

From IPv4 to IPv6: The Case of OpenH323 Library

Ch. Bouras1,2 A. Gkamas1,2 K. Stamos1,2
1Research Academic Computer Technology Institute, Riga Feraiou 61, GR-26221 Patras, Greece

2Computer Engineering and Informatics Dept., Univ. of Patras, GR-26500 Patras, Greece
Tel:+30-(0)610-{960375, 960355, 960316 }
Fax:+30-(0)610-{996314, 960358, 960358}

e-mail: {bouras, gkamas, stamos}@cti.gr

Abstract
In this paper, we discuss our experience form porting

the OpenH323 platform to IPv6. We briefly discuss the
structure of the platform, and we present the various
problems we faced and choices we made, regarding the
easiest approach to the porting procedure, the
compatibility with earlier, IPv4-only versions of the
platform, the existence of tools that could aid us with the
porting task and the verification of result. We believe
that the results of our effort can serve as guidelines for
other similar projects and we present a general
methodology which might be applicable to similar
porting projects.

1. Introduction
The new version of IP, IPv6 [1], constitutes an effort

to overcome the inborn limitations of IPv4, in order for
the new protocol be able to respond to the new needs as
they shape today in the Internet. However, the transition
phase from IPv4 to IPv6 constitutes the main reason for
the relative slow adoption of the new Internet Protocol: a
lot of companies and network administrators are
reluctant, facing what they perceive as a great challenge
with large costs. Unfortunately, the vast majority of
network applications in existence today presume the use
of the IPv4 protocol, so a transition to IPv6 will have to
be accompanied by the development of new applications
and/or the modification of the existing ones, so that they
can be used in IPv6 environments.

The problem of porting existing applications to IPv6
has been so far addressed by several researchers. A white
paper by Microsoft [8] focuses on Windows
applications, but at the same time offers some general
guidelines that apply to any application for any operating

system. In [9], the authors emphasize more on some
general knowledge that a programmer must acquire
before dealing with the problem of porting applications
to IPv6, than on presenting step-by-step instructions.
Furthermore, a number of research projects (6NET [12],
Euro6IX [17], 6INIT [15], KAME [16]) are actively
investigating the migration effort and the benefits from
IPv6, and have shared or are going to share their
valuable experiences. CTI (Research Academic
Computer Technology Institute) is one of the
participants of the 6NET project, and this work was
partially supported by the 6NET project [12].

This rest of the paper is organised as follows: Section
2 gives a brief overview of the OpenH323 project
structure. Section 3 presents the different ways of
approaching the porting task. Section 4 summarizes the
methodology we have followed during our porting
efforts. Section 5 presents in detail the most significant
modifications that had to be made to the source code.
Section 6 addresses the problem of verifying when
porting is correctly completed. In Section 7 we present
our future work and in Section 8 our conclusions.

2. Structure of the OpenH323 library
The OpenH323 project [3] started in September 1998

by Equivalence Pty Ltd, a private company based in
Australia, and its code is distributed under the MPL
(Mozilla Public license). It develops a central library, the
open source OpenH323 library, which can be used for
the rapid development of applications that wish to use
the H.323 protocol [4] for multimedia communications
over packet-based networks. It is written in C++, and
currently contains nearly 100 classes in over 350.000
lines of source code. There are classes that represent an
H323 connection, various types of H323 channels,
gatekeeper and transport protocols.

Internally, when the OpenH323 classes want to use
an operating system mechanism, they make calls to

another open source library called PWLib. PWLib has
also been developed by Equivalence Pty Ltd and is
licensed under the MPL. It contains classes that
encapsulate I/O, GUI, multi-threading and networking
functionality, and also classes that represent basic
“container” classes such as arrays, linear lists, sorted lists
(RB Tree) and dictionaries (hash tables). Being such a
general-purpose library results in a source code base of
over 300 classes and almost 150.000 source code lines.
The goal of the PWLib library is, by providing the
necessary operating system abstractions, to support
applications that can run both on Microsoft Windows
and Unix systems, without modifying the source code.

The applications that have been developed on top of
the OpenH323 library include a command line H.323
client, an H.323 videoconferencing server (MCU), H.323
answering machine, H.323 gatekeeper, H.323 to PSTN
and fax modem to T.38 gateways, and GnomeMeeting, a
graphical H.323 client for Unix.

The above interactions can be seen in Figure 1.
Applications

(videoconferencing client, MCU, gatekeeper,
answering machine,...)

PWLib library
(PSocket, PChannel, PProcess, PThread,

PSound, ...)

OpenH323 library
(H323Endpoint, H323Transport,
H323Listener, H323Connection,

H323Channel, ...)

Unix facilities
(sockets, I/O, GUI,

threads)

MS Windows
facilities

(sockets, I/O, GUI,
threads)

Figure 1 Relationship of the OpenH323 and
PWLib libraries

3. Backwards compatibility with IPv4
Whenever an application has to be made IPv6 aware,

there are a number of choices over the way that this can
be achieved. For the vast majority of applications,
backwards compatibility with IPv4 will be needed, since
there is going to be a long period of transition from IPv4
to IPv6. The alternatives for the porting task can be
categorized as below:

• Two source code bases, two binaries (IPv4-
dependent and IPv6-dependent binaries)

• Single source code base, two binaries (IPv4-
dependent and IPv6-dependent binaries)

• Single source code base, single binary (IP version
agnostic binary)

The simplest approach is to create a totally new
version of the application that only works with IPv6.
Another similar approach would be to incorporate the
necessary changes in the same source file with the
original IPv4-only version using preprocessor directives
that will build either an IPv6-compatible binary version,
or the original IPv4-only version. The crucial benefit
over the previous approach is that there is only one code
base to maintain. The third approach is to substitute the
IP protocol dependent parts with IP Version-Agnostic
source code, thus making the application capable of
handling any type of IP protocol (IPv4 and IPv6). This
approach eliminates the complexities of having two
source code bases or two different binaries, but it
requires the most extensive modifications in the source
code and probably in the program’s logic. Our opinion is
that for large projects a more gradual approach might be
more appropriate, always depending on the needs that
drive a porting effort. Therefore, in our case we began by
porting the project to IPv6-dependent code. The benefit
is that such an initial approach is easier to carry out,
requires less modification and intervention in already-
tested source code and reveals all the dependencies of
the source code. With the experience gained, the porting
can then be extended in order to make the application in
question IP protocol independent.

4. Methodology
Below we present in a step-by-step fashion the

methodology that we used during out porting efforts. It is
intended as a guideline for similar projects that deal with
porting a similarly large library to IPv6:
• Study and understand the source code, highlighting

the points where a change in the program’s logic is
probably necessary.

• Parse the source code with an automatic tool like
Checkv4.exe [5].

• Modify the source code lines reported by the
automatic tool, which are probably going to be
rather straightforward.

• Make any other necessary modifications in more
subtle places not reported by the automatic tool.

• Test and debug the code, correcting any issues that
arise.

• Verify completeness of porting effort.
The first step is to thoroughly read and understand

the source code in order to become familiar with the
overall structure and techniques used. The special

characteristics of the specific project will determine the
most appropriate approach to the porting task. For the
initial phases of the porting, an automatic tool that parses
the source code and reports the source code lines that
contain IPv4-dependent code can prove very useful.
Such a tool searches for patterns that are generally
recognized as potential points that need modification, but
in most cases there is still work to be done by the
programmer after the lines suggested by the automatic
tool have been modified. This phase depends greatly to
the extent and the structure of the networking code, and
the degree to which IPv4-dependent logic is scattered
within the source code. It is very likely that some
indirect IPv4 dependencies will be discovered through
trial and error, and revisiting parts of the code that were
not immediately obvious that had to be modified, will be
necessary. The last step is the verification of the porting
effort. The programmer has to determine a number of
test programs that make use of all the affected
functionality and verify their correct operation, before
porting can be considered completed.

5. Necessary modifications
In order to port the OpenH323 project we followed

the methodology described in Section 4. There are a
number of quite straightforward modifications that we
had to carry out during the porting of the OpenH323
project to IPv6. The most important are:
• Changing data structures that encapsulate IP

addresses, and that have to be sufficiently enlarged.
• Replacing IPv4 constants like INADDR_ANY and

AF_INET with their IPv6 counterparts.
• Replacing function calls that are IPv4 specific with

their IPv6-capable counterparts.
• Replacing hard-coded IPv4 addresses with IPv6

addresses, or eliminate them altogether by properly
modifying the source code.

• Replace any IPv4-only options with their IPv6
counterparts or delete the corresponding
functionality altogether.

Because of the huge size of the code base of the
OpenH323 and PWLib libraries, we used the automated
Checkv4.exe tool by Microsoft [5], in order to trace
down the most obvious IP protocol dependent points in
the source code.

After these two phases of the porting effort had been
successfully completed, we started testing the code base
in an IPv6 environment, in order to verify the correctness
and completeness of our porting work. Unfortunately,
the vast majority of network applications used today
contain many hidden indirect IPv4 dependencies. which
make porting a challenging undertaking.

This phase of testing and debugging was the longest
and most difficult to complete. There are two kinds of

issues that introduce difficulties for the porting effort:
isolating the classes and functions that have to be
modified, and the fact that some of the indirect
dependencies might be scattered or affect large portions
of the source code.

The most important problems that were revealed
during the porting of the OpenH323 project that required
changes in the logic of the source code and could not be
easily identified from the beginning were the following:
• There were many parts in the code where the IP

address was indirectly assumed to have a 4-byte
length. This included the size of arrays, the number
of repetitions for loops and the variables used. This
was by far the most time-consuming part of the
modification phase.

• The socket API implementations of Linux and
Windows are not fully compatible. Furthermore, the
Windows IPv6 stack we used, which was included
in the Microsoft IPv6 Technology Preview for
Windows 2000 did not support some of features
described in RFC 2553 [2] and has a small number
of other differences, that required special handling
in order to maintain the compatibility of the
platform with both operating systems.

• A common phenomenon in network applications is
the difference between various computer
architectures in the order they store 2-byte values.
(little endian or big endian). This difference caused
some implications in the way IPv6 addresses were
stored and manipulated that did not appear with the
4-byte IPv4 addresses, since IPv6 addresses
comprise of 8 2-byte fields.

• The size of the source code base (around half a
million lines for both PWLib and OpenH323) is
obviously a factor that makes the engagement with
the project a challenging task.

6. Verifying porting completion
A problem that quickly arose during our efforts to

port such a large project as OpenH323 to the IPv6
protocol was how to verify that our work had been
completed successfully and correctly. In smaller, single-
purpose applications (and not libraries) this is probably
not an issue, because the range of functionality that has
to be tested is relatively small. The OpenH323 library,
however, is a large library that can support a number of
independent applications. Moreover, since the
OpenH323 library makes use of the facilities offered by
the even larger PWLib library, this library also had to be
included in our porting efforts. We had therefore to
inspect and often modify a large number of classes and
functions. They could not be possibly tested using just a
single application, and we extended the porting to
include a wide range of OpenH323-based applications.

Because most of these applications use the advanced
functionalities offered by the central library, they only
have to deal with high-level issues and the IP
dependencies are hidden for the applications inside the
library. This means that most of the modifications in the
applications’ source code were relatively small and only
had to do with hard-coded IPv4 addresses.

In general, there are a number of testing strategies
that we followed:
• High-level testing: This testing strategy emphasizes

on testing applications that use a wide range of
functionality from the supporting libraries, and can
therefore reveal the way different parts of the system
interoperate.

• Low-level testing: The opposite approach is to try
and isolate specific classes and methods and try to
test their behavior by using simple test applications
with limited functionality.

• Comparative (back-to-back) testing: This strategy
can be used when different versions of the same
system are available (as was our case, with an IPv4-
only version, and an IPv6-enabled version). The two
versions can be tested together and their operation
can be compared.

For our purposes, we used a combination of the three
techniques outlined above, with emphasis on the third
one (back-to-back testing). The fact that our goal was to
modify an already functioning system meant that back-
to-back testing was very important, both in determining
whether an application operated as should be expected,
and in tracing down the point in execution where an
error appeared.

In order to verify the completeness of the porting, we
had to define a set of applications that would make use
of all the affected functionality inside the libraries. The
already developed applications were initially used,
because they cover a very wide spectrum of the
OpenH323 library functionality. We compared the
operation of these applications using the original IPv4-
only libraries with the same applications (with any
necessary modifications) using the IPv6-enabled
libraries. In order to make the comparison we recorded
debugging information from the modified and
unmodified versions into files.

The most challenging part was testing the PWLib
library. Although many parts of its functionality were
left totally unchanged, the wide range of functions
offered by the heavily modified classes meant that we
had to test those classes in many varying contexts. High-
level testing was unable in this case to include every
aspect of the affected functionality, so we were primarily
based on comparative testing and low-level inspection of
the modified classes and methods.

7. Future work
In our future work, we intend to investigate the

benefits that applications in general and the OpenH323
platform in particular can gain from the adoption of the
IPv6 protocol, and its enhancements over IPv4.
Furthermore, we intend to validate the feasibility of a
version of the library that will be able to fully operate
over both IPv4 and IPv6, and compare the different
approaches to such a goal (two compiled versions, one
version that differentiates on run-time, etc.).

8. Conclusions
The experience we gained from our efforts shows

that porting applications to IPv6 will play a crucial role
to the further adoption of the new Internet Protocol.
While for many applications porting is going to be
straightforward, for projects like OpenH323 that have
developed a large code base with low-level functionality
a lot more effort is going to be required. The further
development of automatic tools is essential, and will
probably have to be directed in two ways: supporting
more languages than C\C++ in order to be useful for
more programmers, and becoming more intelligent in
helping the programmer with more subtle issues.

9. References
[1] Internet Protocol, Version 6 (IPv6) Specification - RFC

2460
[2] Basic Socket Interface Extensions for IPv6 – RFC 2553
[3] OpenH323 project, http://www.openh323.org
[4] Packetizer, H323 information site,

http://www.packetizer.com/iptel/h323/
[5] Microsoft IPv6 Technology Preview for Windows 2000,

http://msdn.microsoft.com/downloads/sdks/platform/tpipv
6.asp

[6] Compaq IPv6 Porting Assistant,
http://www.tru64unix.compaq.com/internet/ipv6portingass
istant/

[7] Solaris IPv6, http://wwws.sun.com/software/solaris/ipv6/
[8] “Adding IPv6 capability to Windows Socket

Applications”, Microsoft Corporation
[9] “Porting Networking Applications to the IPv6 APIs”, Sun

Microsystems
[10] “Network Programming, Volume 1”, 2nd Edition, W.

Richard Stevens
[11] Guide to DIGITAL UNIX IPv6, http://www.ipv6.zk3-

x.dec.com/userguide/TITLE.HTM
[12] 6NET project, http://www.sixnet.org
[13] CTI/RU6 OpenH323 porting project,

http://ouranos.ceid.upatras.gr/openh323/
[14] Application Aspects of IPv6 Transition,

http://www.ietf.org/internet-drafts/draft-shin-ngtrans-
application-transition-01.txt

[15] 6INIT project, http://www.6init.org/presentations.html
[16] KAME project, http://www.kame.net/
[17] Euro6IX project, http://www.euro6ix.net

http://www.openh323.org/
http://www.packetizer.com/iptel/h323/
http://msdn.microsoft.com/downloads/sdks/platform/tpipv6.asp
http://msdn.microsoft.com/downloads/sdks/platform/tpipv6.asp
http://www.tru64unix.compaq.com/internet/ipv6portingassistant/
http://www.tru64unix.compaq.com/internet/ipv6portingassistant/
http://wwws.sun.com/software/solaris/ipv6/
http://www.ipv6.zk3-x.dec.com/userguide/TITLE.HTM
http://www.ipv6.zk3-x.dec.com/userguide/TITLE.HTM
http://www.sixnet.org/
http://ouranos.ceid.upatras.gr/openh323/
http://www.ietf.org/internet-drafts/draft-shin-ngtrans-application-transition-01.txt
http://www.ietf.org/internet-drafts/draft-shin-ngtrans-application-transition-01.txt
http://www.6init.org/presentations.html
http://www.kame.net/
http://www.euro6ix.net/

	Introduction
	Structure of the OpenH323 library
	Backwards compatibility with IPv4
	Methodology
	Necessary modifications
	Verifying porting completion
	Future work
	Conclusions
	References

