
Resubmissions and Partly Defined Requests in an Adaptive Admission
Control Algorithm for Bandwidth Brokers

Ch. Bouras K. Stamos
Research Academic Computer Technology Institute, PO Box 1122, Patras, Greece and

Computer Engineering and Informatics Dept., Univ. of Patras, GR-26500 Patras, Greece
Tel:+30-2610-{960375, 990316}
Fax:+30-2610-{969016, 960358}
e-mail: {bouras, stamos}@cti.gr

Abstract

The purpose of this paper is to examine the issues

related to the efficiency and adaptability of the
admission control module of a Bandwidth Broker. The
proposed architecture is able to handle situations such
as the resubmission of previously rejected requests and
offer a fair treatment for requests in an environment
where a subset of these requests do not specify their
ending time. We describe the proposed mechanisms for
such cases which aim at solving the additional
problems of fairly prioritizing resubmitted requests
and efficiently handle requests which do not specify
ending times. We also provide experimental
evaluations of the proposed algorithms and the
conclusions they lead us to.

1. Introduction

Bandwidth Brokers are entities proposed in the

framework of the DiffServ architecture for Quality of
Service (QoS) provision in the Internet. The
Bandwidth Broker [1] manages the resources within
the specific domain by controlling the network load
and by accepting or rejecting bandwidth requests.
Bandwidth Brokers are an intensely studied field, and a
number of architectures have been proposed for the
various aspects of its operation ([2], [3], [4], [5]).
Especially the intra-domain admission control that
admits or rejects new flow requests based on the
knowledge of available resources within the domain
and flow requirements has been studied in [6], [7] and
[8]. Reference [9] proposes a novel architecture for the
admission control module that aims at maximizing the
resource utilization for the network provider, while
keeping the computation requirements of the admission
control module of the Bandwidth Broker relatively
low. Initial experimentation based on simulations has

also been provided, dealing with the adaptive
capabilities of the proposed architecture. Reference
[10] presents an inter-domain approach to the
admission control.

In this paper, we examine an adaptive admission
control module and the improvements in the
architecture’s efficiency that it can lead to. We also
examine how the admission control module could
handle or take advantage of special conditions such as
the resubmission of previously rejected requests. We
also use simulations in order to make several
observations on the behaviour of the algorithm.

The rest of the paper is organized as follows:
Section 2 discusses the adaptive admission control
algorithm. An enhanced algorithm is described and
analyzed in section 3 and section 4 discusses further
related issues. Our performance evaluations are
presented in section 5, and section 6 summarizes our
conclusions and our future work in this area.

2. Adaptive admission control

We define standby requests as requests that have

not yet received an answer (either confirmation or
rejection). Confirmed is a book-ahead request that has
received an affirmative answer but waits to be
activated. These states are shown in Figure 1.

For a DiffServ domain, it is not efficient to keep
per-flow status in the core routing devices, and
therefore an aggregated approach is used at the core
routers. Admission control is performed by the
Bandwidth Broker at the domain scale, using the hose
model [11] that has been proposed for VPN
provisioning. Its basic idea is that bandwidth
management is simplified by assigning a limit at the
bandwidth that each edge router is allowed to accept in
the domain. Its operation assumes that proper
dimensioning of the network has taken place and that

part of the available bandwidth for the links has been
assigned to the management of the Bandwidth Broker
for the DiffServ service.

idle

standby

active

confirmed

requestw

tstart

accepted

tend

rejected

n x tresubmit

reject
Figure 1. Request states

Our approach also decouples the admission control

decision from the routing issues. This means that core
routers are not involved in the process of admission
control and signaling. Furthermore, while combining
routing decisions with admission control can be
beneficial, it is not always possible, or desirable for
scalability reasons. Packets of a specific flow can be
routed using different paths, without affecting the
admission control process.

We suppose a new request for reservation of
resources within the domain managed by the
Bandwidth Broker has the form of

r(tstart,tend,b,w,in,out)
where tstart and tend are the starting and finishing

times for the reservation, b is the requested bandwidth
and w is the period for which the request can wait until
it receives either a confirmation or a rejection of the
reservation. The w parameter gives the user submitting
the request additional flexibility, because it can
determine what is the latest time that the user expects a
response. Since the rejection of a request can have a
significant impact on a user’s activities, we have to
avoid delaying the notification in order to gather more
requests and increase the admission module’s
effectiveness. Parameter w plays a central role in the
implementation of our algorithm, because it gives the
admission control module the possibility to take
advantage of simultaneous examination of multiple
requests, without risking excessive consequences on
the user’s schedule. The Bandwidth Broker’s

admission control module keeps a list of unanswered
requests, which we call waiting queue Wq, sorted by
their waiting time w (the list is easily maintained sorted
by inserting each new request according to its w
parameter). in and out are the ingress and egress nodes
where the request flow enters and leaves the domain.
Whether the request is inter-domain or intra-domain is
transparent at this stage. Our model does not presume a
specific type of inter-Bandwidth Broker
communication, and intra-domain requests are more
important in determining the admission module’s
performance characteristics since they are not affected
by the inter-domain coordination protocols for the
Bandwidth Brokers (how to route inter-domain
requests, how to handle their rejections, etc.).

As soon as the first item, say r1 (with the closest w
to the current time) in Wq is about to expire, the
admission control module calculates the answers that it
will provide to this and a number of other requests,
essentially by solving an offline scheduling problem:

Suppose n is the cardinality of Wq. We define

R={r1, r2,…, rm}⊆ Wq

and we want to find a subset Rc⊆R such that

Σri∈Rcbi ≤ B at any time point where B is the total
available bandwidth for the service and try to
maximize Σri∈Rcbi throughout the period from the
earliest tstart to the latest tend in the R set. Rc is the set of
requests that will be accepted by the algorithm, while
requests in the set R-Rc will be rejected.

This problem is NP-complete [12] and therefore it
is proposed to use an approximation algorithm to solve
the following linear programming relaxation in
polynomial time and then make the solution discrete
regarding the variables xi, which represent whether ri is
accepted or not.

In order to avoid approximation of the solution, this
problem can be solved using integer linear
programming, which however becomes very costly
computationally as the problem instance increases
(which happens for a high rate of incoming requests).
A mechanism monitoring the instance size and
carefully adapting it is needed in this case. The
important point is how to select the R set. A simple
approach would be to simply set R=Wq. This solution
however can become computationally costly, and it can
furthermore lead to low network utilization, because
requests that have been made very far in advance will
probably have little competition, and will therefore be
most likely accepted. Our solution is to have an
adaptive parameter for the size of R, which will
increase if the number of requests in Wq increases or if
the algorithm was very time-consuming, and decrease
otherwise.

Below is a short summary of the main algorithm in
pseudocode:
while (Wq not empty)
 while (next request has not expired)
 forall i where (bi > B)
 x = 0 // reject overbooking requests i

 Solve LP maximization for all links:
 max Σi∈Rbi(tend-tstart)xi
 Σi R(t) i i start

 latest t
∈ b x ≤ B, forall t ∈ (earliest t ,

end) in R
 xi ∈ {0,1}, i∈R
 exit loop
 end while

 if ((C-T)>=T)
 Rsize = 1
 else if ((C-T)>0)
 Rsize = (1-(C-T)/T)* Rsize
 else
 R = Rsize

end while
size + (Wq-Rsize)*a

Ck-1 is the duration of the previous computation of
the requests to be accepted, a is a parameter that
determines the increase rate of Rsize and T is a threshold
value of the maximum allowable time for a
computation. Configuring parameter a determines how
close to Wq we want the size of the R set to become
after an increase, so a is essentially the adaptation
factor of the algorithm’s operation. The variables xi,
represent whether ri is accepted or not.

This algorithm is not generally optimal on network
utilization. As we have mentioned, we make this trade-
off in order to reduce the computation overhead for the
Bandwidth Broker module. A very fast processing
module (or conversely a low rate of admission
requests) leads the algorithm to quickly converge to the
best approximation of the optimal solution. In
particular, solving the recursive function for Rsize
proves that it converges to the size of Wq as quickly as
(1-a)t converges to near-zero values, which happens
quite rapidly, especially if a has been chosen close to
1, which means a very high adaptation capability [9].

3. Algorithm enhancements

It is possible to enhance the algorithm with

examining resubmissions of previously rejected
requests. There is no change needed in the user client’s
request format, which means that by examining just the
request, a resubmitted request can not be differentiated
from a newly generated one. It is proposed however,
that for purposes of avoiding excessive unnecessary
overhead, the clients will obey a specified protocol of
behaviour regarding resubmission of rejected requests.
The protocol should not have a decisive effect on the
architecture’s performance (since the Bandwidth
Broker can not a priori assume that the clients will
follow the instructions laid out by the protocol

anyway), and therefore it is kept relatively simple, as
can be seen in the pseudocode below. The basic idea is
that the client will resubmit the request only if the
Bandwidth Broker has indicated that the request should
indeed be resubmitted, and in addition if the user is
willing to compromise for a possibly delayed
reservation.
n = 1
while (request is active and request not
accepted)
 n = n + 1
 if (BB proposed this req to be resubmitted)
 if (user wants to resubmit request)
 wait for tresubmit * n time
 resubmit request
 else
 reject request (set to inactive)
 else
 reject request (set to inactive)
end while

In order for the Bandwidth Broker to utilize
resubmitted requests, it needs to keep a list L of the
standby requests. Moreover, it will actively prioritize
such requests in expense of newly received requests,
and the prioritization will depend on the duration that a
specific user has been waiting and resubmitting a
request. This is achieved by the adaptation of the main
algorithm presented below.
while (Wq not empty)
 while (next request has not expired)
 forall i where (bi > B)
 xi = 0 // reject overbooking reqs
 Solve LP maximization for all links:
 max Σi∈Rbi(tend-tstart)xi
 Σi∈R(t)bixi ≤ B, forall t ∈ (earliest
 tstart, latest tend) in R
 xi ∈ {0,1}, i∈R
 exit loop
 end while
 if ((C-T)>=T)
 Rsize = 1
 else if ((C-T)>0)
 Rsize = (1-(C-T)/T)* Rsize
 else
 Rsize = Rsize + (Wq-Rsize)*a
 if Lsize > Rsize
 R = Rsize first elements of L
 else
 R = L∪(Rsize–Lsize) elements of R
end while

The addition to the main algorithm is that special
care is taken so that the R set contains as many
elements from the L list as possible. Furthermore, the
elements in L are sorted so that the oldest request is the
first element in the list. This means that whenever a
request arrives at the Bandwidth Broker module, it is
first calculated how much time the respective client has
been at the standby state (by keeping the moment that
the request initially arrived at the Bandwidth Broker),
and is then accordingly placed at the L list.

A request that has been resubmitted n times, this
means that the total time tw that has elapsed since the
initial request will approximately be

tw =∑
=

⋅
n

i
ti

1
resubmit + nCavg (1)

where Cavg is the average computation time for the

admission control module. Therefore

tw = tresubmit
2

)1(+nn + nCavg = tresubmit 2

2n
 (2)

if we assume Cavg<<tresubmit for a reasonably

computationally capable admission control module.
This shows that the waiting time is increased quite
rapidly as the number of times that the request is
rejected increases. This is a necessary feature of the
algorithm in order to avoid constant resubmission of
rejected requests in situations were the resources that
are available to be allocated are significantly below the
requested resources. The mechanism for prioritizing
the resubmitted requests however balances this effect
and allows rejected requests to be accepted at
consequent attempts without overcoming the limiting
window for which the resources are useful for the end
user.

4. Discussion – other issues

For many practical applications, specifying the end

time of a request is a valid and reasonable assumption.
Examples include prearranged videoconferences,
content streaming of known duration, online gaming or
banking and business applications. There are however
also cases when it is not practical or possible for the
user to determine the end time of a request. Since we
are also considering these open requests, an additional
simple calculation has to be performed in order to
determine the tend that will be estimated for an open
request, as is shown in the algorithm below:
set Wq’={non open requests in Wq}
sort Wq’ by di=tend-tstart i∈Wq’
index = p* Wq’size
forall open requests in Wq
 tend = tstart + dindex

Assuming the duration of open requests will be on
average close to the duration of non-open requests (an
assumption which might or might not hold depending
on the actual environment), parameter p can be for
example set to values around or over 95% in order to
make sure that reservations for open requests will only
be rarely prematurely interrupted.

A consideration at this point has to be, that for
some environments the final duration of open requests
might differ significantly on average from the duration
of non-open requests. In order to avoid a higher than
expected ratio of prematurely interrupted reservations
for open requests, the Bandwidth Broker’s admission
control mechanism keeps track of the prematurely
interrupted reservations. If the interruption ratio is
indeed higher than expected, the Bandwidth Broker
module can simply set Wq’ to be the set of open
requests that have already concluded their reservation
without premature interruption (so that their final
duration is known). This functionality however
requires that the request party communicates to the
admission module the actual moment when it no longer
needs the reservation.

An important issue that is introduced by
resubmitted requests is to make sure that the
mechanism for prioritizing resubmitted requests is not
misused by non-authorized users. Therefore, the
mechanism has to be accompanied by a security
architecture that will guarantee the fairness with regard
to all valid users in the domain.

5. Performance

In this section, we focus on the improvements in

efficiency and clients’ request satisfaction that are
gained by applying the mechanisms described in this
paper. More specifically, we want to study the relative
strengths and weaknesses of the adaptive mechanism
and examine what is the effect of allowing (and
actively prioritizing) the resubmission of previously
rejected requests.

In order to conduct realistic simulations at the
packet level and obtain detailed results, we
implemented the algorithms in the popular ns-2
network simulator [13] and run a set of ns-2 simulated
experiments on an Intel-based Linux PC with 288 MB
of main RAM memory available and a Pentium III
Coppermine with 256 KB cache memory on the
processor chip, which operated at the frequency of
700MHz. The parameters for each request were
randomly produced within suitable boundaries
(regarding the total duration of each simulation, the
total available bandwidth, the minimum and maximum
reservation requests) for each situation that we wanted
to simulate, and each set of requests designated a
specific ingress point at the network (so all requests
competed for the same resource limit at the ingress
point of the simulated network). We simulated a
scenario where every request had to specify a steady
amount of bandwidth for a specific duration with
specific time bounds (there was no possibility for a
request to specify a variable bandwidth rate).

Randomness was obtained by using the ns-2 RNG
class. This class contains an implementation of the
combined multiple recursive generator MRG32k3a
[14]. The MRG32k3a generator provides 1.8x1019
independent streams of random numbers, each of
which consists of 2.3x1015 substreams. Each substream
has a period (i.e., the number of random numbers
before overlap) of 7.6x1022. The period of the entire
generator is 3.1x1057. More specifically, the random
generator was independently generating numbers that
were then assigned to each of the attributes for a new
request. If the random combination of attributes was
invalid (for example the start time of the reservation
was after the stop time of the reservation etc.) the
request was discarded as if it had never been generated.
Otherwise, it was generated by the node and sent to the
Bandwidth Broker for examination. Listings of the
random requests generated, as well as the source code
for replicating our results in ns-2 can be found in [15].
The used topology for all experiments was a simple
star network, with the Bandwidth Broker module being
located in the centre and requests originating from one
leaf node towards another leaf node of the network.

Our first set of experiments was designed in order
to compare the acceptance rates and patterns when the
resubmission mechanism is active and when it is not.
For both experiments in this case we used an input
scenario of 50 randomly generated independent
requests throughout a time frame of 50 time slots,
contesting for available bandwidth of 100 Mbps.
Rejected requests were either completely rejected in
the first case (no resubmissions), or resubmitted
according to the admission control module’s
suggestion in the second case (resubmissions
supported).

Table 1. Comparison of acceptance rates
with/without resubmissions

Indepen-
dent
requests

Requests
submitted
to the
adm.
control
module

Acceptance
rate (%
accepted
out of total
independent
requests)

Exp 1 (no
resubmissions) 50 50 30.0%

Exp 2 (with
resubmissions) 50 75 58.0%

The results from the ns-2 simulations show a 28%

improvement in the acceptance rate with the addition
of resubmissions. We have intentionally chosen a
scenario where requests are quite densely temporally
distributed, in order to make the comparisons between

the two cases more valid (if the requests were sparsely
distributed the resubmission model would achieve even
better acceptance rate). In our scenario therefore, 10
out of 35 originally rejected requests were never
resubmitted (because the utilization of the network was
already very high and the admission control module
decided against resubmitting the rejected requests).

Our next set of experiments was performed in order
to compare the performance of the adaptive algorithm
with and without resubmissions throughout a range of
request arrival rates. Figure 2 displays the network
utilization (measured in bytes x time reserved by
requests) for the two adaptive variations presented in
this paper, and compares them with a simple admission
model where a request is simply accepted if there are
available resources for it at the time of the request. The
results show that the capability of resubmissions can be
very effective in significantly increasing the
effectiveness of the admission procedure and the
utilization of the network resources. If the operating
environment does not allow for resubmissions, Figure
2 demonstrates that our adaptive approach still bears
significant advantages (an increase of almost 40% in
most cases) in the network utilization metric.

Network utilization

2000000

3000000

4000000

5000000

6000000

7000000

0 10 20 30 40

requests per time slot

pr
of

it
/ a

cc
ep

te
d

re
qu

es
t

(b
yt

es
 x

 ti
m

e) adaptive no
resubmissions
simple algorithm

adaptive with
resubmissions

Figure 2. Network utilization

One of the biggest concerns for adopting an
adaptive price-based approach to the admission control
issue is the increased time that will elapse before a
request receives an answer. Figure 3 deals with this
aspect and demonstrates that our ns-2 experiments
indicated a very low increase at the average waiting
time for most intermediate cases. Only when the
request arrival rate is very low or very high is the
increase significant. In the former case the reason is
that the admission control module “buffers” received
requests waiting for additional requests in order to be
evaluated together, and because requests arrive
sparsely, average waiting time gets higher. In the latter
case the reason seems to be the larger instances of the
optimization problems that have to be solved by the
admission control modules. Here, the adaptive
capability of the proposed approaches helps reduce this
effect.

Average waiting time

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

requests per time slot

w
ai

tin
g

tim
e

(ti
m

e
sl

ot
s)

adaptive no
resubmissions
adaptive with
resubmissions

Figure 3. Average waiting times

6. Conclusions - Future work

In this paper we have proposed and evaluated an

enhanced adaptive admission control algorithm for
Bandwidth Brokers. Our proposed algorithm improves
on the common admission control modules of
Bandwidth Brokers on a number of aspects. It offers
better utilization of the network resources, while
keeping a balance between simplicity and
functionality. It automatically falls back to a simpler
model without trying to optimize the network
utilization, if its operating environment indicates that
the algorithm is too complex for the circumstances.
Because resubmitted requests wait for an ever-
increasing time period, they do not obstruct the rest of
the requests, while each resubmission significantly
increases their possibility of being accepted.

Moreover, the admission control module of the
Bandwidth Broker tries to prevent unnecessary
resubmissions by aggressively discouraging end users
from resubmitting requests if it notices that the
rejection rate becomes exceedingly high.

Our future work will focus on further enhancement
of the admission control algorithm according to the
conclusions from the simulations. We intend to
evaluate the algorithm using a real world environment
in the framework of a complete implementation of the
Bandwidth Broker. An important factor and a point
that we intent to further thoroughly investigate
regarding resubmissions is the effect that the temporal
difference between tstart and the moment that the
request is submitted has on the overall performance of
the admission control module.

7. References

[1] RFC 2638 “A Two-bit Differentiated Services
Architecture for the Internet”, K. Nichols, V. Jackobson, L.
Zhang, July 1999

[2] “QBone Bandwidth Broker Architecture”, QBone
Signaling Design Team,
http://qbone.internet2.edu/bb/bboutline2.html

[3] “Bandwidth Broker Implementation”, Information and
Technology Telecommunication Centre, University of
Kansas, http://www.ittc.ukans.edu/~kdrao/BB/

[4] T. Braun, G. Stattenberger, “Performance of a
Bandwidth Broker for DiffServ Networks”, Kommunikation
in verteilten Systemen (KiVS03), Leipzig, Germany, March
25-28, 2003

[5] J. Ogawa, A. Terzis, S. Tsui, L. Wang, L. Zhang. “A
Prototype Implementation of the Two-Tier Architecture for
Differentiated Services”, RTAS99 Vancouver, Canada

[6] N. Blefari-Melazzi, J. N. Daigle, N. Femminella,
“Stateless Admission Control for QoS Provisioning for VoIP
in a DiffServ Domain”, 18th International Teletraffic
Congress, Berlin, Germany, September 2003

[7] M. Menth, S. Gehrsitz, J. Milbrandt, “Fair Assignement
of Efficient Network Admission Control Budgets”, 18th
International Teletraffic Congress, Berlin, Germany,
September 2003

[8] C. Brandauer, W. Burakowski, M. Dabrowski, B, Koch,
H. Tarasiuk, “AC algorithms in Aquila QoS IP network”, 2nd
Polish-German Teletraffic Symposium PGTS 2002, Gdansk,
Poland, September 2002

[9] C. Bouras, K. Stamos, “An Adaptive Admission Control
Algorithm for Bandwidth Brokers”, 3rd IEEE International
Symposium on Network Computing and Applications
(NCA04), Cambridge, MA, USA, August 30 - September 1
2004, pp. 243-250

[10] M. Dabrowski, A. Beben, W. Burakowski, “On Inter-
Domain Admission Control Supported by Measurements in
Multi-domain IP QoS Network”, Inter-Domain Performance
and Simulation IPS 2004, Budapest, Hungary, March 2004

[11] N. Duffield and P. Goyal and A. Greenberg and P. P.
Mishra and K. K. Ramakrishnan and J. E. van der Merive,
“Flexible Model for Resource Management in Virtual Private
Networks”, SIGCOMM 1999, pp. 95-108

[12] V. Vazirani, “Approximation Algorithms”, Springer-
Verlag, 2001

[13] The Network Simulator - ns-2,
http://www.isi.edu/nsnam/ns/

[14] Pierre L’Ecuyer. Good parameters and implementations
for combined multiple recursive random number generators.
Operations Research, 47(1):159–164, 1999.

[15] http://ouranos.ceid.upatras.gr/diffserv-ns/intro.htm

	
	Abstract
	1. Introduction
	2. Adaptive admission control
	3. Algorithm enhancements
	4. Discussion – other issues
	5. Performance
	6. Conclusions - Future work
	7. References

