
This work has been jointly supported by the Spanish MEC and European Commission FEDER funds under grants Consolider-Ingenio 2010 CSD2006-00046 and
TIN2009-14475-C04-04.

Abstract—Peer to Peer Distributed Virtual Environment

systems have become a scalable solution for supporting a large
number of users. One of the main challenges for these systems is
to solve the awareness problem, since it is necessary for providing
a consistent view of the environment to each participant of the
simulation. Although different strategies have been proposed,
they exclusively focus on users. Nevertheless, most of current
DVE systems include additional non-autonomous elements,
denoted as objects, whose state should also be known to system
clients. This paper studies the different attributes and
characteristics that objects can have and can affect to their
management. Based on this study, this paper presents an
extension of a previously proposed avatar awareness method
(COVER), re-designed and modified for providing object
awareness in a distributed way. The performance evaluation
results show that the resulting awareness technique allows system
users to efficiently manage objects in a distributed way without
affecting the overall performance of the system.

Index Terms— Distributed/network graphics, Virtual Reality,
Presence, Collaborative Interaction.

I. INTRODUCTION

DVE systems are adopted in a wide range of areas, varying
from civil and military training, learning and collaborative
work to Multiplayer Online Games (MOGs). In a DVE
system, users geographically scattered around the globe can
interact with each other, inside a common scenario, in real
time. One of the most important challenges that DVE systems
designers need to address is to ensure that participants share
the same view of the virtual world. For that purpose, all the
changes performed by an avatar need to be propagated to all
the avatars inside its neighborhood [23]. Usually, the Area of
Interest (AoI) [9] of an avatar is considered as the
neighborhood for that avatar.

Recent studies ([1], [8], [10], [11]) show that network
delays make impossible providing all avatars of the virtual
world with the same vision of the environment at every
moment. In particular, these studies show that avatars need to
be aware of all other avatars only inside their neighborhood.
This problem is known as the awareness problem and it is a
necessary condition for maintaining consistency among all
users’ view ([2], [18]). In any case, each new avatar represents
an increase not only in the system workload but also in the
amount of network traffic. In large scale DVE systems, with
thousands or even millions of connected clients, scalability is
one of the key aspects for the communication architecture in a
DVE system. In this context, P2P architectures have emerged

as the solution due to their inherent scalability [13]. However,
providing avatars with a consistent view of the virtual
environment in DVE systems based on P2P architectures
(commonly denoted as P2P-DVE [13]) is a difficult task. The
reason is that (unlike other communication architectures) P2P
scheme does not have servers with information about the
location of other avatars. As a result, avatars should correctly
find their neighbors in a distributed way.

Existing approaches for providing awareness in P2P-DVE
systems ([3], [4], [5], [6], [19]) mainly focus on the avatar
entity. However, DVE systems usually include additional
elements, which state should be managed and communicated
to all the participants of the system. We use the term object for
defining these non-autonomous elements. Objects are part of
the virtual environment and are placed within it for serving the
contextual purposes of each scenario. The behavior of the
objects depends on the users’ actions rather than on system
decisions. Typically, objects could be weapons, books,
stamina, etc. Recent contributions highlight the impact of the
presence of objects on the system and the importance of
managing objects in P2P-DVE systems [19].

Every change that takes place, either avatar or object
related, needs to be propagated to all affected participants. For
the former kind of interaction (avatar-to-avatar), the client
computer controlling one of the avatars must send updating
information to the client computer controlling the other avatar.
Depending on the communication architecture, this message
will be directly submitted (P2P) or will pass through one or
more servers. However, for the later kind of interaction
(avatar-to-object) the message destination depends on which
avatar controls this object. In P2P-DVE systems, objects
should be managed by clients in a distributed way. Moreover,
in order to provide avatars with a consistent view of the virtual
scenario, the awareness problem should be extended in order
to take into account not only avatars but also objects.

This paper proposes an extension of a previously proposed
distributed awareness method for P2P DVE systems [14] in
order to take into account the presence of dynamic objects
within the virtual world. The extended awareness method
takes into account current studies on the concept of objects,
their attributes, characteristics and the effect that they could
have both on users’ behavior and system’s performance.
Performance evaluation results show that the proposed method
provides full object awareness and it does not add a significant
overhead to the DVE system.

The rest of the paper is organized as follows: Section II

Managing Objects in P2P DVEs

Rueda S.1, Giannaka E. 3,4, Morillo P. 1, Bouras C. 2,3, Orduña J.M. 1
1Departamento de Informática, Universidad de Valencia, Spain

2Research Academic Computer Technology Institute, Greece
3Computer Engineering and Informatics Department, University of Patras, Greece

4Athens Information Technology Center, Athens, Greece

studies the properties and attributes of objects, describing the
problems that arise when managing objects in P2P DVEs.
Section III explains the design decisions made for extending
the awareness method. Section IV defines the interactions that
avatars can perform with objects. Next, Section V describes
the evaluation setup and shows the performance evaluation
results of the proposed awareness method. Finally, Section VI
presents some concluding remarks.

II. OBJECTS IN DVE SYSTEMS

Most of 3D virtual reality scenes are comprised by two
types of entities, avatars and objects. The avatars constitute the
graphical representation of the participating users, whose state
is controlled through a client computer, while the objects
represent the individual entities that compose the virtual scene.
The presence of objects in a DVE system increases the
complexity of the application as both the workload and the
number of exchanged messages is increased. In particular,
given the fact that objects in the virtual scene can affect users’
behavior and can play an important role in the realization of
each simulated scenario, the maintenance of a consistent state
of all types of entities becomes critical. Any delayed or lost
messages, containing information about changes in the state of
objects, could significantly affect the level of realism, users’
interactivity and perception and the general system behavior
and consistency. As mentioned above, in the case of DVE
systems based on networked server architectures, the
management of the objects is performed in the same way that
avatars are handled. However, in the case of P2P-DVE
systems, the presence of objects increases the simulation
complexity and introduces a number of issues that need to be
handled. In particular, two aspects need to be emphasized:

Propagation of object status and changes to connected
peers: All the changes that take place within the DVE should
be propagated to all avatars concerned. Thus, when an avatar
interacts with an object of the virtual scene by changing one or
more of its attributes, then all the surrounding avatars should
be informed about the performed change.

Handling awareness for concurrent interactions on the
same object-Conflict Resolution: As in real world, different
users could try to interact with the same object at the same
time (i.e. for picking up a weapon). Allowing these
simultaneous actions implies offering a high level of
awareness not only to the avatars that interact with the same
object, but also to all other connected peers, which are
affected by the modification. In the case of networked server
architectures, messages from involved avatars would reach the
server that handles the objects, which in turn would be
communicated to all the concerned clients. In P2P-DVE
system, all the avatars involved in a modification for the same
object would consider themselves as the “owners” of this
object when the interaction occurs. In order to solve this
conflict, the approach presented in this paper considers that
the owner of the object is the last avatar that interacted with it.

In most cases, avatars that participate in a virtual
environment are allowed to perform certain types of actions,
such as navigating, interacting and communicating. However,

the objects placed in the virtual environment can significantly
differ on the type of actions and interactions that can be
performed on each of them, which is related to the scope of
their existence and the functionality that they aim to support.
All the objects of a virtual environment can have a variety of
attributes (e.g. shape, colour, position, size) and the interaction
of an avatar with an object could be considered as the ability
to modify one or more of these attributes. At this point it
should be mentioned that the appointment of objects’
importance was identified in [24], where features and
characteristics of these entities were also identified.

The interactions of avatars with objects are critical and have
vital importance for the awareness of the DVE and should be
therefore taken into account. Furthermore, the different types
and characteristics of existing objects introduce further issues
that need to be faced and handled within a DVE simulation. In
the subsections that follow the attributes of virtual objects (as
they were introduced in [12]) are briefly described. These
attributes are then used in the simulation process for handling
the issues that arise.

A. Degree of Interaction

In a virtual environment, users have the ability to
communicate both with each other and with the objects of the
world for achieving the contextual goals that each
environment aims to support. The interactions that take place
within a virtual environment are significantly affected by the
number and type of actions allowed and supported by the
system. In particular, objects that allow a high number of
actions to be performed on them tend to have a higher
possibility of constituting points of interaction with the users’
avatars. The number of actions that can be performed on an
object may vary and can concern the modification of its
location, size, shape, color, texture, etc. We define the term
degree of interaction (DoI) for a given object as the number of
actions that could be potentially performed on this object.

B. Level of Importance

Apart from the degree of interaction, we also adopt the level
of importance (LoI) for the objects of the virtual environment.
The level of importance of an object indicates that this object
is often visited in a session by the participating users. Thus,
even though the DoI value of an object may not be very high,
if the object tends to constitute a point of interest for users that
join the virtual environment, then this object is set with a high
level of importance. The LoI factor in a virtual environment is
affiliated to the possibility that a user will visit an object,
when this object is within its Area of Interest (AoI).

C. Area of Interaction

Each participant in the DVE is characterized by its the Area
of Interest (AoI), which is the region of the virtual world
within which the avatar needs to be aware of all entities and
activities that take place, so as to assure the awareness.
Similarly, we define the term Area of Interaction for a given
object (OAI). This attribute defines the area of the virtual
scene in which the objects are interactive among themselves or
with the avatars of the DVE systems. Figure 1 illustrates the

concept of OAI. Even though both avatar A and avatar B can
see the object, only avatar B can interact with it. In most of the
simulations, the OAI of an object is related to its size in the 3D
virtual scene. In particular, larger objects tend to have wider
areas of interaction, while for small objects this area is
narrowed.

D. Objects’ Classification

The objects situated in a 3D virtual scene can be
categorized regarding their level of interactivity and
importance. As we mentioned before, objects’ features and
characteristics were identified in [24]. The approach presented
in this paper, takes into account the qualitative criteria for
objects and extends the original approach. Thus, based on the
above, the objects of a virtual environment could be
categorized as follows:

Static inactive objects: this type of objects does not
support any type of interaction with the participating users.
Examples of such objects could be walls, floors, etc.

Static active objects: in the case of these objects avatars
have the ability to interact with them and modify one or more
of their attributes, except from their position, in the sense that
these objects cannot be moved within the virtual scene.

Non-static active objects: this type of objects allows the
modification of all of its attributes, including the position, by
the avatars they interact with. Examples of such objects could
be books, swords, cups, etc.

The different types of objects involve different levels of
complexity when providing a consistent view of all these
objects to the participants of the DVE system. In the case of
static inactive objects, users need to be aware of their
presence, while in the case of static active objects the
approach falls in the case that any interaction should be
propagated to other peers. However, in the case of active and
non-static objects (which can be transported by avatars from
one place to another), the system needs to ensure that all the
transitions will be performed successfully regardless the
destination and origin points.

III. OBJECT AWARENESS TECHNIQUE

As mentioned above, in P2P DVE systems, there is no
central entity in charge of maintaining world awareness.
Therefore, it is important to define who will be responsible for
object management in a distributed manner. For managing
objects and assuring that all avatars of the system are aware of
all objects within their AoI, a new algorithm has been designed
and implemented. The algorithm, presented in this paper, is
based on the COVER method [14], which is a tested avatar-
awareness method and is proved to achieve good results for

P2P DVEs. In this sense, the method presented in the paper,
extends the original COVER method, on the one hand by
modifying existing management methods for avatars and on
the other hand, by incorporating new considerations for
managing objects.

The COVER method is based on a P2P hybrid organization
called Centralized+Decentralized, where peer nodes can play
multiple roles in the DVE system, denoted as nodes and
supernodes. However, COVER method does not include
object management and awareness. As mentioned above, the
DVE system should take into account not only objects’
presence in the world but also the interactions that avatars
carry out with these objects. To this direction, the COVER
method has been extended for encountering the concept of
objects.

As defined in the previous section, objects could be
categorized as static-non-active, static-active and non-static,
while only static-active and non-static objects can be updated
during simulation. Avatars should be aware of both objects’
location within the virtual environment and of their state. Due
to the fact that the properties of static-non-active objects
cannot be modified, this type of objects is not encountered for
the awareness technique because this information can be
easily provide to on boot time by the Loader or Bootstrap
server, the entity in charge for the initialization of new avatars
when they join the DVE system. Following the same criterion
that COVER uses to distinguish between covered and
uncovered avatars, objects are classified in two different
categories in order to support object presence: managed an
unmanaged objects. Managed objects are those which are
inside the AoI of at least one avatar. On the other hand,
unmanaged objects are those, which are not situated within the
AoI of any avatar.

For providing awareness to managed objects, the avatars
that have these objects inside their AoI s are t responsible of
maintaining the awareness about them. In this sense, when an
avatar A receives an updating message from a neighbor avatar
B, it will send information to avatar j about the objects inside
the AoI of avatar B. This mechanism is only valid if all avatars
that have an object O inside their AoI are connected and send
updating information between them. Therefore, the concept of
neighbor avatars, used by the COVER method, has been
extended and modified. Whereas COVER method considered
two avatars to be neighbors (thus needed to exchange
information) only if one of them was inside the AoI of the
other, the new method considers two avatars to be neighbors
when their AoIs intersect. We can see on the left in Figure 2,
two neighbor avatars following the definition of the original
COVER method. Following the original criterion, the avatars
on the right image cannot be denoted as neighbor. However,
given the fact that both of them have object O inside their AoI,
if avatar A performs an action over object O, avatar B should
also be informed and vice versa. Therefore, the term
“neighbors” is redefined so that avatar A can inform directly
avatar B of any update on the state of the objects inside its
AoI.

Figure 1: Objects’ Area of Interaction.

For providing awareness to unmanaged objects, the
supernodes are used, similarly to the case of avatars. In that
sense, at boot time, the Loader distributes the objects of the
scene among the initial supernodes. At that time, all objects
are considered as unmanaged, so as to inform all system
avatars about the objects inside their AoI. Moreover, during
the simulation, when the supernode detects that an avatar has
an unmanaged object inside its region this object will become
managed and when the supernode detects that the last
uncovered avatar, which has an object inside its AoI goes
away from this object, it will become again unmanaged.
Furthermore, when the change of the supernode of a region
takes place, the information about all the objects (managed
and unmanaged) in the region will be sent to the new
supernode. In such situations, it’s possible that there is no
remaining avatar in the region that could be assigned as
supernode. For avatars’ awareness this was not a problem
because if there were no avatars, no supernode was needed.
However, for managing objects this situation must be taken
into account so as to assure that there will be no loss of
information for the objects located inside a region without a
supernode. Taking into account that this situation does not
happen very often and based on the fact that no restrictive
overload is introduced, the new approach overcomes this
problem by sending this information to the Loader. In
addition, in the original COVER method, supernodes also
send to the Loader updating information about the quadtree
structure, in order to detect supernodes failures. Similarly, in
the approach presented, when the Loader detects a new
supernode in an empty region, it sends to this supernode the
information about all the objects inside the region.

For taking into account the interactions between avatars and
objects, the owner of an object is defined as the avatar which
is interacting with this object. Two different kinds of
interactions could be performed: updating an attribute of an
object (if static) or updating and moving the object (if
moving). The reason for distinguishing these two kinds of
interactions is due to the different levels of complexity that
arise for their management. In particular, static objects do not
produce any change for the region and are always controlled
by the same supernode, unless a change of the quadtree
structure takes place. On the contrary, moving objects could
exit the region controlled by a supernode and could be added
to a different region during the simulation. When an avatar get
close enough to an interactive object (in a distance lower than
the OAI described above), an interaction could be performed
on this object, only if the object has no owner or if this avatar

is already the owner of that object. In case the interaction is
performed, the avatar should notify the change to all of its
neighbor avatars. Moreover, when an avatar makes a
movement, it should notify all of its neighbors about the
objects which it no longer manages. Additionally, the first
time an avatar enters the AoI of an object and the first time it
undertakes an object (becomes its owner) and the time it
releases it, it should notify the supernode about the interaction,
regardless if it is a covered or uncovered avatar, because the
supernode needs to be updated about the object inside its
region and if they becomes managed or unmanaged. Finally, if
two different avatars try to possess the same object at the same
time, the algorithm assigns as owner the last one that
performed the action. When given this ownership, the avatar
also notifies all other avatars about it.

IV. INTERACTION SIMULATION

An object can be viewed by a given avatar when it is
located within the AoI of this avatar. Since an avatar can
potentially access to a wide variety of objects, it is necessary
to define the different ways in which the avatars will interact
with objects in our DVE system. We have defined a two step
avatar procedure in order to carry out an interaction with an
object. The first step uses the Degree of Interaction DoI and
Level of Importance LoI parameters for selecting an object to
interact with from the set of feasible objects included in its
AoI. This approach exploits the attributes of the objects and
defines a probability of interaction for each of them with the
specific avatar. As we have already mentioned, the users of a
DVE system tend to gather among objects regarding to their
level of interaction and their importance. For that reason, the
higher the value of the DoI and LoI parameters, the higher the
probability of an interaction between avatars and objects.
Furthermore, it is noted that users tend to visit objects located
closer to them. Therefore, the closer the object is, the higher
the probability of an avatar interacting with it. Based on the
above, we have defined the Probability of Interaction of an
object as the normalized value of those parameters (ranging
from 1 to 10) in regard to the distance from the object to the
avatar, as shown in (1). Thus, we consider that an avatar
interacts with the object with the higher PoI, from the list of
surrounding objects within its AoI .

cedis

LoIDoI
PoI

tan


 (1)

Figure 3 shows an example for the different PoI values

assigned to the objects inside the AoI of an avatar. The second
step of the interaction process is related to how the moving
avatar crosses the OAI of an object when it approaches. The

Obj. DoI + LoI Dis. PoI

1 9 0.5m 18

2 7 1.25m 5.6

3 9 1m 9

4 10 2m 5

Figure 3: Objects Area of Interaction and Probability of Interaction.

Figure 2: Avatar Area of Interaction Redefinition.

procedure uses the object’s area of interaction OAI and the
Degree of Interaction DoI for determining if the interaction
can be performed or not.

V. PERFORMANCE EVALUATION

This section presents the experiments conducted for
assessing the efficiency of the proposed approach. In
particular, this section presents the evaluation setup along with
the results obtained by the conducted experiments.

A. Evaluation Setup

In order to evaluate the performance of the proposed
method, we propose the evaluation of P2P DVE systems by
simulation. We have performed different experiments with a
custom simulator, modeling a DVE system based on P2P
architecture. The simulator is written in C++, and it is
composed of two kinds of applications, one modeling the
clients and the other one modeling the central Loader. All
clients must initially join the system through the central
Loader. Both kinds of applications use different threads for
managing the different connections they must establish. Such
connections are performed by means of sockets. We have
simulated the behavior of a set of independent avatars in a P2P
DVE system where non-autonomous entities (objects) exist.
These avatars are located within a seamless 3D virtual world
following three different and well-known initial distributions
[13]: uniform (UNF), skewed (SKW) and clustered (CLS).
Starting from these initial locations, in each simulation,
avatars can move into the scene following one of three
movement patterns: Changing Circular Pattern (CCP) [21],
HP-All (HPA) [22] and HP-Near (HPN) [7].
Objects have been distributed in the DVE following the
uniform and the clustered distribution. The reason is that in the
majority of DVE systems, objects are uniformly scattered
within the virtual environment or placed in certain areas of
special interest. In any case, these two distributions could
provide the average and the worst-case placement of objects
within the virtual world. In order to analyze the impact on the
system of the different kinds of objects (static active objects
and non-static active objects), we have performed simulations
considering two different concentrations: a) Type A
encounters 50% of static active objects and 50% of non-static
active objects and b) Type B encounters only non-static active
objects.

For each parameter studied we have measured the results for
the four combinations of the two different concentrations of
kinds of object and the two distributions of objects in the
environment. Furthermore, for comparison purposes, in all
experiments conducted the case of having no objects was also
considered. Finally, we have studied these five combinations
when avatars where distributed and moving following the nine
combinations of initial distribution and movement pattern
described. Considering the extension of the experiments and
due to space limitations we only present here some
representative results.

In order to study the awareness provided for the proposed

method, we have used the same monitoring algorithm used by
COVER to check at runtime the awareness rate [15]. Using
this algorithm the central Loader can determine if each avatar
is aware or not of all its neighbors because at each iteration,
each avatar sends information about its position and which
other avatars it considers as its neighbors to the central
Loader. We have extended this algorithm so that the Loader
can also measure objects awareness. Concretely, each avatar
also sends to the Loader information about the objects they
consider inside its AoI. Each time an avatar makes an
interaction on an object it sends a message to the Loader, so
that the Loader can know the location of each object in the
system. In this way, the Loader can also compute the
percentage of correct object awareness made by each client.

For measuring the latency, we have used the average round-
trip delay for all the messages sent by an avatar, denoted as the
Average System Response (ASR) for that avatar (for that
client computer). In order to measured this parameter, each
time an avatar moves it sends a message to all of its neighbor
avatars. Then, these destination avatars send back an
acknowledgment to the sending avatar, in such a way that
when the acknowledgment arrives the sending avatar can
compute the round-trip delay for each message.

The experiments were performed on a cluster of
workstations with 21 nodes. One of these nodes hosted the
central Loader, and the rest of the 20 nodes uniformly hosted
the clients in the system. Each node was a dual AMD 1.6GHz
Opteron processor with 6 GBytes of RAM running SuSE
Linux 10.1. When measuring Awareness, Latency and
Communication overhead, we simulated a virtual world with
100 avatars. When measuring throughput, different world
sizes (number of avatars in the virtual world) were used, rating
from 100 to 1000 avatars.

B. Awareness

As described above, we have used a monitoring algorithm
for measuring awareness in real time, so that the central
Loader can determine whether each avatar is aware or not of
all its neighbors and objects. We have separately measured the
awareness rate of avatars and the awareness rate of objects.
The awareness rate of avatars is the proportion between the
number of neighbors that avatars have actually discovered and
the number of neighbors computed by the Loader. The
awareness rate of objects is the proportion between the
number of objects that avatars have actually detected and the
number of objects that they should have detected (computed
by the central Loader).

We measured awareness for all the combinations of avatar
moving pattern, initial distribution of avatars and type of
simulation. For all these cases, we obtained a full awareness
rate both for avatars and objects. Therefore, we can state that
the proposed modifications to the COVER method provide a
full awareness rate (objects and avatars) regardless the
distribution and the moving pattern of avatars, the type of
objects and the distribution of the objects in the virtual world.

Moreover, in order to prove the effectiveness of the
proposed awareness method, it is also necessary to determine

the maximum duration of time-space inconsistencies that can
arise in the system. Those, we have measured the awareness
delay or time to awareness, as the time interval from the
instant when an avatar i enters the AoI of an avatar j to the
instant when i receives the acknowledgment from j as new
neighbor. We have denoted this parameter as TAW. TAW was
measured for the different combinations of object kinds
concentration and distributions when avatars where distributed
and moving following the 9 combinations of initial
distribution and movement pattern described on the previous
section. In all conducted experiments, the existence of objects
slightly increased the awareness delay with respect to the
absence of objects. However, this increase is not significant
with respect to the average delay when no objects are
considered. Moreover, we didn’t appreciate any differences
between moving and non moving objects nor object
distribution in the scene in terms of awareness delay. So that,
we can state that with this extension to the original COVER
method we can grant full objects awareness rate without
affecting nor the avatars awareness nor the awareness delay.

C. Latency

Nevertheless, the evaluation results shown in the previous
subsection it is necessary to evaluate the performance of the
proposed extension in terms of well-known metrics in order to
prove that managing objects does not affect the system
response. Concretely, we have measured the system
performance in terms of latency (ASR, time response) and
system throughput. Additionally, we have measured the
communication overhead that supposes the handling of
objects. We show some representative results from all the
possible combinations of avatar moving pattern, initial
distribution of avatars and type of simulation.

 Concretely, Figure 5 shows the results for the CCP movement
pattern of avatars and uniform initial distribution of avatars in
the virtual world and Figure 6 presents the results when
avatars follow a HPA movement pattern and are initially
distributed following a cluster scheme. In these experiments,
we used a Type A concentration of objects, the results
obtained for the concentration Type B were very similar. Each

plot on these Figures represents one of the 5 combinations of
objects kinds concentrations and distributions considered. On
the X-axis, this figure shows the iteration number of the
simulation, and on the Y-axis it shows the average value (in
seconds) of the ASR for all avatars and for five different
executions.

Figure 5 shows no significant differences between the case

of having no objects and the rest of the cases, while Figure 6
shows that the latency increases in all the plots with respect to
the case of having no objects, particularly for the type B
configurations. The reason for this behavior is that the CLS-
HPA combination is the one that imposes the highest
computational workload (although it is not shown here due to
space limitations, we measured the percentage of CPU
utilization and the simulations with this configuration showed
the highest values). When the system is close to saturation, the
workload added by interactive objects slightly increases the
latency provided to avatars. Nevertheless, the average ASR
value remains far below 250 ms during the whole simulation
while providing a full awareness rate. This is the threshold
value for providing interactivity to users [16], [17]. Therefore,
we can conclude that the increase in latency has no practical
effects for users.

D. Throughput

We have also studied the performance achieved in terms of
system throughput, that is, the number of maximum avatars
that the system can support while providing acceptable latency
values. In order to achieve this goal, we have grouped the
average ASR values provided for different population sizes.
Although we have performed this analysis for all the
combinations of initial distributions and movement patterns,
for the sake of shortness we show here the results for a single
combination, the uniform-CCP pattern. All the cases showed
similar results. It can be seen that all the plots have a flat
slope, and they show values of milliseconds. These results
show that, despite the proposed extension to the awareness
method for managing objects, this is still scalable enough for
supporting thousands of avatars.

Figure 5: ASR value for CLS HPA avatars combination.

Figure 4: ASR value for UNF CCP avatars combination.

E. Communication Overhead

Finally, we have evaluated the communication overhead
imposed by the proposed technique. For evaluating this
magnitude, we have measured the number of messages
exchanged among all the clients in the system, since this
metric is directly related to the computational requirements of
the application [20]. In particular, we have studied the average
number of messages received by any avatar in each iteration,
with respect to the total number of avatars in the system,
denoted as S. We have defined this parameter as Nmsg and
Figures Figure 9 and Figure 10 show these results for the same
representative cases shown when measuring the latency.

Figure 9 shows that the number of messages exchanged in

each configuration (plot) is not significantly higher when
compared to the case of managing no objects in the DVE.
However, Figure 10 shows that when the system supports a
high workload, the management of different kind and amount
of objects can represent a significant overhead for the
proposed method. Thus, it can be seen that the plots for the
type B configuration almost double the percentage of
messages with respect to the plot for the case of managing no
objects. The reason for this behavior is that for the CLS-HPA
combination of initial distribution and movement pattern of

avatars there is a high concentration of both avatars and
objects in certain regions of the DVE, and as a result there is
an important increase in the number of messages propagated
to the peers.

Nevertheless, a comparison between Figures Figure 6 and

Figure 10 shows that there is a high correlation between the
latency and the percentage of message exchanged, but Figure
6 shows that for these percentages of messages acceptable
latencies are provided. Thus, we can conclude that the
proposed method impose a significant overhead for the worst
case, but this overhead is kept below limits that ensure
acceptable interactivity to users.

VI. CONCLUSIONS

In this paper, we have studied the different attributes and
characteristics that objects in DVEs can have and how they
affect the awareness method in P2P DVEs. Based on this
study, we have extended the COVER method for taking
objects into account. The performance evaluation results show
that the modifications to the original awareness technique
provide full object awareness with a minimal impact on
system performance.

REFERENCES

[1] R. M. Fujimoto, R. Weatherly. Time management in the dod high level
architecture. In Proceedings tenth Workshop on Parallel and Distributed
Simulation, pages 60–67, 1996.

[2] F. C. Greenhlagh. Awareness-based communication management in
massive systems. Distributed Systems Engineering, 5, 1998.

[3] S. Y. Hu, G. M. Liao. Scalable peer-to-peer networked virtual
environment. In Proceedings ACM SIGCOMM 2004 workshops on
NetGames ’04, pages 129–133, 2004.

[4] Y. Kawahara, T. Aoyama, H. Morikawa. A peer-to-peer message
exchange scheme for large scale networked virtual environments.
Telecommunication Systems, 25(3):353–370, 2004.

[5] J. Keller, G. Simon. Solipsis: A massively multi-participant virtual
world. In Proceedings of Parallel and Distributed Processing Techniques
and Applications (PDPTA), pages 262–268, Las Vegas, USA, 2003.

[6] B. Knutsson, H. Lu, W. Xu, B. Hopkins. Peer-to-peer support for
massively multiplayer games. In Proceedings of IEEE InfoCom’04,
2004.

[7] M. Matijasevic, K. P. Valavanis, D. Gracanin, I. Lovrek. Application of
a multi-user distributed virtual environment framework to mobile robot

Figure 8: Nmsg value for CLS HPA avatars combination.

Figure 7: Nmsg value for UNF CCP avatars combination.

Figure 6: ASR values for different S values, UNF-CCP avatars combination.

teleoperation over the internet. Machine Intelligence & Robotic Control,
1(1):11–26, 1999.

[8] D. Roberts, R.Wolff. Controlling consistency within collaborative
virtual environments. In Proceedings of IEEE Symposium on
Distributed Simulation and Real-Time Applications (DSRT’04), pages
46–52, 2004.

[9] S. Singhal, M. Zyda. Networked Virtual Environments. ACM Press,
1999.

[10] J. Smed, T. Kaukoranta, H. Hakonen. A review on networking and
multiplayer computer games. Technical report, Turku Centre for
Computer Science. Tech Report 454., 2002.

[11] S. Zhou, W. Cai, B. Lee, S. J. Turner. Time-space consistency in large-
scale distributed virtual environments. ACM Transactions on Modeling
and Computer Simulation, 14(1):31–47, 2004.

[12] C. Bouras, E. Giannaka, T. Tsiatsos. Exploiting Virtual Objects
Attributes and Avatars Behavior in DVEs Partitioning. The 17th
International Conference on Artificial Reality and Telexistence- ICAT
2007, Esbjerg, Denmark, 28-30 November 2007, pp. 157-163

[13] Rueda S, Morillo P, Orduña JM, Duato J. On the characterization of
peer-to-peer distributed virtual environments. In Proceedings of the
IEEEVirtual Reality 2007 (IEEE-VR07), IEEE Computer Society Press,
Charlotte, NC, USA; 107–114.

[14] Morillo P, Moncho W, Orduña JM, Duato J. Providing full awareness to
distributed virtual environments based on peer-to-peer architectures.
Lecture Notes on Computer Science 2006; 4035: 336-347.

[15] Rueda S, Morillo P, Orduña JM. A comparative study of awareness
methods for peer-to-peer distributed virtual environments. Comp. Anim.
Virtual Worlds 2008; 19: 1–16 Published online in Wiley InterScience
DOI: 10.1002/cav.230

[16] Claypool M. The effect of latency on user performance in real-time
strategy games. Computer Networks 2005; 49(1): 52–70.

[17] Henderson T, Bhatti S. Networked games: a QoS-sensitive application
for qos-insensitive users? In Proceedings of the ACM SIGCOMM 2003,
ACM Press/ACM SIGCOMM, 2003;141–147.

[18] Gregor Schiele, Richard Suselbeck, Arno Wacker, Tonio Triebel,
Christian Becker. Consistency management for peer-to-peer-based
massively multiuser virtual environments. In MMVE ’08: Proceedings
of 1st International Workshop on Massively Multiuser Virtual
Environments, pages 14–18, March 2008.

[19] Hu S-Y, Chen J-F, Chen T-H. Von: a scalable peer-to-peer network for
virtual environments. IEEE Network 2006; 20(4): 22–31.

[20] P. Morillo, M. Fernandez, and J.M. Orduña, "On the Characterization of
Avatars in Distributed Virtual Worlds," Proc. EUROGRAPHICS 2003,
pp. 215-220, Sept. 2003

[21] Beatrice N, Antonio S, Rynson L, Frederick L. A multiserver
architecture for distributed virtual walkthrough. In Proceedings of ACM
VRST’02, 2002; 163–170.

[22] Greenhalgh FC. Analysing movement and world transitions in virtual
reality tele-conferencing. In Proceedings of 5th European Conference on
Computer Supported Cooperative Work (ECSCW’97), 1997; 313-

[23] R. B. Smith, R. Hixon, and B. Horan. Collaborative Virtual
Environments. Springer-Verlag, 2001

[24] S. Benford, L. Fahlén. A Spatial Model of Interaction in Large Virtual
Environments. In Proceedings of the third conference on European
Conference on Computer-Supported Cooperative, pages 109-124, Milan,
Italy, 1993.

