
IPv6 deployment: Real time applications and QoS aspects*

C. Bouras a,b,*, A. Gkamas a,b,1,3, D. Primpas a,b,2,3, K. Stamos a,b,2,3

a Research Academic Computer Technology Institute, D. Maritsas Building, N. Kazantzaki str., University of Patras Campus, GR-26500 Rion, Greece
b Computer Engineering and Informatics Department, University of Patras, GR-26500 Patras, Greece

Received 21 August 2005; accepted 24 August 2005

Available online 12 October 2005

Abstract

This paper gives an overview of the issues related to the QoS mechanisms under IPv6 and the transition of applications to the new Internet

protocol. We describe the implementation and testing of a QoS service on IPv6 networks, which is based on the DiffServ architecture (expedited

forwarding) and provides strict priorities to packets that are produced from real time applications. The service was implemented and tested at the

6NET large-scale IPv6 network, and additional advanced testing was performed in a local testbed. We present and analyze the results from our

tests under a number of different scenarios. In addition, we focus on issues regarding application transition to IPv6 and we briefly discuss as a case

study the transition of OpenH323 protocol stack to support IPv6. We also discuss the usage and the expected impact of the new Flow Label field in

the IPv6 header.

q 2005 Elsevier B.V. All rights reserved.

Keywords: IPv6; QoS; 6NET; Real-time applications; Dual-stack; Flow label
1. Introduction

In order to address the limited address space of IPv4 and

other concerns regarding its age and its ability to support the

future needs for the Internet, the Internet Engineering Task

Force (IETF) has developed a suite of protocols and standards

known as IP version 6 (IPv6) [1]. The design of IPv6 is

intentionally targeted for minimal impact on upper and lower

layer protocols by avoiding the random addition of new

features. More than simply increasing the address space, IPv6

offers improvements like built-in security support, plug and

play support, no checksum at the IP header and more flexibility

and extensibility than IPv4. IPv6 also facilitates efficient

renumbering of sites by explicitly supporting multiple

addresses on an interface. The widespread adoption of
0140-3664/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2005.08.014

* This work was partially supported by the 6NET project funded by the IST

program of the European Commission (IST contract No: 2001-32603).
* Corresponding author. Address: Computer Engineering and Informatics

Department, University of Patras, GR-26500 Patras, Greece. Tel: C30 2610

960375; fax: C30 2610 969016.

E-mail addresses: bouras@cti.gr (C. Bouras), gkamas@cti.gr (A. Gkamas),

primpas@cti.gr (D. Primpas), stamos@cti.gr (K. Stamos).
1 Tel.: C30 2610 960465.
2 Tel.: C30 2610 960316.
3 Fax: C30 2610 960358.
the new Internet Protocol will fuel innovation and make

possible the creation of many new networking applications. It

will also allow the replacement of the NAT solutions that have

been implemented today in order to work around the lack of

IPv4 addresses. NAT introduces a number of problems to

network applications that need knowledge of the IP address of

the host machine or want to take advantage of Quality of

Service mechanisms, like VoIP implementations.

Internet traffic consists of flows generated by different

applications, which all typically receive the same treatment

from the network, as the network can only provide best-effort

service. This treatment causes many problems to real time

applications, because they are sensitive on parameters as delay,

packet loss or jitter. The implementation of QoS techniques is

therefore necessary and their usage is widely experimented.

During the last years, two architectures—IntServ and

DiffServ—have been proposed in order to provide QoS and

some services have already been deployed. Until now,

significant research activity has been done on QoS in IPv4

networks, but QoS in IPv6 networks is still a relatively open

issue. One of the next goals in this area, and the topic that we

examine in this paper is the investigation of the deployment of

a QoS service on an IPv6 domain. Since the usage of the IPv6

protocol increases and many domains have been IPv6 enabled

or are expected to become so in the next few years, the

investigation of the supported QoS mechanisms on IPv6 and

the deployment of a QoS service should be a basic goal for
Computer Communications 29 (2006) 1393–1401
www.elsevier.com/locate/comcom

http://www.elsevier.com/locate/comcom


C. Bouras et al. / Computer Communications 29 (2006) 1393–14011394
existing networks as they migrate to tomorrow’s IPv6

networks.

In order to evaluate the QoS mechanisms in IPv6, we

implemented a QoS service at the large-scale 6NET network,

and also at a local testbed especially setup for this purpose. For

real-time traffic, we used the traffic generated by an H.323

videoconferencing application based on the library developed

by the OpenH323 project. The OpenH323 project [2] develops

an open source implementation of the H.323 standard in the

form of a central library, the OpenH323 library, which is also

based on another open source library called PWLib. The

OpenH323 library can be used for the rapid development of

applications that wish to use the H.323 protocol for multimedia

communications over packet-based networks. The library and

most of the applications it supports have now been ported to

IPv6 [3,4]. Although the SIP protocol has recently gained wide

adoption, H.323 is still very important as there is a very large

installed base of H.323 products and it is still used widely (for

example GnomeMeeting, an H.323 client based on OpenH323

is the most important videoconferencing application in the

Linux environment).

Part of this work has been supported by the 6NET project

[5], in the framework of which the native IPv6 network used

for our experiments was installed, configured and maintained.

6NET is a 3-year European project to demonstrate that

continued growth of the Internet can be met using new IPv6

technology. The project has built a native IPv6-based network

connecting 16 countries in order to gain experience of IPv6

deployment and migration from existing IPv4-based networks.

This has been used to extensively test a variety of new IPv6

services and applications, as well as interoperability with

legacy applications. The 6NET network is Europe’s biggest

IPv6 network, and aims at gaining and developing an

understanding of the issues involved in deploying IPv6

networks, in terms of physical infrastructure, address allo-

cation, registries, routing, DNS operation, and network

management among others.

The rest of the paper is organized as follows: Section 2

presents related work on IPv6, while Section 3 presents issues

regarding real time applications and IPv6. In Section 4, we

analyze QoS aspects in IPv6 by presenting some QoS

experiments over IPv6 infrastructure. Finally, Section 5

describes the future work that we intend to do on this area

and Section 6 presents our conclusions.

2. Related work

IPv6 has generated a lot of interest in the research

community and as IPv6 deployment is steadily becoming

more widespread, more and more affected areas of the network

infrastructure are examined. There is very large literature on

the general aspects of the new Internet Protocol and its benefits

[6,7]. The topic of applications operating over IPv6 is also

extensively covered and a number of approaches have also

been proposed in order to port already existing network

applications to IPv6 [8–11]. However, an area that relatively

lacks sizeable literature is the issue of Quality of Service
mechanisms and their operation over the IPv6 protocol,

particularly in real-world scenarios. Of course the issue of

Quality of Service in general is a very active research area [12].

In earlier publications [13] the implementation of QoS

mechanisms using Cisco network devices has been extensively

investigated using localized testbeds. This research is followed

up and expanded by the experiments covered in the current

paper. Although IPv6 DiffServ has been implemented in many

commercial routers for some time now, literature is still lacking

in terms of large-scale tests in native IPv6 networks, and this

paper intends to cover this aspect.

Besides 6NET, a number of other research projects [14–18]

in the European-Union and other parts of the world are also

pushing the boundaries of IPv6 deployment and large-scale

experience of the protocol. 6QM [17] is specifically devoted to

research and development of measurement technologies for

Quality of Service in IPv6 networks.

3. Applications for IPv6

Programming network applications for IPv6 [19] introduces

a number of changes compared to IPv4. This means that most

of the existing network applications cannot normally make use

of an IPv6-enabled network. There have been several

approaches to solve this problem, such as Bump-in-the-Stack

[9], Bump-in-the-API [10], IPv6-to-IPv4 Transport Relay

Translator [11] or Stateless IP/ICMP Translation Algorithm

(SIIT) [8], which are generally useful for the transition period

and cover the need for interoperation between nodes that are at

different IPv4 to IPv6 transition stages.

However, it is ultimately inevitable to have full IPv6-

enabled applications, in order to make full use of the new

Internet Protocol and support its wide adoption. An application

that makes use of IPv6 can immediately benefit from the largest

obstacle that IPv4 presents, namely the scarcity of addresses

and therefore the proliferation of complex mechanisms, like

NAT, that attempt to alleviate this problem. There are a lot of

applications, with VoIP applications being a notable example,

which experience serious difficulties when tried to be setup in a

NAT environment. By porting such applications to IPv6, the

huge supply of fully-functional, routable addresses easily

solves all the NAT-related problems.

Moreover, the IPv6-enabled application will be ready to

utilize new IPv6 features such as the Flow Label field and the

emerging extensions at the Internet Layer, such as IPsec and

Quality of Service (QoS) support.

3.1. IPv4–IPv6 comparative application evaluation

In order to have a reference point for the rest of the

experiments we initially compared the IPv4 and IPv6 stacks

used by the OpenPhone application based on OpenH323 which

has been IPv6-enabled, without any congestion or QoS

mechanism.

The first experiment was to use the IPv4 version of the

OpenPhone application at a Point-to-Point communication,

sending video and audio between 2 PCs, and without any



Fig. 1. IPv4—IPv6 comparison.

C. Bouras et al. / Computer Communications 29 (2006) 1393–1401 1395
competing traffic at the intermediate link. As shown at Fig. 1,

we obtained a steady transmit rate of 16 kb/s throughout the

experiment. The quality of the video transmitted was relatively

low, because of the characteristics of the H.261 codec. We then

repeated the experiment using the IPv6 stack for the Point-to-

Point communication between the two endpoints. Again, we

were sending video and audio between 2 PCs, and without any

competing traffic at the intermediate link.

Again we can see in Fig. 1 that in the absence of any

competing traffic and with a link of high capacity, we obtain a

steady transmission rate of around 17 kb/s, around 7% larger

than the IPv4 transmission rate. This difference is due to the

fact that the Data-Link layer was carrying 294-byte packets in

the case of IPv4, and 314-byte packets in the case of IPv6. The

standard IPv6 header is 20 bytes larger than the standard IPv4

header, which produces the 7% overhead. This is in fact an

expected and known result, since the larger IPv6 header

introduces some overhead, especially in relatively low-rate

transmissions.

In both cases, we can observe that the choice of network

layer stack is not an issue, since the application will consume

the required bandwidth, given an uncongested link. We cannot

however expect that this will always be the case. A

transmission rate of around 140 kb/s, means that for low

bandwidth links (for example modem or basic ISDN links)

there will be significant congestion. Also for high bandwidth

links that carry a lot of additional traffic, unwanted results can

occur if the H.323 traffic is added to the competition.
4. QoS aspects in IPv6

Our purpose in this section is to describe the results of our

experiments with QoS mechanisms based on the DiffServ

architecture in IPv6 networks. Moreover, we examine the issue

of the usage of the Flow Label field in the IPv6 header, and the

ongoing work in this area.

4.1. IPv6 QoS testbed implementation

In this section, we describe the implementation and testing

of a QoS service on IPv6 networks. The service is based on the

DiffServ architecture (expedited forwarding) and provides

strict priorities to packets that are produced from real time
applications. This service was applied throughout the pan-

European 6NET network backbone, which is displayed in

Fig. 2. Also Fig. 3 displays in more detail the part of the testbed

that was used for the experiments. The QoS service that was

implemented aims at providing prioritization for traffic coming

from real time applications. Its operation is to classify the

packets that belong to this application and use a ‘priority

queue’ for them. The rest of the traffic on the router will be

treated as usual, with best-effort service.

The service has been implemented using the Modified

Deficit Round Robin (MDRR) mechanism and follows the

classic guidelines of the DiffServ architecture. For the

experimental scenarios we have used the Iperf [20] traffic

generator for artificial traffic. Background traffic is classified

with DSCP value 0 (default) and is treated as best-effort. In

addition, we inserted foreground traffic that simulates an

aggregate of real time traffic. This traffic, depending on the

specific test, was either TCP or UDP traffic, or a mix of

artificially generated UDP traffic and RTP traffic [21]

generated by an application based on the OpenH323 library,

which has been ported to IPv6. On the network devices, a

marking mechanism has been applied in order to mark the

background and foreground traffic. In particular, we distinguish

the background and foreground traffic with different access

lists and mark them with different DSCP values: default (0) and

the predefined expedited forwarding (46), respectively. Next,

the output interfaces of the network devices have been

configured in order to send the packets that have been marked

with DSCP 46 with strict priority.

The various phases of the experiments described in this

section can be categorized as follows:

† Various scenarios using a mix of artificially generated UDP

and TCP traffic for background and either TCP or UDP

artificially generated traffic for foreground, using the large-

scale 6NET testbed.

† Experiments using a mix of artificially generated UDP and

TCP traffic for background and a mix of artificially

generated UDP and real-time traffic using the local CTI

testbed.

† Experiments using the local CTI testbed where the network

devices have been additionally configured in order to apply

the Weighted Random Early Detection (WRED) mechan-

ism for congestion avoidance on the background traffic. In

this case, the goal is to measure if the existence of WRED

makes any impact on the QoS guarantees that the

foreground packets experience.

For the large-scale scenarios, the marking of the packets was

performed at the access level and prioritized traffic was policed

at 5% of the total available bandwidth, which corresponds to

about 7.5 Mbps for the core links that have a total capacity of

155 Mbps at the physical level.

For the purposes of the experiments we used three PCs

located at various points in the network. Premium traffic in the

foreground was sourced from UK (JANET network), was

routed through the Netherlands and Germany, and was



Fig. 2. 6NET core network.

C. Bouras et al. / Computer Communications 29 (2006) 1393–14011396
received at Greece. Furthermore, in the experiments that we

wanted to artificially create background traffic, a generating PC

at the Netherlands was used which sent traffic through

Germany to Greece.

The measurement of the network’s metrics and the service’s

performance was done using specific tools. The first one was

the statistics of the Iperf traffic generator for the traffic that it

was generating. These statistics were produced at the server

instance of the Iperf traffic generator and included the average

throughput and the average jitter of the UDP traffic and the

average throughput of the TCP traffic. Iperf calculates jitter

using the RFC 3550 definition that defines jitter as:

Ji Z JiK1 C ðjDðiK1; iÞjKJiK1Þ=16

where D(i,j) is the difference of the interval between two

successive packets at the receiver from the interval between
two successive packets at the sender, defined as

Dði; jÞZ ðRjKRiÞKðSjKSiÞ

Another tool was the RTCP statistics that the videoconfer-

ence tool was providing and finally, the results from the

Ethereal Network Protocol Analyzer [22] that captured all the

packets at the receiver and provided us graphic representations

of their throughput.

Using this infrastructure, we performed many tests

investigating the QoS mechanisms that are supported on

IPv6. First of all, we tested the prioritization and classification

mechanisms performing a large number of tests. Then, these

tests became more complex and finally, we applied all the

mechanisms simultaneously to test the whole QoS service with

real time data.



Fig. 3. Large-scale testbed.

C. Bouras et al. / Computer Communications 29 (2006) 1393–1401 1397
4.2. Investigation of the prioritization mechanism

The first tests at the large-scale 6NET testbed aimed at

investigating the operation of the classification and prioritiza-

tion mechanisms. The classification mechanism was

implemented using access lists and creating a policing class

in the input interface of the router. According to the ipv6 access

list that the packets belong to, the policy class assigns the

DSCP values: ef (46) for the foreground traffic and default (0)

for the background. Next, on the output interface of the router,

we configured a second policy class that gives strict priority to

the packets that have been marked with the DSCP value for EF.

At a first stage we verified the correct operation of the

marking, policing and shaping mechanisms, and then we

conducted a number of scenarios that included simultaneous

UDP and TCP background traffic, while the foreground

traffic was alternated between the two transport protocols. In

order to verify that traffic marked with the DSCP value of 46
Table 1

Comparing premium to best-effort traffic under congestion

Achieved band-

width (Mbps)

Jitter (ms) Packet loss (%)

UDP foreground 5.11 4.1780 0.082

UDP

background

105.00 0.1430 49.000
(IP Premium traffic) was indeed handled preferentially

compared to the rest of the traffic, we artificially congested

the network by generating 200 Mbps of background UDP

traffic. As Table 1 demonstrates, while in general traffic had

very large losses (about half of the transmitted background

traffic packets were lost), premium marked traffic was able to

comfortably traverse the congested links almost without any

losses.
4.3. Large-scale scenarios

The setup for each scenario is displayed in Table 2. They

have been designed so that we could investigate the

effectiveness and characteristics of the implemented QoS

mechanisms in order to provide a measurable improvement to

various types of traffic that has been marked as premium traffic.

In order to more closely simulate actual network conditions,

scenarios include combinations of either UDP, TCP or both

types of traffic at the background (best-effort traffic). We have

selected a mix of 30% TCP and 70% UDP for the background

traffic, in order to more closely simulate a real-world

environment with a large number of bandwidth-consuming

UDP applications, and a considerable amount of TCP

applications (such as web browsing).

The results from scenarios 7 and 9 which are comprised of

multiple tests, are also visualized in Figs. 4 and 5, respectively.



Table 2

Large-scale scenarios

Scenario Background

(30% TCP–70% UDP)

Foreground

1 50 Mbps UDP traffic (1.5 Mbps)

2 50 Mbps TCP traffic (1.5 Mbps)

3 80 Mbps UDP traffic (1.5 Mbps)

4 80 Mbps TCP traffic (1.5 Mbps)

5 120 Mbps UDP traffic (1.5 Mbps)

6 120 Mbps TCP traffic (1.5 Mbps)

7 80 Mbps UDP trafficO1.5 Mbps)

8 80 Mbps TCP trafficO1.5 Mbps)

9 120 Mbps UDP trafficO1.5 Mbps)

10 120 Mbps TCP trafficO1.5 Mbps)
Fig. 5. UDP foreground with 120 Mbps background traffic.

C. Bouras et al. / Computer Communications 29 (2006) 1393–14011398
Figs. 4 and 5 clearly demonstrate the effectiveness of

the policing mechanism that was applied at the input interface

for the premium traffic. The configuration of the policing

mechanism was done using the option of completely dropping

excess packets (instead of simply treating them as best-effort

traffic, which is also a viable solution depending on the

requirements and the policies of each organization). Therefore,

as soon as foreground traffic exceeded the allocated bandwidth

(5% of the total available bandwidth or about 7.5 Mbps at the

physical level), packet losses increase dramatically. Our choice

for dropping exceeding packets instead of simply handling

them as best-effort is more suitable for real-time applications,

since for that type of application, timing in the reception of the

packets matters more than late delivery. In such a case, late

delivery of packets can be useless if the data should already

have been presented to the user.

Another interesting observation is that the jitter for the

foreground traffic steadily decreases as we are increasing the

transmission rate. This observation is explained by taking into

account the way jitter is calculated. A higher transmission rate

leads to packets arriving closer together at the destination, and

therefore variations in the inter-arrival time are smaller

(although in reality they can be steady when weighted against

the inter-arrival times).

Figs. 6 and 7 summarize the results for TCP foreground

traffic for scenarios 8 and 10, respectively, where we were

gradually increasing the TCP foreground transmission rate. As

soon as the transmission rate approached the allocated
Fig. 4. UDP foreground with 80 Mbps background traffic.
threshold, the transmission rate could no longer be increased,

since the policing mechanism was dropping excessive packets

and the TCP congestion avoidance mechanism was using this

information to reduce the transmission rate.

4.4. Experimental testing for real time applications

Additionally, extended tests in CTI’s local testbed were

conducted, aiming to evaluate the QoS mechanisms with real-

time applications. This testbed uses infrastructure that has been

deployed for IST 6NET project extended with additional CTI

routers. The basic testbed consisted of two routers, one router

of CISCO 7200 series (local 6NET router) and one router of

CISCO 3600 series. This testbed is interconnected with CTI’s

production network and can be shown in Fig. 8 that presents it

in detail. The software version that this testbed uses is the

CISCO IOS 12.2(13) T [23].

The implemented QoS framework in the local testbed was

similar to the one applied at the 6NET network, with the only

difference being that the Class-based Weighted Fair Queuing

mechanism was used instead of Modified Deficit Round Robin.

This was done due to the fact that MDRR is supported in higher

end devices which were not available at CTI local testbed. In

any case, the Class-based WFQ mechanism can also provide

strict packet priority as it implements the Low Latency Queue

mechanism, which is a method to en-queue packets on a

‘priority’ queue in order to guarantee low latency and jitter.

The strict priority (which implements the Low Latency

Queues) is extremely suitable for real-time applications that

need low delay, packet loss and jitter. Therefore, we tried to

simulate realistic conditions of traffic load and to measure
Fig. 6. TCP foreground with 80 Mbps background traffic.



Fig. 7. TCP foreground with 120 Mbps background traffic.

C. Bouras et al. / Computer Communications 29 (2006) 1393–1401 1399
the performance of real-time applications that experience the

preferential treatment. For implementing the following testing

scenarios we used an application based on the OpenH323

library.

Initially, the network was loaded with background traffic,

generated by the Iperf traffic generator (the selected traffic is a

mix of TCP and UDP traffic). At this point we should note that

we have started loading the network before inserting the

foreground traffic, in order for TCP to obtain a stable state. A

while later, the foreground traffic that was generated by a

videoconference (using the OpenPhone application based on

the OpenH323 library) was inserted.

This test was performed for more than 5 minutes and we

recorded the packets thatwere exchanged.The background traffic

was 5 Mbps UDP traffic and also TCP traffic that tried to occupy

asmuchbandwidth as it could. Finally, the results showed that the

UDP background traffic had only a few packets dropped.

Similarly, the foreground traffic (OpenH323) had zero packet

loss and excellent quality,which proves that theQoSmechanisms
Fig. 8. The local
achieved their goal. In addition, the TCP background traffic was

straggled by the strict priority mechanism. But on the other hand,

the foreground traffic has an average throughput of almost

300 Kbps and very good video quality.

Similarly, a second test with the same characteristics and

traffic load was performed. The only difference was that we

also added at the foreground traffic extra UDP traffic

(300 Kbps), created by the Iperf traffic generator. The results

were the same, as the foreground traffic had almost zero packet

loss (both UDP and RTP). In addition, the RTP traffic

(OpenH323) had excellent video quality taking advantage of

the operation of the strict priority mechanism (low latency

queue). The foreground traffic displayed a steadier rate, which

happens because of the inclusion of artificially generated UDP

traffic. Artificially generated traffic has a much lower variation

in its transmission rate than the actual VoIP traffic generated by

the OpenH323 application.
4.5. Investigation of WRED mechanism

Our next goal was to investigate the operation of the WRED

mechanism. The WRED mechanism is a popular mechanism

for congestion avoidance that has been tested extensively in

IPv4. During our tests we tried this mechanism on our IPv6

domain. The tests aimed to prove the correct operation of this

mechanism on IPv6 and secondly to investigate its impact on

the performance of the foreground traffic. At this stage, 2

separate testing scenarios were performed. In the first one, the

WRED mechanism was set up in order to be applied on the

background traffic using 30 and 50 packets in the queue as

thresholds. In addition, the maximum queue size was 75 and

the drop possibility was 10%. A test that we had also performed
CTI testbed.



C. Bouras et al. / Computer Communications 29 (2006) 1393–14011400
earlier was repeated with this new configuration, in order to

compare the results. So, we inserted background traffic that was

a mix of TCP and UDP (5 Mbps) and foreground traffic a mix

of UDP (700 Kbps) and RTP (OpenH323-based application).

The result was that the foreground traffic still only had a few

packet losses and very good quality of video. On the other

hand, the background traffic had several drops that were caused

by the WRED mechanism (UDP background traffic had almost

2% packet loss). So, the foreground traffic does not seem to

receive any impact from the operation of the WRED

mechanism. The strict priority mechanism seems to work

transparently. On the other hand, the background traffic has

many packet losses, especially, if we compare the result (2%

losses of UDP) with the same experiment in Section 4.4

without the WRED mechanism, where the result was less than

0.5%. So, the WRED mechanism worked according to its

specification and reduced the background traffic. The most

significant observation arises when we look at the TCP

throughput of the background traffic and compare it with the

corresponding throughput on Section 4.4. It is obvious that the

throughput in this case is lower and that the WRED caused this

reduction of TCP’s rate. This can be explained if we consider

that the WRED mechanism ‘created’ packet losses earlier,

which led TCP to believe that the network was congested and

reduced its rate.

The second scenario was identical to the first but this time

we changed the thresholds of the WRED mechanism. We tried

to approach the max queue size and configured the min and

max thresholds to be 55 and 75 packets, respectively. The drop

possibility was also 10%.

We observed similar results regarding the foreground traffic,

as the packet losses were almost zero and the video quality was

very good. This time the background traffic had better

behavior, as only 0.92% of UDP traffic packets were lost. In

addition, the TCP traffic had a bigger average throughput

(1.36 Mbps). So, at this experiment the queues were allowed to

be more filled and achieved a better performance for the

background traffic. But, regarding the foreground traffic (for

the QoS service that is tested) the existence of the WRED

mechanism does not have any significant impact.

4.6. Flow label usage

Flow label is a field in IPv6 header that has been planned to

operate for per flow QoS treatment. General rules for the Flow

Label field were proposed recently in RFC 3697 [24], but

specific use cases have not been described yet. RFC 3595 [25]

defines textual conventions to represent the Flow Label field.

Actually, the Flow Label tries to integrate the classic Diffserv

operation where traffic is aggregated into classes with the flow

establishment. Therefore, the RFC 3697 defines that the 20-bit

Flow Label field is used by a source to label packets of a flow

and the zero value is used to indicate packets that are not part of

any flow. Packet classifiers use the triplet of Flow Label,

Source Address, and Destination Address fields to identify

which flow a particular packet belongs to. Packets are

processed in a flow-specific manner by the nodes (routers)
that have been set up with flow-specific state and in any case

the Flow Label value set by the source must be delivered

unchanged to the destination node. If an IPv6 node is not

providing flow-specific treatment, it must ignore the field when

receiving or forwarding a packet. Each established flow should

expire when the flow is idle in order to increase routers’

performance. Therefore, the RFC defines that the nodes should

not assume that packets arriving 120 seconds or more after the

previous packet of a flow still belong to the same flow, unless a

flow state establishment method defines a longer flow state

lifetime or the flow state has been explicitly refreshed.

The flow expiration also allows the Flow Label values

reusability. Flow Label values previously used with a specific

pair of source and destination addresses must not be assigned to

new flows with the same address pair within 120 seconds of the

termination of the previous flow. Finally, to avoid accidental

Flow Label value reuse, the source node should select new

Flow Label values in a well-defined sequence (e.g. sequential

or pseudo-random) and use an initial value that avoids reuse of

recently used Flow Label values each time the system restarts.

In addition, a major issue at the deployment of QoS services

that uses the Flow Label field is security. In particular, it is

crucial to avoid theft of service attacks by unauthorized traffic.

Such attacks are possible with the two following ways: by

spoofing the Flow Label value (only on valid nodes that use the

correct source address) or by spoofing the whole 3-tuple (Flow

Label, Source Address, Destination Address). The latter can be

done in an intermediate router or in a host that is not subject to

ingress filtering. Also, in this point we should note that the

IPsec protocol does not include the IPv6 header’s Flow Label

in any of its cryptographic calculations (in the case of tunnel

mode, it is the outer IPv6 header’s Flow Label that is not

included). As a consequence IPsec does not provide any

defense against an adversary’s modification of the Flow Label.

Finally, it is recommended that applications with an

appropriate privilege in a sending host should be entitled to

set a non zero Flow Label. But this is an issue that depends on

the host’s operating system or on the used policy and

authorization mechanisms.

In the near future, the usage of the Flow Label in QoS

services and also in related mechanisms is expected. A classic

example that can take advantage from the flow label field is a

VoIP implementation that can achieve flow establishment. But

in this case, accompanied mechanisms such as admission

control and flow signaling protocols are necessary in order to

ensure security and successful operation.

5. Future work

All the tests that were performed also indicated some points

that need further research and investigation. The most

interesting and open issue for research is the investigation of

the way that the policy profile should be selected and

configured for an aggregate of flows of real time data in

order to follow the SLAs. We are also interested on testing QoS

services in dual stack networks, where the QoS mechanisms

serve IPv4 and IPv6. The latter is very important in order to



C. Bouras et al. / Computer Communications 29 (2006) 1393–1401 1401
measure possible performance problems between IPv4 and

IPv6 flows.

6. Conclusions

In this paper, we presented a QoS service that was

implemented on a large-scale native IPv6 network and

examined its performance. The QoS mechanisms that were

used were tested widely in order to make sure that they work

well and additionally to investigate their performance. The

tests used simulated background traffic (but as close to reality

as possible) to overload the network, and the QoS service

aimed to handle traffic that belongs to real-time applications.

Examining all the above experiments we come to the

conclusion that the QoS service we tried to implement and

test, using the above mechanisms, worked efficiently as it

reduced the packet loss, the delay and the jitter of the real-time

data, consequently increasing the receiving quality for the

applications that produced these data.

Additionally, the results from the experiments on the

WRED mechanism that had been applied on the background

traffic indicate that there was no significant impact on the

foreground traffic from the existence of the WRED. On

the other hand, the background traffic has been affected from

the WRED mechanism and the impact is proportional to the

values that the thresholds of the WRED mechanism had been

configured at.

The overall conclusion is that the QoS service, with the use

of the specific mechanisms that were tested, can provide

prioritization on an IPv6 domain to the specified traffic and

therefore the real-time application (that produces the traffic)

can operate efficiently and with high quality. The experience

we gained from our involvement with IPv6 also shows that

having ported useful applications to the new Internet Protocol

will play a crucial role to its further adoption.

Acknowledgements

The authors would like to thank the 6NET project partners

for their valuable cooperation and contribution to the

experiments. In particular, we would like to thank Lancaster

University, Cisco Systems, Greek Research and Technology

Network (GRNET), United Kingdom Education and Research

Networking Association (UKERNA) and the 6NET project as a

whole, which is funded by the IST program of the European

Commission (IST Contract No: 2001-32603).
References

[1] Deering S., Hinden R., RFC 2460, ‘Internet Protocol, Version 6

(IPv6) Specification’, Internet Engineering Task Force, December

1998

[2] OpenH323 project, http://www.openh323.org

[3] S. Josset, C. Bouras, A. Gkamas, K. Stamos, Adding IPv6 support to

H323: gnomemeeting/openH323 port, 11th International Conference on

Software Telecommunications and Computer Networks (SoftCOM 2003)

Croatia, Italy, October 7-10 2003 pp. 458–462.

[4] C. Bouras, A. Gkamas, D. Primpas, K. Stamos, Performance Evaluation

of an IPv6-capable H.323 Application. The 18th International Conference

on Advanced Networking and Applications (AINA 2004) Fukuoka,

Japan, March 29-31 2004 pp. 470–475.

[5] 6 NET project, http://www.sixnet.org.

[6] The IPv6 Forum, http://www.ipv6forum.com/

[7] HS247, http://hs247.com/

[8] Nordmark E., RFC 2765, ‘Stateless IP/ICMP Translation Algorithm

(SIIT)’, Internet Engineering Task Force, February 2000

[9] Tsuchiya K., Higuchi H. , Atarashi Y., RFC 2767, ‘Dual Stack Hosts

using the ‘Bump-In-the-Stack’ Technique (BIS)’, Internet Engineering

Task Force, February 2000

[10] Lee S., Shin M-K., Kim Y-J., Nordmark E., Durand A., RFC 3338, ‘Dual

Stack Hosts Using ‘Bump-in-the-API’ (BIA)’ Internet Engineering Task

Force, October 2002

[11] Hagino J., Yamamoto K., RFC 3142, ‘An IPv6-to-IPv4 Transport Relay

Translator’, Internet Engineering Task Force, June 2001

[12] S. Vegesna, IP Quality of Service: The Complete Resource for

Understanding and Deploying IP Quality of Service for Cisco Networks,

Cisco Press, 2001.

[13] C. Bouras, A. Gkamas, D. Primpas, K. Stamos, Quality of Service

aspects in an IPv6 domain, 2004 International Symposium on

Performance Evaluation of Computer and Telecommunication

Systems (SPECTS’ 04), San Jose, California, USA, July 25 - 29

2004 pp. 238–245.

[14] Euro6IX project, http://www.euro6ix.org/

[15] 6 WINIT project, http://www.6winit.org/

[16] 6 POWER project, http://www.6power.org/

[17] 6 QM project, http://www.6qm.org/

[18] SATIP6 project, http://satip6.tilab.com/

[19] Gilligan R., Thomson S., Bound J., Stevens W., RFC 2553, ‘Basic Socket

InterfaceExtensions for IPv6’, InternetEngineeringTaskForce,March1999

[20] Iperf, The TCP/UDP Bandwidth Measurement Tool, http://dast.nlanr.net/

Projects/Iperf/

[21] Casner S., Frederick R., Jacobson V. and Schulzrinne H., RFC 3550,

‘RTP: A Transport Protocol for Real-Time Applications’, Internet

Engineering Task Force, July 2003

[22] Ethereal Network Analyzer, http://www.ethereal.com/

[23] Cisco Systems, Inc. home page, http://www.cisco.com

[24] Rajahalme J., Conta A., Carpenter B., Deering S., RFC 3697, ‘IPv6 Flow

Label Specification’, Internet Engineering Task Force, March 2004

[25] Wijnen B., RFC 3595, ‘Textual Conventions for IPv6 Flow Label’,

Internet Engineering Task Force, September 2003

http://www.openh323.org
http://www.sixnet.org
http://www.ipv6forum.com/
http://hs247.com/
http://www.euro6ix.org/
http://www.6winit.org/
http://www.6power.org/
http://www.6qm.org/
http://satip6.tilab.com/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://www.ethereal.com/
http://www.cisco.com

	IPv6 deployment: Real time applications and QoS aspects
	Introduction
	Related work
	Applications for IPv6
	IPv4-IPv6 comparative application evaluation

	QoS aspects in IPv6
	IPv6 QoS testbed implementation
	Investigation of the prioritization mechanism
	Large-scale scenarios
	Experimental testing for real time applications
	Investigation of WRED mechanism
	Flow label usage

	Future work
	Conclusions
	Acknowledgements
	References


