
 Abstract

In our days the Web has become a large
repository of information. This information is constantly
updated and altered. In this work we describe a software
architecture that has been used to implement a tool that
may potentially aid individual Web users but also
groups of users, to upgrade their browsing sessions and
make these sessions more productive. The software that
is presented here, uses documented and widely accepted
techniques to improve users’ browsing sessions. It also
utilizes new experimental and emerging techniques. The
software can be used in various client/server
configurations. We present the software modules and
their configuration, as well as the interaction that is
carried out between them.

1 INTRODUCTION

The Web has become the largest repository of
information known to man. The information is growing
exponentially and the information acquiring process has
become very complex. Not all information is useful to
all users on the Web. Specific users have specific
information needs, especially the users that use the Web
as a working tool. This need can help users in acquiring
the information they truly can use, as quickly and
efficiently as possible.

A lot of research has been put in the field of
browsing enhancements and Web speed-up techniques.
In this work we have put together our previous work
[7,8] with the work of many other researchers. We have
applied our fragment based, Web speed-up approach, to
other performance enhancement techniques and have
developed a system that can help users and ISPs at
improving Web performance.

This work was supported in part by the PABE-T 2000 project:

“Development of an autonomous Intelligent Agent for the
implementation of a cooperative browsing model on the Internet with
the use of advanced technologies of machine learning”. The project
was sponsored by the Greek Ministry of Development (General
Secretariat of Research & Technology)

The goals of the system described in this paper,
are:

1. The provision of advanced browsing services to the
Internet users

2. User and mediator driver information filtering

The provision of advanced browsing services
mainly consists of browsing speed-up techniques. The
information filtering service consists of information
fragmentation techniques and the independent
manipulation of these information fragments.

This paper is structured as follows. Initially we
present a short review of related work and an overview
of the software developed. We present the complete
software architecture and describe each module in brief.
After the architecture presentation we describe the
possible usage configurations of the software and
present the alternate scenarios. After that, we describe
the techniques used to implement the various software
modules. Finally we present our conclusions and future
work.

2 RELATED WORK

There have been several attempts to deliver
software that manipulates Web content and provides
Web acceleration. All of these attempts specifically
focus on certain parameters such as content filtering (for
example Net Nanny - http://www.netnanny.com/,
Cybersitter - http://www.cybersitter.com/, etc),
acceleration techniques and servers (Volera Excelerator
- http://www.volera.com, webROCKET 2002 -
http://www.ascentive.com etc.) or simple guidance
software (bots) that attempt to “guide” users through the
vast amounts of information available, in order to help
them find information they actually need.

WebWatcher, a project at CMU, is a "tour
guide" agent for the world wide web. It is a actually a
software tool that “runs” in parallel with the browser

SPEEDING-UP, FILTERING and MANIPULATING the WEB to MEET SPECIFIC
USER NEEDS

Christos J. Bouras
Computer Engineering and informatics

Department
Research Academic Computer Technology

Institute
Patras, Greece
bouras@cti.gr

Agisilaos S. Konidaris
Computer Engineering and informatics

Department
Research Academic Computer Technology

Institute
Patras, Greece

konidari@cti.gr

and highlights information that it believes a user is
really interested in, on every page the user visits.

WebMate, another CMU project, is a more
sophisticated intelligent agent that provides searching
enhancements, offline browsing, HTTP header filtering,
HTML error handling and dynamic resource set-up. Of
course it also provides browsing enhancements similar
to WebWatcher.

The previously described software packages
are only two out of many similar “intelligent” software
packages that are available, and can filter and speed up
browsing sessions. The main difference of the software
described in this paper, compared to all these packages
is the integration of many different Web manipulation
techniques into one package. Our software package
takes advantage of a series of proven and widely
accepted techniques in order to manipulate the Web to
the users’ advantage.

3 OVERVIEW OF THE SOFTWARE

The software developed consists of several
modules that constantly interact during a browsing
session. The underlying Web architecture, that the
software may enhance, is the well known client/server
architecture. When fully exploited, the software utilizes
a 3tier client-mediator server-Web server architecture
and the software modules are installed on the clients and
one or many mediator servers. In this section we
describe all software modules implemented both on
clients and the mediator server.

WEB PAGE
PARSING &
RANKING

WEB
COMPONENT

MODULE

DNS
PRE-FETCHING

WEB PAGE
PRE-FETCHING

DELTA
ENCODING

FREQ. OF
CHANGE

ESTIMATION

CACHING

VISUAL ADMIN.
MODULE

LOG
CREATION
MODULE

MOST POPULAR
 URL LIST

MOST LIKELY TO BE
REQUESTED NEXT LIST

WEB
COMPONENT

WEB
COMPONENT

WEB
COMPONENT

VIRTUAL
USER
PAGE

PREFETCHED DNS
ENTRY POOL

WEB PAGE /
COMPONENT POOL

U
S
E
R

R
E
Q
U
E
S
T
S

WEB PAGE
PARSING &
RANKING

WEB PAGE
PRE-FETCHING

DELTA
ENCODING

FREQ. OF
CHANGE

ESTIMATION

"UNIVERSAL" MOST
POPULAR
 URL LIST

WEB SERVER

WEB SERVER

WEB SERVER

REQUESTS

REQUESTS

REQUESTS

I
S
P

USER MEDIATOR WEB SERVER

Figure 1. The overall software architecture

The client software is installed as a complete
software package containing the software modules
described below (shown in Figure 1) and Microsoft
Internet Explorer 6.0. The add-on modules are:

1. Web page parsing and ranking module. This
module is responsible for parsing the already
visited Web pages and for ranking the links
contained inside them, in order to determine the
“most likely to be requested next” links. The
module’s algorithms take advantage of the
historical data maintained by the request filtering
and log creation module. The module keeps a “most
likely to be requested next” list which contains all
requested URLs and a number of links contained in
these pages. These links are ranked appropriately.

2. DNS pre-fetching module. This module
implements DNS pre-fetching utilizing the “most
likely to be requested next” list created by the Web
parsing and ranking module.

3. Web page Pre-fetching module. This module is
responsible for pre-fetching Web pages contained
in the “most likely to be requested next” list. This
module also takes advantage of the overall “most
likely to be requested next” list that is maintained
by the mediator.

4. Delta encoding and compression module. This
module is responsible for determining the deltas of
changed resources and also compression and
decompression. This module is available only in the
fully deployed version of the software since the
mediator server is a pre-requisite. The information
is transferred in deltas only between the clients and
the mediator servers.

5. Web component module. This module is
responsible for fragmenting the Web pages
requested and pre-fetched. The module takes
advantage of the information inserted by the user in
the Visual administration module. It is the most
important module in relevance to information
filtering, since it receives user preferences as an
input and is responsible for creating what we call
“Virtual user oriented pages” that consist of
information that is required by specific users. For
more analysis on this procedure please see [7,8].

6. Frequency of change estimation module. This
module is responsible for estimating the frequency
of change of resources. This estimation plays a very
important role in pre-fetching and caching. The
estimation relies on the log maintained at the client
but mostly on the “universal log” data that is
frequently communicated to clients by the mediator
server.

7. Caching module. The caching module is
responsible for maintaining the client cache. It
utilizes data from the logging module and the
frequency of change estimation module. This

module computes TTLs for all the objects kept in
cache.

8. Log creation module. This module is responsible
for the creation of the software’s logs. The most
important log is the request log, which keeps track
of the users’ request patterns.

9. Visual administrator module. This module is the
user/client software interaction interface. The user
“feeds” the system with certain preferences and
configuration parameters, which are then used by
various other software modules.

The software modules that are installed on the mediator
server are the same as those installed on the client but
the various parameters they receive are much broader
than the ones at the client. This is normal, since, many
clients are connected to the mediator server and
consequently the mediator server has a much broader
view of user preferences. We will not go into detail
about the mediator software modules, due to space
limitation.

4 USAGE SCENARIOS

4.1 Independent user

In this scenario the software package will have
the form of a browser add-on, plug-in or a properly
configured version of a commercial browser. Every user
will be able to install the software on his/her PC and use
its services without having to subscribe or use the
services of any independent mediator server. This
scenario is shown in Figure 2.

The software installed on the client in this
scenario would be activated by a URL request by the
user. The following simple algorithm would be executed
on the client for every user request:

For every URL requested by user
 If in cache then

Use Frequency of change module to determine if it
has changed

If has NOT changed then
Show user cached copy
Show user related components
Get most likely to be visited next links from
ranking module
Pre-fetch most likely links
DNS-prefetch the rest of the links

Else
GET page from original location
Rank page by using the ranking module

Slice page components with component
module
Replace old copy in cache
Get most likely to be visited next links from
ranking module
Pre-fetch most likely links
DNS-prefetch the rest of the links

Else
GET page from original location
Rank page by using the ranking module
Slice page components with component module
Save page to cache
Get most likely to be visited next links from
ranking module
Pre-fetch most likely links
DNS-prefetch the rest of the links

End if
Loop

CACHE

S
O
F
T
W
A
R
E

Browser

Request

Response

Internet

CACHE

S
O
F
T
W
A
R
E

Browser

Request

Response

HOME USER 1

HOME USER N

REQUESTS/RESPONSES

REQUESTS/RESPONSES

Figure 2.The software installed at the client

4.2 Independent user with the use of a mediator
server

This scenario is actually the enhancement of
the previous one. The home user will install the software
package and will be able to configure a mediator server,
in order to use it during their browsing sessions. This
procedure is similar to the configuration and usage of
contemporary proxy servers with browsers.

It is obvious though, that under this scenario,
the installation and configuration of the mediator server
software is required. This scenario is presented in
Figures 3 and 4.

Internet

CACHE

S
O
F
T
W
A
R
E

Browser

Request

Response

HOME USER 1 OF ISP B

CACHE

S
O
F
T
W
A
R
E

Browser

Request

Response

HOME USER k OF ISP B

CACHE

S
O
F
T
W
A
R
E

Browser

Request

Response

HOME USER n OF ISP
A

CACHE

S
O
F
T
W
A
R
E

Browser

Request

Response

HOME USER 1 OF ISP A

S
O
F
T
W
A
R
E ��

PROXY
CACHE

PROXY
FUNCTIONS

INTERNET SERVICE
PROVIDER A

S
O
F
T
W
A
R
E

��
��PROXY

CACHE

PROXY
FUNCTIONS

INTERNET SERVICE
PROVIDER B

REQUESTS/RESPONSES

REQUESTS/RESPONSES

REQUESTS/RESPONSES

REQUESTS/RESPONSES

REQUESTS/RESPONSES

REQUESTS/RESPONSES

Browser

Figure 3. The software installed at the clients and the ISPs

Internet

CACHE

S
O
F
T
W
A
R
E

Browser

Request

Response

HOME USER 1 OF ISP A

CACHE

S
O
F
T
W
A
R
E

Request

Response

HOME USER k OF ISP B

CACHE

S
O
F
T
W
A
R
E

Browser

Request

Response

HOME USER k OF ISP
A

CACHE

S
O
F
T
W
A
R
E

Request

Response

HOME USER 1 OF ISP A INTERNET
SERVICE

PROVIDER A

REQUESTS/RESPONSES

S
O
F
T
W
A
R
E ��
��SERVICE

CACHE

MEDIATOR

INTERNET
SERVICE

PROVIDER B

REQUESTS/RESPONSES

REQUESTS/RESPONSES

REQUESTS/RESPONSES

REQUESTS/RESPONSES

REQUESTS/RESPONSES

REQUESTS/RESPONSES

Browser

Browser

Browser

Figure 4. The software installed at the clients and a mediator server

4.3 Intra-business use

In this scenario, a company will purchase the
software, and will install it on its server, making it the
gateway to the Internet. The company will also purchase
client software that will be installed on every company
PC connected to the Internet via the server. The
advantages of using the software under a intra-company
model, is that the specialization of the company and the
common interests of the users, enable the proper tuning
of the software in order for it to meet specific needs. For
example, a stock broker company, may tune the server
software to keep track of specific Web sites or even
domains in order to acquire specific information online
very quickly.

5 BROWSING ENHANCEMENTS IN CLIENTS AND
MEDIATORS

5.1 Web page ranking algorithms

The Web ranking algorithms have been used

mostly by Web search engines [1,2,3,4]. The ranking of
Web pages is a very important procedure to search
engines in order for them to provide useful information
to users. Web page ranking is one of the most important
procedures in the software that has been developed, and
is presented as an independent module.

5.2 DNS pre-fetching and caching

The basic problem that users come across on
the Internet is known as User Perceived Latency (UPL).
UPL is actually the delay that occurs between the time a
page request is issued by a user, and the time that the
page begins loading in the browser window. One of the
most important contributing factors, to UPL is the
request setup period that precedes the actual page
transfer.

The connection setup involves the translation
of the web address to the equivalent IP address. This
translation is made possible after the client contacts its
configured DNS server that sends back to the client the
corresponding IP address of the requested server. The
time spent during the client-DNS server interaction
significantly contributes to UPL.

The DNS pre-fetching technique attempts to
minimize or completely abolish the DNS translation
period that is carried out before a request [5]. This is
made possible by querying a DNS server before the
actual request is issued by the user. This means that a
browser software module is responsible for analyzing
Web pages, identifying possible “next requests”,
ranking these possible requests in order of “most likely
to be requested” and then querying the DNS server for
the corresponding IP addresses. When returned to the
browser, these DNS results are kept in a local cache for
a period of time in case they are used by the user. It has
been shown that this procedure significantly reduces
UPL.

5.3 Caching

Caching is one of the key features of the
software that has been developed. The usage quality and
the quantity of resources kept in cache as well as the
Time To Live (TTL) parameter for every resource, are
the most important parameters that play a role in the
efficiency of caching [6]. The basic issues that must be
answered and configured properly are the following:

1. The co-operation of the server sided caches with
the client-sided caches of the system. Since server
sided caches are much larger and attempt to
facilitate large numbers of users, it is obvious that

proper configuration must be carried out at the
clients in order for them to keep cached copies of
resources that are actually needed by individual
clients.

2. The size of server and client sided caches.

3. The TTL configuration of the caches as well as the
replacement algorithms that will be utilized.

5.4 Frequency of change estimation

The frequency of change estimation of Web
resources problem is a common and very important
issue for caching and pre-fetching. It is crucial to be
able to estimate the changing frequency of a Web
resource in order to know if it should be cached or pre-
fetched.

The issue has been analyzed in several research
papers. Contemporary Proxy servers tend to use the if-
modified-since headers in order to decide whether a
resource has changed or not. The basic problem with
this procedure is that not all servers on the Internet are
able to provide this header for their resources. Thus,
proxy servers are usually misinformed, something that
leads to unnecessary Web transfers.

Many methods of change frequency estimation
have been proposed in the bibliography. Most of them
are based in the probabilistic analysis of a selected setup
period. This analysis helps to estimate changes after the
setup period. The software developed has also used a
probabilistic analysis approach based on logs.

5.5 Delta encoding and compression

It is clear that when a Web resource can
positively be identified as changed, it usually has not
changed completely, but only certain portions of the
page have changed. The new version of a Web resource
shows many similarities to the old version of the same
resource. If only the differences between the new and
the old resource could be sent to a client instead of the
whole resource, during consecutive requests, it is
obvious that Web transfers would be minimized. Delta
encoding permits the transfers of deltas (=differences)
between a server and the clients, instead of the whole
version of a resource. The clients can construct the new
version of a resource by using a stored copy of the
resource (the older version) and the deltas sent by the
server. This method is further optimized with the
compression of deltas before they are sent by the server
and their de-compression at the client upon receipt.

5.6 Log analysis

Log analysis is considered as a facilitating
method for almost all of the software modules that have
been implemented.

5.7 Web page pre-fetching

Web page pre-fetching is one of the basic
enhancements of the implemented software. The pre-
fetching engine is implemented as an independent
software module that has two basic characteristics:

1. It can be configured by administrators

2. It constantly updates its functions based on client
interactions

In a Web browser-Mediator server-Web server
configuration, Web pre-fetching can be carried out
between clients and mediators but also between
mediators and servers. It is obvious that the pre-fetching
engine implemented as a part of the client software must
cooperate with the pre-fetching engine implemented as
part of the mediator server software.

The client pre-fetching engine utilizes the
specific client’s request history, current request patterns
and mediator server provided most popular lists in order
to identify its own most likely to be requested next
tables and their TTLs.

The mediator server pre-fetching engine
utilizes all the clients’ pre-fetching history, current
request patterns and constructs the mediator server’s
most likely to be requested tables and their TTLs.

5.8 Web components

Another basic software module that has been
implemented, is the Web component module. This
module works together with all the other software
modules and permits the fragmentation of Web resource
information in order to enable its efficient manipulation.
Web fragments are a methodology that has been
proposed in the bibliography in many different forms.
The basic denominator of all fragmentation techniques
is their attempt to cut-down Web pages into independent
components and then utilize, manipulate and connect
these components as independent entities. This method
enables the personalization of information and the
efficient reduction of Web transfers. These are two of
the basic goals of the implemented software.

6 CONCLUSIONS AND FUTURE WORK

In this paper we have described a software tool
that utilizes the client/server architecture, an can
efficiently improve user browsing sessions, both in
information quality but also in interaction speed. We are
currently in the experimental usage phase of the
software. It is obvious that many parameters must be
tuned properly in order for the software to be as useful
as possible to the users. We intend to add more
browsing enhancement modules in the future, but also
improve our Web component technique. We are
confident that our tool will aid individual users but also
businesses in acquiring the information that they need
efficiently and quickly.

7 REFERENCES

[1] V. N. Padmanabhan and J. C. Mogul, “Using predictive
prefetching to improve world wide web latency”, ACM
SIGCOMM Computer Communication Review, vol. 26, no. 3,
pp. 22-36, 1996.

[2] K. M. Curewitz, P. Krishnan and J. S. Vitter, “Practical
Prefetching via Data Compression”, Proc. ACM-SIGMOD
Conference on Management of Data, pp. 257-266, 1993.

[3] P. Cao, E. W. Felten, A. Karlin and K. Li, “A Study of
Integrated Prefetching and Caching Strategies”, Proc. ACM
SIGMETRICS, pp. 171-182, 1995.

[4] M. Crovella and P. Barford, “The network effects of
prefetching”, Proc. of the IEEE Conf. on Computer and
Communications, (INFOCOM '98), pp. 1232-1240, 1998..

[5] E. Cohen and H. Kaplan, “Prefetching the means for document
transfer: A new approach for reducing Web latency”, Proc.
IEEE INFOCOM, 2000.

[6] R. Alonso, D. Barbara and Hector Garcia Molina, “Data
Caching Issues in an Information Retrieval System” ACM
Transactions on Database Systems, 15(3), pp. 359-384, 1990.

[7] C. Bouras and A. Konidaris, “Estimating and Eliminating
Redundant Data Transfers Over the Web: A Fragment Based
Approach" Proc. 3rd International Conference on Internet
Computing (IC 2002), USA, 2002.

[8] C. Bouras and A. Konidaris, "Web Components: A Concept for
Improving Personalization and Reducing User Perceived
Latency on the World Wide Web”, Proc The 2nd International
Conference on Internet Computing (IC2001), USA, Vol 2, pp.
238-244, 2001.

	Introduction
	Related Work
	Overview of the software
	Usage scenarios
	Independent user
	Independent user with the use of a mediator server
	Intra-business use

	Browsing enhancements in clients and mediators
	Web page ranking algorithms
	DNS pre-fetching and caching
	Caching
	Frequency of change estimation
	Delta encoding and compression
	Log analysis
	Web page pre-fetching
	Web components

	Conclusions and future work
	References

