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Abstract 
 
The purpose of this paper is to examine the issues 

related to the efficiency and adaptability of the 
admission control module of a Bandwidth Broker. The 
proposed architecture is able to handle situations such 
as the resubmission of previously rejected requests and 
offer a fair treatment for requests in an environment 
where a subset of these requests do not specify their 
ending time. We describe the proposed mechanisms for 
such cases which aim at solving the additional 
problems of fairly prioritizing resubmitted requests 
and efficiently handle requests which do not specify 
ending times. We also provide experimental 
evaluations of the proposed algorithms and the 
conclusions they lead us to. 

 
1. Introduction 

 
Bandwidth Brokers are entities proposed in the 

framework of the DiffServ architecture for Quality of 
Service (QoS) provision in the Internet. The 
Bandwidth Broker [1] manages the resources within 
the specific domain by controlling the network load 
and by accepting or rejecting bandwidth requests. 
Bandwidth Brokers are an intensely studied field, and a 
number of architectures have been proposed for the 
various aspects of its operation ([2], [3], [4], [5]). 
Especially the intra-domain admission control that 
admits or rejects new flow requests based on the 
knowledge of available resources within the domain 
and flow requirements has been studied in [6], [7] and 
[8]. Reference [9] proposes a novel architecture for the 
admission control module that aims at maximizing the 
resource utilization for the network provider, while 
keeping the computation requirements of the admission 
control module of the Bandwidth Broker relatively 
low. Initial experimentation based on simulations has 

also been provided, dealing with the adaptive 
capabilities of the proposed architecture. Reference 
[10] presents an inter-domain approach to the 
admission control. 

In this paper, we examine an adaptive admission 
control module and the improvements in the 
architecture’s efficiency that it can lead to. We also 
examine how the admission control module could 
handle or take advantage of special conditions such as 
the resubmission of previously rejected requests. We 
also use simulations in order to make several 
observations on the behaviour of the algorithm. 

The rest of the paper is organized as follows: 
Section 2 discusses the adaptive admission control 
algorithm. An enhanced algorithm is described and 
analyzed in section 3 and section 4 discusses further 
related issues. Our performance evaluations are 
presented in section 5, and section 6 summarizes our 
conclusions and our future work in this area. 

 
2. Adaptive admission control 

 
We define standby requests as requests that have 

not yet received an answer (either confirmation or 
rejection). Confirmed is a book-ahead request that has 
received an affirmative answer but waits to be 
activated. These states are shown in Figure 1. 

For a DiffServ domain, it is not efficient to keep 
per-flow status in the core routing devices, and 
therefore an aggregated approach is used at the core 
routers. Admission control is performed by the 
Bandwidth Broker at the domain scale, using the hose 
model [11] that has been proposed for VPN 
provisioning. Its basic idea is that bandwidth 
management is simplified by assigning a limit at the 
bandwidth that each edge router is allowed to accept in 
the domain. Its operation assumes that proper 
dimensioning of the network has taken place and that 



part of the available bandwidth for the links has been 
assigned to the management of the Bandwidth Broker 
for the DiffServ service. 
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Our approach also decouples the admission control 

decision from the routing issues. This means that core 
routers are not involved in the process of admission 
control and signaling. Furthermore, while combining 
routing decisions with admission control can be 
beneficial, it is not always possible, or desirable for 
scalability reasons. Packets of a specific flow can be 
routed using different paths, without affecting the 
admission control process. 

We suppose a new request for reservation of 
resources within the domain managed by the 
Bandwidth Broker has the form of  

r(tstart,tend,b,w,in,out) 
where tstart and tend are the starting and finishing 

times for the reservation, b is the requested bandwidth 
and w is the period for which the request can wait until 
it receives either a confirmation or a rejection of the 
reservation. The w parameter gives the user submitting 
the request additional flexibility, because it can 
determine what is the latest time that the user expects a 
response. Since the rejection of a request can have a 
significant impact on a user’s activities, we have to 
avoid delaying the notification in order to gather more 
requests and increase the admission module’s 
effectiveness. Parameter w plays a central role in the 
implementation of our algorithm, because it gives the 
admission control module the possibility to take 
advantage of simultaneous examination of multiple 
requests, without risking excessive consequences on 
the user’s schedule. The Bandwidth Broker’s 

admission control module keeps a list of unanswered 
requests, which we call waiting queue Wq, sorted by 
their waiting time w (the list is easily maintained sorted 
by inserting each new request according to its w 
parameter). in and out are the ingress and egress nodes 
where the request flow enters and leaves the domain. 
Whether the request is inter-domain or intra-domain is 
transparent at this stage. Our model does not presume a 
specific type of inter-Bandwidth Broker 
communication, and intra-domain requests are more 
important in determining the admission module’s 
performance characteristics since they are not affected 
by the inter-domain coordination protocols for the 
Bandwidth Brokers (how to route inter-domain 
requests, how to handle their rejections, etc.).  

As soon as the first item, say r1 (with the closest w 
to the current time) in Wq is about to expire, the 
admission control module calculates the answers that it 
will provide to this and a number of other requests, 
essentially by solving an offline scheduling problem: 

Suppose n is the cardinality of Wq. We define 
 

R={r1, r2,…, rm}⊆ Wq
 
and we want to find a subset Rc⊆R such that 

Σri∈Rcbi ≤ B at any time point where B is the total 
available bandwidth for the service and try to 
maximize Σri∈Rcbi throughout the period from the 
earliest tstart to the latest tend in the R set. Rc is the set of 
requests that will be accepted by the algorithm, while 
requests in the set R-Rc will be rejected. 

This problem is NP-complete [12] and therefore it 
is proposed to use an approximation algorithm to solve 
the following linear programming relaxation in 
polynomial time and then make the solution discrete 
regarding the variables xi, which represent whether ri is 
accepted or not. 

In order to avoid approximation of the solution, this 
problem can be solved using integer linear 
programming, which however becomes very costly 
computationally as the problem instance increases 
(which happens for a high rate of incoming requests). 
A mechanism monitoring the instance size and 
carefully adapting it is needed in this case. The 
important point is how to select the R set. A simple 
approach would be to simply set R=Wq. This solution 
however can become computationally costly, and it can 
furthermore lead to low network utilization, because 
requests that have been made very far in advance will 
probably have little competition, and will therefore be 
most likely accepted. Our solution is to have an 
adaptive parameter for the size of R, which will 
increase if the number of requests in Wq increases or if 
the algorithm was very time-consuming, and decrease 
otherwise. 



Below is a short summary of the main algorithm in 
pseudocode: 
while (Wq not empty) 
  while (next request has not expired) 
    forall i where (bi > B) 
      x  = 0   // reject overbooking requests i

    Solve LP maximization for all links: 
    max Σi∈Rbi(tend-tstart)xi
    Σi R(t) i i start

                          latest t
∈ b x  ≤ B, forall t ∈ (earliest t ,  

end) in R 
    xi ∈ {0,1}, i∈R 
    exit loop 
  end while 
 
  if ((C-T)>=T) 
    Rsize = 1 
  else if ((C-T)>0) 
    Rsize = (1-(C-T)/T)* Rsize
  else 
    R  = Rsize

end while 
size + (Wq-Rsize)*a 

Ck-1 is the duration of the previous computation of 
the requests to be accepted, a is a parameter that 
determines the increase rate of Rsize and T is a threshold 
value of the maximum allowable time for a 
computation. Configuring parameter a determines how 
close to Wq we want the size of the R set to become 
after an increase, so a is essentially the adaptation 
factor of the algorithm’s operation. The variables xi, 
represent whether ri is accepted or not. 

This algorithm is not generally optimal on network 
utilization. As we have mentioned, we make this trade-
off in order to reduce the computation overhead for the 
Bandwidth Broker module. A very fast processing 
module (or conversely a low rate of admission 
requests) leads the algorithm to quickly converge to the 
best approximation of the optimal solution. In 
particular, solving the recursive function for Rsize 
proves that it converges to the size of Wq as quickly as 
(1-a)t converges to near-zero values, which happens 
quite rapidly, especially if a has been chosen close to 
1, which means a very high adaptation capability [9]. 

 
3. Algorithm enhancements 

 
It is possible to enhance the algorithm with 

examining resubmissions of previously rejected 
requests. There is no change needed in the user client’s 
request format, which means that by examining just the 
request, a resubmitted request can not be differentiated 
from a newly generated one. It is proposed however, 
that for purposes of avoiding excessive unnecessary 
overhead, the clients will obey a specified protocol of 
behaviour regarding resubmission of rejected requests. 
The protocol should not have a decisive effect on the 
architecture’s performance (since the Bandwidth 
Broker can not a priori assume that the clients will 
follow the instructions laid out by the protocol 

anyway), and therefore it is kept relatively simple, as 
can be seen in the pseudocode below. The basic idea is 
that the client will resubmit the request only if the 
Bandwidth Broker has indicated that the request should 
indeed be resubmitted, and in addition if the user is 
willing to compromise for a possibly delayed 
reservation. 
n = 1 
while (request is active and request not 
accepted) 
  n = n + 1 
  if (BB proposed this req to be resubmitted) 
    if (user wants to resubmit request) 
      wait for tresubmit * n time 
      resubmit request 
    else 
      reject request (set to inactive) 
  else 
    reject request (set to inactive) 
end while 

In order for the Bandwidth Broker to utilize 
resubmitted requests, it needs to keep a list L of the 
standby requests. Moreover, it will actively prioritize 
such requests in expense of newly received requests, 
and the prioritization will depend on the duration that a 
specific user has been waiting and resubmitting a 
request. This is achieved by the adaptation of the main 
algorithm presented below. 
while (Wq not empty) 
  while (next request has not expired) 
    forall i where (bi > B) 
      xi = 0   // reject overbooking reqs 
    Solve LP maximization for all links: 
    max Σi∈Rbi(tend-tstart)xi
    Σi∈R(t)bixi ≤ B, forall t ∈ (earliest  
                    tstart, latest tend) in R 
    xi ∈ {0,1}, i∈R 
    exit loop 
  end while 
  if ((C-T)>=T) 
    Rsize = 1 
  else if ((C-T)>0) 
    Rsize = (1-(C-T)/T)* Rsize
  else 
    Rsize = Rsize + (Wq-Rsize)*a 
  if Lsize > Rsize
    R = Rsize first elements of L 
  else  
    R = L∪(Rsize–Lsize) elements of R 
end while 

The addition to the main algorithm is that special 
care is taken so that the R set contains as many 
elements from the L list as possible. Furthermore, the 
elements in L are sorted so that the oldest request is the 
first element in the list. This means that whenever a 
request arrives at the Bandwidth Broker module, it is 
first calculated how much time the respective client has 
been at the standby state (by keeping the moment that 
the request initially arrived at the Bandwidth Broker), 
and is then accordingly placed at the L list. 



A request that has been resubmitted n times, this 
means that the total time tw that has elapsed since the 
initial request will approximately be 

 

tw =∑
=

⋅
n

i
ti

1
resubmit + nCavg  (1) 

 
where Cavg is the average computation time for the 

admission control module. Therefore 
 

tw = tresubmit
2

)1( +nn  + nCavg = tresubmit 2

2n
 (2) 

 
if we assume Cavg<<tresubmit for a reasonably 

computationally capable admission control module. 
This shows that the waiting time is increased quite 
rapidly as the number of times that the request is 
rejected increases. This is a necessary feature of the 
algorithm in order to avoid constant resubmission of 
rejected requests in situations were the resources that 
are available to be allocated are significantly below the 
requested resources. The mechanism for prioritizing 
the resubmitted requests however balances this effect 
and allows rejected requests to be accepted at 
consequent attempts without overcoming the limiting 
window for which the resources are useful for the end 
user. 

 
4. Discussion – other issues 

 
For many practical applications, specifying the end 

time of a request is a valid and reasonable assumption. 
Examples include prearranged videoconferences, 
content streaming of known duration, online gaming or 
banking and business applications. There are however 
also cases when it is not practical or possible for the 
user to determine the end time of a request. Since we 
are also considering these open requests, an additional 
simple calculation has to be performed in order to 
determine the tend that will be estimated for an open 
request, as is shown in the algorithm below: 
set Wq’={non open requests in Wq} 
sort Wq’ by di=tend-tstart i∈Wq’ 
index = p* Wq’size
forall open requests in Wq
  tend = tstart + dindex

Assuming the duration of open requests will be on 
average close to the duration of non-open requests (an 
assumption which might or might not hold depending 
on the actual environment), parameter p can be for 
example set to values around or over 95% in order to 
make sure that reservations for open requests will only 
be rarely prematurely interrupted. 

A consideration at this point has to be, that for 
some environments the final duration of open requests 
might differ significantly on average from the duration 
of non-open requests. In order to avoid a higher than 
expected ratio of prematurely interrupted reservations 
for open requests, the Bandwidth Broker’s admission 
control mechanism keeps track of the prematurely 
interrupted reservations. If the interruption ratio is 
indeed higher than expected, the Bandwidth Broker 
module can simply set Wq’ to be the set of open 
requests that have already concluded their reservation 
without premature interruption (so that their final 
duration is known). This functionality however 
requires that the request party communicates to the 
admission module the actual moment when it no longer 
needs the reservation. 

An important issue that is introduced by 
resubmitted requests is to make sure that the 
mechanism for prioritizing resubmitted requests is not 
misused by non-authorized users. Therefore, the 
mechanism has to be accompanied by a security 
architecture that will guarantee the fairness with regard 
to all valid users in the domain. 

 
5. Performance 

 
In this section, we focus on the improvements in 

efficiency and clients’ request satisfaction that are 
gained by applying the mechanisms described in this 
paper. More specifically, we want to study the relative 
strengths and weaknesses of the adaptive mechanism 
and examine what is the effect of allowing (and 
actively prioritizing) the resubmission of previously 
rejected requests. 

In order to conduct realistic simulations at the 
packet level and obtain detailed results, we 
implemented the algorithms in the popular ns-2 
network simulator [13] and run a set of ns-2 simulated 
experiments on an Intel-based Linux PC with 288 MB 
of main RAM memory available and a Pentium III 
Coppermine with 256 KB cache memory on the 
processor chip, which operated at the frequency of 
700MHz. The parameters for each request were 
randomly produced within suitable boundaries 
(regarding the total duration of each simulation, the 
total available bandwidth, the minimum and maximum 
reservation requests) for each situation that we wanted 
to simulate, and each set of requests designated a 
specific ingress point at the network (so all requests 
competed for the same resource limit at the ingress 
point of the simulated network). We simulated a 
scenario where every request had to specify a steady 
amount of bandwidth for a specific duration with 
specific time bounds (there was no possibility for a 
request to specify a variable bandwidth rate). 



Randomness was obtained by using the ns-2 RNG 
class. This class contains an implementation of the 
combined multiple recursive generator MRG32k3a 
[14]. The MRG32k3a generator provides 1.8x1019 
independent streams of random numbers, each of 
which consists of 2.3x1015 substreams. Each substream 
has a period (i.e., the number of random numbers 
before overlap) of 7.6x1022. The period of the entire 
generator is 3.1x1057. More specifically, the random 
generator was independently generating numbers that 
were then assigned to each of the attributes for a new 
request. If the random combination of attributes was 
invalid (for example the start time of the reservation 
was after the stop time of the reservation etc.) the 
request was discarded as if it had never been generated. 
Otherwise, it was generated by the node and sent to the 
Bandwidth Broker for examination. Listings of the 
random requests generated, as well as the source code 
for replicating our results in ns-2 can be found in [15]. 
The used topology for all experiments was a simple 
star network, with the Bandwidth Broker module being 
located in the centre and requests originating from one 
leaf node towards another leaf node of the network. 

Our first set of experiments was designed in order 
to compare the acceptance rates and patterns when the 
resubmission mechanism is active and when it is not. 
For both experiments in this case we used an input 
scenario of 50 randomly generated independent 
requests throughout a time frame of 50 time slots, 
contesting for available bandwidth of 100 Mbps. 
Rejected requests were either completely rejected in 
the first case (no resubmissions), or resubmitted 
according to the admission control module’s 
suggestion in the second case (resubmissions 
supported). 

 

Table 1. Comparison of acceptance rates 
with/without resubmissions 

 
Indepen-
dent 
requests 

Requests 
submitted 
to the 
adm. 
control 
module 

Acceptance 
rate (% 
accepted 
out of total 
independent 
requests) 

Exp 1 (no 
resubmissions) 50 50 30.0% 

Exp 2 (with 
resubmissions) 50 75 58.0% 

 
The results from the ns-2 simulations show a 28% 

improvement in the acceptance rate with the addition 
of resubmissions. We have intentionally chosen a 
scenario where requests are quite densely temporally 
distributed, in order to make the comparisons between 

the two cases more valid (if the requests were sparsely 
distributed the resubmission model would achieve even 
better acceptance rate). In our scenario therefore, 10 
out of 35 originally rejected requests were never 
resubmitted (because the utilization of the network was 
already very high and the admission control module 
decided against resubmitting the rejected requests). 

Our next set of experiments was performed in order 
to compare the performance of the adaptive algorithm 
with and without resubmissions throughout a range of 
request arrival rates. Figure 2 displays the network 
utilization (measured in bytes x time reserved by 
requests) for the two adaptive variations presented in 
this paper, and compares them with a simple admission 
model where a request is simply accepted if there are 
available resources for it at the time of the request. The 
results show that the capability of resubmissions can be 
very effective in significantly increasing the 
effectiveness of the admission procedure and the 
utilization of the network resources. If the operating 
environment does not allow for resubmissions, Figure 
2 demonstrates that our adaptive approach still bears 
significant advantages (an increase of almost 40% in 
most cases) in the network utilization metric. 
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Figure 2. Network utilization 

One of the biggest concerns for adopting an 
adaptive price-based approach to the admission control 
issue is the increased time that will elapse before a 
request receives an answer. Figure 3 deals with this 
aspect and demonstrates that our ns-2 experiments 
indicated a very low increase at the average waiting 
time for most intermediate cases. Only when the 
request arrival rate is very low or very high is the 
increase significant. In the former case the reason is 
that the admission control module “buffers” received 
requests waiting for additional requests in order to be 
evaluated together, and because requests arrive 
sparsely, average waiting time gets higher. In the latter 
case the reason seems to be the larger instances of the 
optimization problems that have to be solved by the 
admission control modules. Here, the adaptive 
capability of the proposed approaches helps reduce this 
effect. 
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Figure 3. Average waiting times 

 
6. Conclusions - Future work 

 
In this paper we have proposed and evaluated an 

enhanced adaptive admission control algorithm for 
Bandwidth Brokers. Our proposed algorithm improves 
on the common admission control modules of 
Bandwidth Brokers on a number of aspects. It offers 
better utilization of the network resources, while 
keeping a balance between simplicity and 
functionality. It automatically falls back to a simpler 
model without trying to optimize the network 
utilization, if its operating environment indicates that 
the algorithm is too complex for the circumstances. 
Because resubmitted requests wait for an ever-
increasing time period, they do not obstruct the rest of 
the requests, while each resubmission significantly 
increases their possibility of being accepted. 

Moreover, the admission control module of the 
Bandwidth Broker tries to prevent unnecessary 
resubmissions by aggressively discouraging end users 
from resubmitting requests if it notices that the 
rejection rate becomes exceedingly high. 

Our future work will focus on further enhancement 
of the admission control algorithm according to the 
conclusions from the simulations. We intend to 
evaluate the algorithm using a real world environment 
in the framework of a complete implementation of the 
Bandwidth Broker. An important factor and a point 
that we intent to further thoroughly investigate 
regarding resubmissions is the effect that the temporal 
difference between tstart and the moment that the 
request is submitted has on the overall performance of 
the admission control module. 
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