, which we
expect. The Clients after some unsuccessful stream changes have join the Server stream
which fulfills better their capabilities and stay at that stream until the end of the simulation
(due to the tracing of unsuccessful stream changes that the proposed mechanism offers).
In addition, due to the synchronization of stream changes the undesirable problems are
minimal and in general the Clients actions does affect the bandwidth shares of the other
Clients.

5.2.2. Second simulation: Transmission into a heterogeneous group of clients. In this
simulation we investigate the behavior of the implemented mechanism and its capability to
treat with fairness a bigger heterogeneous group of Clients during the multicast transmission
of multimedia data. Table 7 provides second simulation configuration and results.

As the above figures show the operation of the implemented prototype is as expected: The
Server streams most of the simulation time have their maximum transmission rate because

ARCHITECTURE AND PERFORMANCE EVALUATION 101

Table 7. Second simulation information.

Topology Topology of figure 13: one Server (S), which transmits multimedia data to a group of
20 Clients (C1 to C20). The routers of simulation topology are using the drop-tail
(FIFO) policy. The Clients can be divided in to three categories: (1) High capacity
Clients with 1.7 Mbps available bandwidth, (2) Medium capacity Clients with 1.2
Mbps available bandwidth and (3) Low capacity Clients with 0.7 Mbps available
bandwidth.

Duration—Scenario 300 seconds—Server starts transmitting the stream one with transmission rate
100 Kbps, the stream two with transmission rate 600 Kbps and the stream three
with transmission rate 1100 Kbps. Clients join randomly the stream one during the
first 10 seconds of the simulation.

Results Clients after some seconds have joined the stream that better fulfils their capabilities.

Figures Figure 14 shows the transmission rates of Server streams and figure 15 show the
bandwidth of three representative Clients during the second simulation.

Figure 11. Bandwidth shares of Client 1 to Client 5 during first simulation.

Figure 12. Stream changes of Client 1 to Client 5 during first simulation.

102 BOURAS ET AL.

Figure 13. Simulation topology of second, third and fourth simulation.

Figure 14. Server streams transmission rates during second simulation.

Figure 15. Clients bandwidth during second simulation.

the simulation topology does not have any bottleneck link and the Clients join the stream
that better fulfils their capability. When a Client tries to join a steam with either a higher or
a lower bandwidth than its available bandwidth, it returns to the initial stream after some
seconds.

ARCHITECTURE AND PERFORMANCE EVALUATION 103

Figure 16. Server streams and TCP traffic transmission rates during third simulation.

5.2.3. Third simulation: Transmission with background TCP traffic. In this simulation,
we multicast transmit at the same time multimedia data with the use of the implemented
mechanism and TCP traffic. During this simulation, we investigate the behavior of the
implemented mechanism against TCP traffic. In order to produce TCP traffic, we connect
to node A and B of the simulation topology of figure 13, an FTP server and an FTP client
respectively. The FTP server transmits a file to the FTP client using “4.3BSD Tahoe TCP”
protocol [30]. The transmission of the file from the FTP server to the FTP client, starts at the
100th second and stops at the 200th second. Table 8 provides third simulation configuration
and results.

As figure 16 shows, the Server streams start from their minimum transmission rate and
increase their transmission rates while Clients join them. When the transmission of TCP
source starts (at the 100th second), congestion occurs to links between the router n1, n2 and
between router n2, n3 and the Server releases bandwidth so that the TCP traffic can use it.
When the transmission of the TCP traffic takes place, the Server releases some bandwidth
(about 0.5 Mbps) for a while and reserves it again.

As figure 17 show the Clients after some seconds have joined the stream that better fulfils
their capabilities. When the transmission of TCP takes place most of the Clients do not
change stream and keep receiving the same stream with reduced transmission rate due to
the congestion condition.

Table 8. Third simulation configuration and results.

Topology Topology of figure 13 (same with second simulation) except that we have set the
bandwidth of links n1-n2 and n2-n3 to 3.3 Mbps.

Duration—Scenario 300 seconds—Same scenario with second simulation except that we transmit of TCP
traffic from 100th second to 200th second between node A and B.

Results Clients after some seconds have joined the stream that better fulfils their capabilities.
TCP traffic has transmission rate of more than 0.4 Mbps many times and maximum
transmission rate of 1.2 Mbps during the simulation, which is good performance for
TCP transmission.

Figures Figure 16 shows the transmission rates of Server streams and the TCP traffic and
figure 17 show the bandwidth of three representative Clients during third simulation.

104 BOURAS ET AL.

Figure 17. Clients bandwidth during third simulation.

It is obvious from figure 16 that the behavior of our mechanism to TCP traffic is friendly.
The TCP traffic has transmission rate of more than 0.4 Mbps many times and maximum
transmission rate of 1.2 Mbps during the simulation, which is good performance for TCP
transmission. The Server has the following drawback: The Server’s transmission rate during
the transmission of TCP traffic is not stable. The Server would have ideal behavior if it
reduced its transmission rate and kept it steady while the transmission of TCP traffic took
place.

5.2.4. Fourth simulation: Transmission with background UDP traffic. In this simulation,
we multicast transmit at the same time multimedia data with the use of the implemented
mechanism and UDP traffic. During this simulation, we investigate the behavior of the
implemented mechanism during network congestion produced by a greedy UDP traffic.
In order to produce UDP traffic, we attach to node A of the simulation topology, a CBR
(Constant Bit Rate) traffic generator (CBR-Source), which transmits data to a CBR-Receiver
attached to node B of the simulation topology. The CBR-Source produces UDP traffic with
constant transmission rate of 2.5 Mbps. The CBR-Source starts the transmission of data at
100th second, and stops the transmission of data at 200th second. Table 9 provides fourth
simulation configuration and results.

Table 9. Forth simulation configuration and results.

Topology Topology of figure 13 (same with second simulation).

Duration—Scenario 300 seconds—Same scenario with second simulation except that we transmit
UDP traffic from 100th second to 200th second between node A and B.

Results When the transmission of UDP takes place, most of the Clients change stream
and start receiving the stream with smaller transmission rate due to the
congestion condition. When the transmission of UDP traffic stops (200th
second), the Server gradually reserves again the available bandwidth.

Figures Figure18 shows the transmission rates of Server streams and the TCP traffic
and figure 19 the show the bandwidth of three representative Clients during
fourth simulation.

ARCHITECTURE AND PERFORMANCE EVALUATION 105

Figure 18. Server streams and UDP traffic transmission rates during fourth simulation.

As figure 18 shows, the Server streams start from their minimum transmission rate and
increase their transmission rates while Clients join in. When the transmission of UDP traffic
starts (at 100th second), congestion occurs to links between the router n1, n2 and between
router n2, n3. The Clients prefer smaller transmission rates due to congestion condition,
and the Server reduces its transmission rate near to 0.5 Mbps and keeps this transmission
rate for the next 100 seconds (except from 170th second to 190th second, when the Server
releases 1.0 Mbps), during which the transmission of UDP traffic takes place. When the
transmission of UDP traffic stops (200th second), the Server gradually reserves again the
available bandwidth.

As figure 19 shows, the Clients after some seconds have joined the stream that better
fulfils their capabilities. When the transmission of CBR takes place, most of the Clients
change stream and start receiving the stream with smaller transmission rate due to the
congestion condition.

It is obvious from figure 18 that the proposed mechanism reduces the transmitting rate
to the “maximum possible”, meaning that it occupies only the bandwidth left by the UDP
traffic. This is explained by the fact that our protocol implements an adaptation mechanism
while UDP does not.

Figure 19. Bandwidth of high capacity Client during fourth simulation.

106 BOURAS ET AL.

5.3. Comparison of simulation and experimental results

In outline, the proposed mechanism has similar behavior both in the simulation environment
and in the real network environment. In both cases the proposed mechanism behaves the
same against TCP traffic and heavy network congestion produced by greedy UDP traffic.
We notice the following differences in the behavior of the proposed mechanism between
the simulation environment and the real network environment:

• The transmission rate of the Server is not so stable in the real network environment as it
is in the simulation environment.

• The Server needs more time to find the streams’ transmission rates that most satisfy
the heterogeneous group of Clients in the real network environment comparing with the
simulation environment.

The above differences derive from the following facts:

• During the simulation, we assume that the encoder of the Server has the capability to
produce any transmission rate that the proposed mechanism suggests. This is not true
during the experiments in a real network environment due to the fact that depending on the
used compression scheme and the data content, the encoder might only be able to change
its transmission rate in steps. When the proposed mechanism suggests a new transmission
rate and the encoder cannot produce it, this causes instability to the operation of the
proposed mechanism. This is the reason why during the experiments in a real network
environment the transmission rate of the Server is not stable.

• During the simulation, we assume that the CPU of the Server is powerful enough to
encode all the transmitted streams. This is not always true during the experiments in a
real network environment. Many times the CPU can be overloaded, which has as result
the instability of the Server operation. Due to this instability, the Server cannot keep
the transmission rate that the proposed mechanism suggests. This leads to the above
described behavior of the Server.

In order to avoid the above described undesirable behavior of the proposed mechanism
during the experiments in a real network environment, we have to take into account the
following constrains that the multimedia communication over the Internet has:

• Fixed limits: The quality of a multimedia stream can usually be improved by increasing the
bandwidth share of the stream. However, above a certain limit no noticeable improvements
in the quality will be observed anymore.

• Granular adaptation: Depending on the used compression scheme and data content, a
data source might only be able to change its transmission rate in steps.

• Stable presentation: To provide the user with a stable perceived quality, the adaptation
mechanism needs to limit the maximum changes as well the rate of changes in the
transmission rate of a multimedia stream.

• Loss tolerance: Depending on the transferred content, the user and the used compression
scheme, some data losses might be tolerated during a multimedia communication.

ARCHITECTURE AND PERFORMANCE EVALUATION 107

6. Conclusion—Future work

In this paper, we present the architecture of a prototype for multicast transmission of adaptive
multimedia data in a heterogeneous group of Clients with the use of replicated streams.
We concentrate on the design of a mechanism for monitoring the network condition and
estimate the appropriate rate for the transmission of the multimedia data in each stream in
order to allocate each Client to the appropriate stream and treat the Clients with fairness.
Moreover we implement a TCP-friendly application. We investigate the behaviour of the
implemented prototype through a number of experiments and a number of simulations.
Our future work includes the validation of the implemented prototype by using it for the
multicast transmission of multimedia data in a heterogeneous group of Clients in the Internet.
In addition we will perform a detailed validation of the implemented prototype through
test over the Internet with use of large participants groups. Moreover, we will investigate
the benefits of dynamically adding more streams instead of the static number of streams
(specified during initialisation) that the implemented prototype supports now. Finally we
intend to enhance the implementation by adding a mechanism in order to dynamically
choose and modify the parameters that regulate the aggressiveness of the adaptation.

Note

1. The minimum RTCP retransmission timeout is 5 sec [26].

References

1. J. Bolot, T. Turletti, and I. Wakeman, “Scalable feedback control for multicast video distribution in the
internet,” in Proceedings of SIGCOMM 1994, London, England, ACM SIGCOMM, Aug. 1994, pp. 139–
146.

2. Ch. Bouras and A. Gkamas, “Streaming multimedia data with adaptive QoS characteristics,” in Protocols for
Multimedia Systems 2000, Cracow, Poland, Oct. 22–25, 2000, pp. 129–139.

3. Ch. Bouras, A. Gkamas, A. Karaliotas, and K. Stamos, “Architecture and performance evaluation for redundant
multicast transmission supporting adaptive QoS,” in 9th International Conference on Software, Telecommu-
nications and Computer Networks (SoftCom 2001) Split, Dubrovnik(Croatia), Ancona, Bari (Italy), Vol. II,
Oct. 09-12 2001, pp. 585–592.

4. Ch. Bouras, A. Gkamas, A. Karaliotas, and K. Stamos, “An architecture for redundant multicast transmission
supporting adaptive QoS,” 7th International Workshop on Multimedia Systems, Capri, Italy, Nov. 7–9, 2001,
pp. 133–142.

5. R. Braden, D. Clark, and S. Shenker, “Integrated services in the internet architecture: An overview,” RFC
1633.

6. J. Byers, M. Frumin, G. Horn, M. Luby, M. Mitzenmacher, A. Roetter, and W. Shaver, “FLID-DL: Congestion
control for layered multicast,” in Proceedings of NGC 2000, Nov. 2000, pp. 71–81.

7. S. Cen, C. Pu, and J. Walpole, “Flow and congestion control for internet media streaming applications,” in
Proceedings of Multimedia Computing and Networking, 1998.

8. Y. Chang, C. Li, and D.G. Messerschmitt, “Adapting network video to multi-time scale bandwidth fluctua-
tions,” in Proceedings 2000 IEEE International Conference on Multimedia and Expo, New York, NY, USA,
July 2–August 2000.

9. S. Cheung, M.H. Ammar, and X. Li, “On the use of destination set grouping to improve fariness in multicast
video distribution,” INFOCOM 1996: 553–560, March 24–28, 1996, San Francisco, California.

10. S. Deering and R. Hinden, Internet Protocol, Version 6 (IPv6) Specification, RFC 2460.

108 BOURAS ET AL.

11. C. Diot, “On QoS & traffic engineering and SLS-related work by sprint,” in workshop on Internet Design for
SLS Delivery, Tulip Inn Tropen, Amsterdam, The Netherlands, 25–26 Jan. 2001.

12. S. Floyd and K. Fall, “Promoting the use of end-to-end congestion control in the internet,” IEEE/ACM
Transactions on Networking, 1998, Submitted.

13. Java Media Framework: http://java.sun.com/products/java-media/jmf/index.html.
14. T. Jiang, M.H. Ammar, and E.W. Zegura, “Inter-receiver fairness: A novel performance measure for multicast

ABR sessions,” SIGMETRICS 1998, pp. 202–211.
15. T. Jiang, E.W. Zegura, and M. Ammar, “Inter-receiver fair multicast communication over the internet,” in

Proceedings of the 9th International Workshopon Network and Operating Systems Support for Digital Audio
and Video (NOSSDAV), June 1999, pp. 103–114.

16. T. Kim and M.H. Ammar, “A comparison of layering and stream replication video multicast schemes,” in
Proc. NOSSDAV’01, Port Jefferson, NY, June 25–26, 2001.

17. X. Li, M. Ammar, and S. Paul “Video multicast over the internet,” IEEE Network Magazine, April 1999.
18. S. McCanne and S. Floyd, “The UCB/LBNL network simulator,” Software Online.

http://www.isi.edu/nsnam/ns/
19. S. McCanne and V. Jacobson, “Receiver-driven layered multicast,” 1996 ACM Sigcomm Conference,

Aug. 1996, pp. 117–130.
20. P. Mundur, A. Sood, and R. Simon, “Network delay Jitter and client buffer requirements in distributed

video-on-demand systems,” Department of Computer Science George Mason University Fairfax, VA
22030.

21. K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the differentiated services field (DS field) in the
IPv4 and IPv6 Headers,” RFC 2474.

22. J. Pandhye, J. Kurose, D. Towsley, and R. Koodli, “A model based TCP-friendly rate control protocol,” in Proc.
International Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV),
Basking Ridge, NJ, June 1999.

23. K. Park, G. Kim, and M. Crovella, “On the relationship between file sizes, transport protocols, and self-
similar network traffic,” in Proceedings of the International Conference on Network Protocols, Oct. 1996,
pp. 171–180.

24. L. Rizzo, “pgmcc: A TCP-friendly single-rate multicast congestion control scheme,” in Proceedings of SIG-
COMM’2000, Stockholm, Aug. 2000.

25. H. Schulzrinne and S. Casner, “RTP profile for audio and video conferences with minimal control,” RFC
3551, IETF, July 2003.

26. H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A transport protocol for real-time applica-
tions,” RFC 3550, IETF, July 2003.

27. D. Sisalem, “Fairness of adaptive multimedia applications,” in ICC ’98. 1998 IEEE International Conference
on Communications. Conference Record. Affiliated with SUPERCOMM’98 IEEE, 1998, pp. 891-5, Vol. 2.
3 Vol. xxxvii+1838 pp.

28. D. Sisalem and A. Wolisz, “LDA+ TCP-friendly adaptation: A measurement and comparison study,” in
the 10th International Workshop on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV’2000), Chapel Hill, NC, USA, June 25–28, 2000.

29. H. Smith, M. Mutka, and D. Rover, “A feedback based rate control algorithm for multicast transmitted video
vonferencing,” Journal of High Speed Networks, Accepted.

30. M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,” RFC 2581, April 1999.
31. B.J. Vickers, C.V.N. Albuquerque, and T. Suda, “Adaptive multicast of multi-layered video: Rate-based and

creditBased approaches,” in Proc. of IEEE Infocom, March 1998.
32. J. Walpole, R. Koster, S. Cen, C. Cowan, D. Maier, D. McNamee, C. Pu, D. Steere, and L. Yu, “A player

for adaptive mpeg video streaming over the internet,” in Proceedings of the 26th Applied Imagery Pattern
Recognition Workshop AIPR-97, SPIE, Washington, DC, Oct. 1997.

33. J. Widmer and M. Handley, “Extending equation-based congestion control to multicast applications,” in Proc.
ACM SIGCOMM, San Diego, CA, Aug. 2001.

ARCHITECTURE AND PERFORMANCE EVALUATION 109

Christos Bouras obtained his Diploma and Ph.D. from the Computer Science and Engineering Department of
Patras University (Greece). He is currently an Associate Professor in the above department. Also he is a scientific
advisor of Research Unit 6 in Research Academic Computer Technology Institute (CTI), Patras, Greece. His
research interests include Analysis of Performance of Networking and Computer Systems, Computer Networks
and Protocols, Telematics and New Services, QoS and Pricing for Networks and Services, e-Learning Networked
Virtual Environments and WWW Issues.

Apostolos Gkamas obtained his Diploma, Master Degree and Ph.D. from the Computer Engineering and Infor-
matics Department of Patras University (Greece). He is currently an R&D Computer Engineer at the Research
Unit 6 of the Computer Technology Institute, Patras, Greece. His research interests include Computer Networks,
Telematics, Distributed Systems, Multimedia and Hypermedia.

Anastasios Karaliotas obtained his Diploma and Master Degree from the Computer Engineering and Informatics
Department of Patras University (Greece). He works in the Network Technologies Sector of Research Academic
Computer Technology Institute (CTI) since November 1999. His research interests are focused on the design,
implementation and operation of computer networks.

110 BOURAS ET AL.

Kostas Stamos obtained his Diploma and Master Degree from the Computer Engineering and Informatics Depart-
ment of Patras University (Greece). He has worked for the Networking Technologies Sector of Research Academic
Computer Technology Institute (CTI), Patras, Greece from the end of 1999 until December 2000. Since July 2001
he works with Research Unit 6 of CTI.

