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Abstract

In this paper we investigate the online video on demand problem, namely having to ac-
cept or reject a request for a movie without knowing the future requests. We present online
movie-scheduling schemes that implement the principles of refusal by choice and delayed noti-
4cation. A novel way to schedule movies that exploits the knowledge of the distribution of the
preference of requests for movies, is shown to have a competitive ratio that outperforms all the
previously known schemes in practical situations. In fact, our scheduler has a competitive ratio
bounded above by a constant, independent of the number of the users, channels, or movies, in
the case that a large fraction of the requests tends to concentrate in a small number of movies.
We extend our approach by presenting an “adaptive” randomized scheduler which initially is not
aware of the movie popularities but it adapts to it, and achieves the same asymptotic competitive
ratio.
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1. Introduction

The area of interactive home video entertainment is actively developing. For example,
hybrid networks that enable multimedia connections are being studied as a step towards
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all digital video networks [14], as is the problem of bandwidth allocation strategies for
combined analog=digital transmission of data over a CATV system [12]. Experiences
and service trials are being performed, mostly for near video on demand, which consists
of broadcasting movies at 4xed time intervals (e.g. every 10 min) [19,22]. Also, special
hardware and switches are being built for this purpose.
Recent advances in computing and communication technology have made feasible

video on demand systems. Usually, the movies are stored in a central video server
(which may be connected to other servers by a high-bandwidth WAN). The video
server is connected via a high-capacity 4ber line to local distribution centers (hubs)
from which coax cables are used to broadcast to the households.
In this architecture, there appear to be two major bottlenecks:

• The limited number of broadcast channels available on the coax cable (shared by
many households).

• The number of movies which the server is able to transmit concurrently (see [18]).
Previous works and current implementations attempt to achieve under these constraints:
• Full video on demand: Whenever a user’s request for a movie arrives, it is immedi-
ately served, provided there is capacity (a channel) available; otherwise the request
is rejected.

• Near video on demand: A 4xed set of movies is played regularly, at 4xed time
intervals.

Much attention has been given to the hardware requirements for such designs, and
the quality of service, due to the bottlenecks mentioned above. It is immediate that
either policy may poorly utilize the available resources. A considerable number of
feasible distributions of requests may cause the 4rst approach to tie up the distribution
resources, while the latter provides (by de4nition) a limited service, and a bad decision
(of movies broadcasted) translates directly into resource waste.
The intermediate terrain that lies between the two extreme policies was investigated

by Aggarwal et al. [1], where the concept of adaptive video on demand was introduced:
• Adaptive video on demand: Upon arrival, a movie request is accepted and served
(possibly with some delay), or rejected. The decision as to whether accept or reject
(and the amount of delay) is made by a scheduling algorithm.

Note that the scheduling algorithm might specify that the request be rejected, even
though there might be channels that are currently not being used.
DiKerent issues involved in the design of a video on demand system have been stud-

ied by diKerent researchers the last few years. Architectural issues have been studied
in [17,24], physical storage organizations necessary for supporting video on demand
systems in [8,9,21], and probabilistic models for the assignment of video data onto a
storage hierarchy in [20]. The 4rst attempt to tackle video on demand from an op-
timization perspective was done by Aggarwal et al. [1]. In that important work, the
video on demand problem was studied in an online setting, where an online algorithm
receives a sequence of requests for service. The performance of the online algorithm on
a sequence of requests is compared to the performance of an optimal oLine algorithm
that services the same sequence of requests. Such an analysis of an online algorithm
is referred to as competitive analysis. Aggarwal, Garay and Herzberg showed upper
and lower bounds on the competitive ratio of online scheduling algorithms for certain
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scenarios, and also introduced the concept of refusal by choice with delayed noti4ca-
tion and presented algorithms that exhibit under certain conditions, an asymptotically
optimal behaviour.
Refusal by choice (and, in fact, by random choice) was used previously in the

problem of admission control in fast networks (see [2–4,13]). The admission control
problem, 4rst de4ned by Garay and Gopal [10], is the problem of deciding online
whether or not a network should accommodate a request for a large amount of data. The
online video on demand research was complementary to the research for the admission
control problem. While the research on admission control was mostly concerned with
online allocation of network paths in a way that would minimize overlap with paths
of future requests, the adaptive video on demand research focuses mostly on the issue
of “revenue” of movie schedulers (over very simple networks). The revenue has to do
with grouping requests so that a single transmission may serve many users requesting
the same movie (popular movies). Also, the problem of online video on demand is
related to the call control problem (see [3,11]).
One interesting observation is that most requests tend to concentrate on (a few)

popular movies. This property has been observed and used in the area of scheduling
and storage management in VoD systems [16,23,25]. In this paper (of which shorter
versions are [6,7]) we present a novel movie-scheduling scheme which exploits the
knowledge of the underlying distribution of movie requests, and achieves constant
competitive ratio in the case that the number of popular movies is small (which is
a realistic assumption). Our method follows the principle of refusal by choice with
delayed noti4cation. We also present a randomized movie-scheduling algorithm which
does not need to know the distribution of the movie requests in advance but it is
able to follow slow changes in this distribution, in an adaptive way that has a small
transient behaviour. Our scheduler will adapt to such an unknown distribution quickly
(statistically learns). This method also achieves constant competitive ratio in the case
that the number of popular movies is small. This is due to the assumption on a distri-
bution of the input requests (which restricts the oracles that would create worst-case
behaviours in the lower bounds of [1]).
The rest of the paper is organized as follows. In Section 2 we present the video on

demand architectural model used, and some basic de4nitions. In Section 3 we present
the online movie scheduling algorithm S that knows the distribution p() of the movie
requests, and in Section 4 we analyze its performance against an optimal oLine algo-
rithm. In Section 5 we extend our approach by presenting an online scheduling algo-
rithm R which is not aware of p() but it adapts to it, and we discuss its performance.

2. The model and de�nitions

The video on demand model considered here follows [1], as far as the architecture
is concerned. It consists of a video server which acts as a database of movies, and
supports a 4xed number of movie-streams (sessions). The users connect to the server
via dedicated links and make movie-requests to it. The communication network used
is equipped with a multicast facility. Thus, the same movie-stream can be sent to more
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Fig. 1. The model.

than one users without causing any extra overhead to the server, and therefore, multiple
users can participate in a single session. Let M be the set of movies stored in the server,
U be the set of users making requests, and C be the set of channels in the system,
and let m; u, and c be their cardinalities, respectively. The system is as in Fig. 1.
The system has three time parameters:

T : The duration of a movie (we assume it is the same for all movies).

: The maximum delay between a request and the start of the movie (if the request

is accepted).
�: The noti5cation time (the maximum delay between a request and its response).
Obviously, �6 
6T . In this paper we consider 
= �.

Requests to the system are triples (q time; user; movie) and responses are tuples
(r time; user; movie; channel; servetime), where r time is a positive number in the in-
terval [q time; q time + �]; user ∈U; movie∈M , channel∈C, and servetime is a real
number in the interval [r time; q time + 
]. By convention, a refusal to serve is a re-
sponse with negative servetime.
A sequence of requests (ti; ui; mi) is valid if the time values ti are monotonically

increasing and there is at least time T between any two subsequent requests of the
same user, i.e. we assume that each user can place at most one request in each interval
of time T . We, also, assume that users are “blocked” when seeing a movie, i.e. they
cannot place other requests at that time.
A scheduling algorithm determines the responses of the system to the users at any

moment, and allocates movies to channels based on the requests to the system up to
the moment the scheduling is taking place. If �= 0 then a request must be responded
as soon as is it is presented. In this case the scheduling algorithm performs “immedi-
ate noti4cation”. Otherwise (i.e., �¿ 0), the scheduling algorithm performs “delayed
noti4cation” and the response to the user is issued at most � time units after the pre-
sentation of the request. More formally a scheduling algorithm is a function from a
time, a state and a sequence of requests (all before the given time), to a time (for next
wakeup, if no requests would occur before), a new state, and possibly one or more
responses.
A scheduling algorithm is said to “refuse by choice” if it has a response (t; u; m; c; s)

with negative servetime s, while there exists a free channel at the response time t. A
scheduling algorithm is allowed to use random choices as a step (randomized schedul-
ing algorithm).
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Assumption 1 (The popularity assumption). Let r be a request and e a movie. We
assume that the request r will be for movie e with probability p(e); i.e.; we assume
that requests are independently created according to the distribution p() which indicates
the movie popularities.

Smart schedulers accumulate arriving requests into queues Qj one for each movie
ej. The idea is to serve for each j, all the requests for movie ej accumulated into Qj

with a single transmission (over a single channel).
We assume that we know a class of distributions D, such that the input is generated

by some distribution D∈D. The online algorithm ALG knows D and chooses a process
that attempts to perform well for all D∈D. The adversary, seeing ALG then chooses
D∈D in order to make the ratio of the expected performance of ALG to the expected
performance of OPT (the optimal oK-line algorithm, i.e. the algorithm that knows the
whole request sequence in advance, and achieves the maximum revenue out of each
request sequence) as small as possible. That is, we de4ne

ALG(D) = E#[ALG(#) |# generated by D];

where ALG(#) is the (expected over ALG’s random choices, if ALG is randomized)
revenue of ALG on input sequence #.
We say that ALG is $-competitive against the class D ($¿ 1) if there exists a

constant a such that ∀D∈D
OPT (D)6 $ALG(D) + a:

The D-restricted competitive ratio of ALG, denoted $(ALG;D) is then de4ned as

sup{$ |ALG is $-competitive against the class D}:
Note that this is exactly the restricted Bayessian Compromise ([5, p. 74]) and exactly
the approach advocated in [15] ([5, p. 232]).
Also note that D in our case is the class of general k-skewed distributions (see

next pages in Section 3 for a precise de4nition of this class of distributions which
technically tries to capture the fact that requests concentrate to a few popular movies).

3. The online movie-scheduling S

3.1. The class of general k-skewed movie request distributions

If n users place overlapping requests (i.e. requests than can be served concurrently)
then, by using the popularity assumption, we have

Pe
i = Prob{movie e will be chosen by exactly i users}
=
(
n
i

)
pi(e)(1− p(e))n−i ;

where p(e) is the probability of selection of movie e in the popularity assumption.
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Recall that each user can place at most one request.

De�nition 2. Let

Qe
i = Prob{e will be chosen by at least i users}:

Clearly, then

Qe
i =

n∑
j=i

Pe
j :

De�nition 3. Let f̃ i; fi be the actual and the expected number of movies that will be
chosen by at least i users to be seen “concurrently”.

De�nition 4. Let yei = 1 with probability Qe
i and 0 otherwise.

Then, clearly

E(yei ) = Qe
i

and ∑
e

yei = f̃ i:

So,

fi = E(f̃ i)

= E

(∑
e

yei

)

=
∑
e

Qe
i

by linearity of expectation.
(We may use n = u for the worst case demands. Actually, one may adaptively use

n equals u minus the number of users that are currently seeing a movie.)
Assume now that the sequence f1; f2; : : : ; fn can be partitioned into an, independent

of n, (4xed) number of k subsequences

{f1}; {f2; : : : ; fj2}; : : : ; {fjl−1+1; : : : ; fjl}; : : : ; {fjk−1+1; : : : ; fn};
where

f′
1 = f1
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and for l¿ 1

f′
l =

jl∑
i=jl−1+1

fi

so that the new smaller sequence f′
1; f

′
2; : : : ; f

′
k satis4es the following two rules:

Rule 5:

∀i; if′
i¿f1

and
Rule 6: If F =

∑k
i=1 f

′
i then

F6f1 + f1G(k);

where G(k) is a slowly increasing (reversible, monotone) function of k so that
limk→∞G(k)=k = 0.

De�nition 7. The class of movie request distributions for which such a partition exists;
is called the class D of general k-skewed distributions.

As an example let us use for Rule 6 the more restricted assumption that
Rule 8:

f′
i6

f1

i − 1

(
and f′

k6
f1

k − 1

)

Then, G(k) = 1 + 1
2 + · · · + 1=(k − 1) = Hk−1 (the (k − 1)th Harmonic number) and,

in fact, Hk = ln k + .+O(1=k), where . is the Euler’s constant.

De�nition 9. The class of movie request distributions for which there is a partition of
{fi} following Rules 5 and 8; is called the strict k-skewed distributions.

Note that k can be independent of u; c; m. The actual value of k depends on the way
that the sequence f1; f2; : : : decreases. For example, if the sequence f1; f2; : : : decreases
as the sequence 1; 12 ;

1
4 ;

1
8 ; : : : (i.e. f1 = 128; f2 = 64; f3 = 32; f4 = 16; f5 = 8; f6 =

4; f7 = 2, and f8 = 1, then f′
1 =f1 = 128; f′

2 =f2 = 64; (128=26f′
3¡ 128); f′

3 =
f3 +f4 = 32+ 16= 48 (128=36f′

3¡ 128=2); f′
4 =f5 +f6 +f7 +f8 = 8+ 4+ 2+

1 = 15 (f′
3¡ 128=3), and k = 4.

Note, that, even if k is not constant, if for the distribution p() we get that k ¡u=c
then we will have an improvement over the harmonic partition scheme of [1].
Consider the sequence s1 = 1; s2 = f2=f1; : : : ; sn = fn=f1.

Theorem 10. If the sum
∑n

j=1 sj converges (as n → ∞) to a number; 0; independent
of n then k is a constant independent of n.
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Proof. Clearly;
k∑
i=1

f′
i =

n∑
i=1

fi:

Thus;

f1(1 + G(k))¿
n∑
i=1

fi ⇒ 1 + G(k)¿
n∑
i=1

si

⇒ (as n → ∞) lim
n→∞G(k)¿ 0;

i.e. the minimum k satis4es

k¿G−1(0);

Conclusion 11 (Characterisation).
If p() is such that limn→∞

∑n
j=1 sj is a real number, then p() belongs to the class

D of general k-skewed distributions.

3.2. The online movie-scheduling algorithm S

We now present an online movie-scheduling algorithm S for the Video-on-Demand
problem. We assume that S is aware of the statistics fi. Then S uses this information
to divide the set C of channels into classes C1; C2; : : : ; Ck so that channels in partition
Ci; i∈{1; 2; : : : ; k} will be used for movies to be seen by at least h(i) users on the
average. Here h() is an increasing function from {1; 2; : : : ; k} to {1; 2; : : : ; u=c} and k
is determined as in Section 3.1. The goal is to allocate channels in such a way that
the channel revenue is optimized and unused channels are reduced. The sets Ci may
change dynamically, i.e. each channel may belong to diKerent classes at diKerent time
period of the execution.
The scheduling algorithm S employs m queues Qj; j=1; 2; : : : ; m one for each movie

ej; j=1; 2; : : : ; m. Initially, Qj is empty for all j. When a request for movie ej is made
it is inserted into Qj. the purpose of Qj is to accumulate as many requests as possible
for movie ej, so that it can serve all of them with a single transmission at some time
before any time limit expires.
Each Qj has a “start time” startj which is the time when the earliest request for that

movie arrived. At time startj + � the scheduler decides whether to serve the requests
in Qj. If there is a free channel in a set Ci with h(i)6 |Qj|, then all movie requests in
Qj are served on that channel by a single transmission. If, however, no such channel
is available, then S rejects only those requests in Qj made at time startj and resets
startj to the time of the earlier request now in Qj.
When a channel is freed it is chosen to be placed to a set Ci with probability f′

i =F
where f′

i ; F as in Section 3.1.
From the above h(i) is clearly the number of requests that each transmission should,

at least, serve, if it is using a channel in set Ci. Set then

h(1) = 1
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and

h(l) = l
u
ck
; l= 2; : : : ; k:

De�nition 12. Let gi be the expected number of channels currently in set Ci; i =
1; 2; : : : ; k.

Remark. gi = c(f′
i =F); i = 1; 2; : : : ; k because of the way S places the free channels.

Note that any transmission made on a channel in set Ci must serve at least one
request for i = 1 and at least i(u=ck) requests for i = 2; : : : ; k.

4. The performance of S

In order to analyze the performance of S we follow steps similar to those of [1]. The
saturation level at instant t is the highest i such that all channels in sets C1; C2; : : : ; Ci

are occupied at time t. The saturation level of an interval of time is the highest satu-
ration level achieved during the interval.
We divide executions into intervals I0; I1; : : : of time T each, i.e., Ij =[jT; (j+1)T ).
For all j, let A(j) be the number of requests accepted by S at interval Ij in response

to a request sequence, and R(j) the number of requests rejected by S but accepted by
the oLine algorithm OPT in its execution in response to the same request sequence.
Let QA(j); QR(j) be the expected values of A(j) and R(j), respectively. Let #j be the
saturation level of interval Ij.
Note that, without loss of generality, #j¿ 2, ∀j since else scheduling is trivial. Thus,

there is some t ∈ Ij such that all channels in sets C1; C2; : : : ; C#j are occupied. Since
such requests must have been scheduled to run no earlier than t−T we have ∀j (where
Qx denotes the expected value of x, as well as E(x))

QA(j − 1) + QA(j)¿ h(1)g1 + h(2)g2 + · · ·+ h(E(#j))gE(#j)

=
c(h(1)f′

1 + h(2)f′
2 + · · ·+ h(E(#j))f′

E(#j))

F

=
ch(1)f′

1

F
+

E(#j)∑
i=2

ch(i)f′
i

F

=
cf1

F
+

u
kF

E(#j)∑
i=2

ifi

¿
cf1

F
+

u
kF

E(#j)∑
i=2

f1 (by Rule 5)

¿
cf1 + (u=k)f1(#j − 1)

F
:

But F6f1(1 + G(k)) (Rule 6)
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Thus,

QA(j − 1) + QA(j)¿
cf1 + (u=k)f1(E(#j)− 1)

f1(1 + G(k))

¿
u
k

E(#j)− 1
(1 + G(k))

: (1)

Now, all requests in R(j) were rejected by S during Ij, so each such request was made
in the interval [jT − �; (j+1)T − �). The oLine algorithm OPT could thus serve these
requests anytime in [jT − �; (j + 1)T − �). Since each channel is freed after T time
units, OPT can utilize each channel twice in this interval.
To bound the number of requests (for the same movie) that such a transmission by

OPT could serve we distinguish cases depending on the value of #j.
Suppose 4rst that #j ¡k. Then, any oLine transmission serving more than h(#j)

requests would also be served by S. Therefore, ∀j
R(j)6 2h(#j)c = 2

u
k
#j

because OPT cannot neither use more than c, nor utilize each channel for more than
two transmissions, nor gain revenue more than h(#j) for each transmission rejected by
S (otherwise S would have accepted this transmission also, since there are channels
available in C#j+1).
But then,

QR(j)6 2
u
k
E(#j):

Let QA=
∑ QA(j) be the expected total number of requests accepted by S, and QR=

∑ QR(j)
the expected total number of requests rejected by S but accepted by the optimal oLine
algorithm OPT .
Then

$(S)6
QA+ QR
QA

= 1 +
QR
QA
:

Thus,

$(S)6 1 +
2u=kE(#j)
(u=k)(E(#j)−1)

1+G(k)

(by Eq: (1))

i.e.,

$(S)6 1 + 2(1 + G(k))
E(#j)

E(#j)− 1

and since E(#j)¿ 2 we get

$(S)6 1 + 2(1 + G(k))

i.e.,

$(S)6 3 + 2G(k): (2)
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Consider now the case where #j = k. Note that

QR(j)6 2h(k)c = 2u

and

QA(j)¿
c + u

1 + G(k)

and, for the whole problem to make sense, c�u.
Then again

$(S)6 1 + 2(1 + G(k))
u

c + u
6 1 + 2(1 + G(k)): (3)

So we have proved

Theorem 13. If p() is general k-skewed then the competitive ratio of the scheduler
S is bounded above by 3 + 2G(k).

Corollary 14. If p() is strict k-skewed then $(S)6 3+2Hk−1; where Hk−1 = 1+ 1
2 +· · ·+ 1=(k − 1) is the (k − 1)th harmonic number.

Note that in both cases, $(S) is constant.

5. An adaptive scheduler

In this section we present an adaptive online movie-scheduling scheme R which is
not aware of the movie popularities, i.e., the distribution p() in not known. R uses
an initial partition of the channels in C into classes C1; C2; : : : ; C4, and a mechanism
to reallocate channels dynamically to the sets Ci, and adjusts to the initially unknown
distribution p(), thus achieving an asymptotic competitive ratio equal to $(S).
The adaptive scheduler R partitions the channels into 4 classes C1; : : : ; C4 where

4= �u=c
 and |Ci|= �c=iHi
, i.e., the initial allocation is the full Harmonic allocation.
R works initially as in [1] (i.e. with h(i)=i). However, it keeps m additional counters

Sj; j = 1; 2; : : : ; m one per movie. Each time movie e is requested, Se is incremented
by 1 (initially Sj = 0; ∀j).
Let e be a particular movie and p(e) its probability of request.
After N total requests from the beginning, the number of requests, Se, for e satis4es

∀6∈ (0; 1)

(1− 6)Np(e)6 Se6 (1 + 6)Np(e)

with probability at least

1− exp
(
−62

2
Np(e)

)

from the ChernoK bound for the Bernoulli of N trials and success probability p(e).
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From the frequency de4nition of probability we know that the ratio Se=
∑

e Se → p(e)
as N → ∞.
Now let q0=mine{1=p(e)} and let N¿ q0N ′2=62 (N ′ arbitrary). Then Se=N estimates

p(e) with prob¿ 1− exp(−N ′); ∀e.
So, after N0 = q0N ′2=62 total requests, we use the estimates of p(e) and switch the

scheduler to S.
For an unbounded sequence of requests, the initial segment of N0 requests does not

matter in the estimation of $(R). Thus,

Corollary 15. If p() is general k-skewed; then the asymptotic competitive ratio of
scheduler R is equal to $(S).

Acknowledgements

The authors wish to thank J. Garay for motivating discussions during ESA ’95, and
the anonymous referees for their constructive comments on previous versions of this
work.

References

[1] S. Aggarwal, J.A. Garay, A. Herzberg, Adaptive video on demand, in: Proceedings of the Third Annual
European Symposium on Algorithms (ESA’95), Lecture Notes in Computer Science, Vol. 959, Springer,
Berlin, pp. 538–553.

[2] B. Awerbuch, Y. Azar, S. Plotkin, Throughput competitive on-line routing, in: Proceedings of the 34th
Annual Symposium on Foundations of Computer Science (FOCS’93), 1993.

[3] B. Awerbuch, Y. Bartal, A. Fiat, A RosTen, Competitive non-preemptive call control, in: Proceedings of
the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’94), 1994.

[4] B. Awerbuch, R. Gawlick, T. Leighton, Y. Rabani, On-line admission control and circuit routing for high
performance computing and communication, in: Proceedings of the IEEE Symposium on Foundations
of Computer Science (FOCS’94), 1994, pp. 412–423.

[5] A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis, Cambridge University Press,
Cambridge, 1998.

[6] C. Bouras, V. Kapoulas, G. Pantziou P. Spirakis, Randomized adaptive video on demand, Proceedings
of the 15th ACM-PODC, Philadelphia PA, USA, 1996 (short paper).

[7] C. Bouras, V. Kapoulas, G. Pantziou, P. Spirakis, Competitive video on demand schedulers for popular
movies, Workshop on Algorithmic Aspects of Communications, July 11–12, Bologna, Italy, 1997.

[8] H.J. Chen, T.D.C. Little, Physical storage organizations for time-dependent multimedia data, in:
Proceedings of the ACM FODO, 1993.

[9] S. Christodoulakis, C. Faloutsos, Design and performance considerations for an optical disk-based,
multimedia object server, Computer 19 (1986) 45–56.

[10] J.A. Garay, I.S. Gopal, Call preemption in communication networks, in: Proceedings of the INFOCOM
’92, Florence, Italy, 1992, pp. 1043–1050.

[11] J.A. Garay, I. Gopal, S. Kutten, Y. Mansour, M. Yung, EUcient on-line call control algorithms, in:
Proceedings of the Second Israeli Symposium on Theory of Computing and Systems, June 1993, pp.
285–293.

[12] C.J. Horton, 110 channels without boundaries: why restrict options? Comm. Eng. Design 19 (1) (1993)
29–30.



C. Bouras et al. / Discrete Applied Mathematics 129 (2003) 49–61 61

[13] V. Kapoulas, P. Spirakis, Randomized competitive algorithms for admission control in general networks,
in: Proceedings of the 14th Annual ACM Symposium on Principles of Distributed Computing
(PODC’95), August 1995 (short paper).

[14] J. Koegel, A. Syta, Routing of multimedia connections in hybrid networks, Proceedings of the SPIE—
International Society on Optical Engineering, Vol. 1786, 1993, pp. 2–10.

[15] E. Koutsoupias, C. Papadimitriou, Beyond competitive analysis, in: Proceedings of the 35th Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’94), 1994, pp. 394–400.

[16] W.K.L. Lie, J.C.S. Lui, L. Golubchik, Threshold-based dynamic replication in large-scale
video-on-demand systems, in: Proceedings of the Eighth International Workshop on Research Issues
in Data Engineering, Orlando, 1998, pp. 52–58.

[17] S. Loeb, Delivering interactive multimedia documents over networks, IEEE Comm. Magazine 30 (1992)
52–59.

[18] S.M. McCarthy, Integrating Telco interoUce 4ber transport with coaxial distribution, Proceedings of the
SPIE—International Society on Optical Engineering, Vol. 1786, 1993, pp. 23–33.

[19] K. Metz, Next generation CATV networks, Proceedings of the SPIE—International Society on Optical
Engineering, Vol. 1786, 1993, pp. 184–189.

[20] R. Ramarao, V. Ramamoorthy, Architectural design of on-demand video delivery systems: the
spatio-temporal storage allocation problem, Proceedings of the ICC, 1991.

[21] P.V. Rangan, H.M. Vin, S. Ramanathan, Designing an on-demand multimedia service, IEEE Commun.
Magazine 30 (1992) 56–64.

[22] C. Sell, Video on demand internal trial, Proceedings of the SPIE—International Society on Optical
Engineering, Vol. 1786, 1993, pp. 168–175.

[23] H. Shachnai, P.S. Yu, On analytic modelling of multimedia batching schemes, Performance Evaluation
33 (1998) 201–213.

[24] W.D. Sincoskie, System architecture for a large scale video-on-demand service, Comput. Networks
ISDN Systems 22 (1991) 155–162.

[25] J.L. Wolf, P.S. Yu, H. Shachnai, Disk load balancing for video-on-demand systems, ACM Multimedia
Systems J. 5 (1997) 358–375.

For further reading

R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, Cambridge, 1995,
pp. 318, 333.


	Competitive video on demand schedulers for popular movies
	Introduction
	The model and definitions
	The online movie-scheduling S
	The class of general  k-skewed movie request distributions
	The online movie-scheduling algorithm  S

	The performance of S
	An adaptive scheduler
	Acknowledgements
	References


