
Peer-to-Peer Netw. Appl. (2018) 11:44–62
DOI 10.1007/s12083-016-0495-7

Peer-to-peer live video streaming with rateless codes
for massively multiplayer online games

Shakeel Ahmad1 ·Christos Bouras2 ·Eliya Buyukkaya3 ·Muneeb Dawood4 ·
Raouf Hamzaoui5 ·Vaggelis Kapoulas2 ·Andreas Papazois2 ·Gwendal Simon6

Received: 2 March 2016 / Accepted: 25 July 2016 / Published online: 19 August 2016
© Springer Science+Business Media New York 2016

Abstract We present a multi-level multi-overlay hybrid
peer-to-peer live video system that enables players of Mas-
sively Multiplayer Online Games to simultaneously stream
the video of their game and watch the game videos of other

� Raouf Hamzaoui
rhamzaoui@dmu.ac.uk

Shakeel Ahmad
shakeel.ahmad@solent.ac.uk

Christos Bouras
bouras@cti.gr

Eliya Buyukkaya
eliya.buyukkaya@khas.edu.tr

Muneeb Dawood
m.dawood@tees.ac.uk

Vaggelis Kapoulas
kapoulas@cti.gr

Andreas Papazois
papazois@ceid.upatras.gr

Gwendal Simon
Gwendal.Simon@telecom-bretagne.eu

1 Southampton Solent University, Southampton, UK

2 Computer Technology Institute & Press “Diophantus”,
Rio (Patras), Greece

3 Kadir Has University, Fatih/Istanbul, Turkey

4 Teesside University, Middlesbrough, UK

5 De Montfort University, Leicester, UK

6 Telecom Bretagne, Brest, France

players. Each live video bitstream is encoded with rateless
codes and multiple trees are used to transmit the encoded
symbols. Trees are constructed dynamically with the aim to
minimize the transmission rate at the source while maximiz-
ing the number of served peers and guaranteeing on-time
delivery and reliability. ns-2 simulations and real measure-
ments on the Internet show competitive performance in
terms of start-up delay, playback lag, rejection rate, used
bandwidth, continuity index, and video quality.

Keywords Peer-to-peer networking · Live video
streaming · Rateless codes · Online games

1 Introduction

Massively Multiplayer Online Games (MMOGs) allow a
large number of online users to inhabit the same virtual
world and interact with each other in a variety of collabo-
rative and competing scenarios. Gamers within an MMOG
typically become members of online communities with
shared adventures and common objectives. Players can play
against other players or build groups to compete against
other groups or against computer-controlled enemies. A sur-
vey [1] conducted as part of the FP7-funded CNG project [2]
has highlighted that live streaming of screen-captured video
of the game is one of the most desirable community tools
for MMOG gamers. Players can use it to showcase their
skills, share experience with friends, or coordinate missions
in strategy games.

To stream user-generated live video, existing commer-
cial platforms (e.g., TwitchTV [3], Ustream TV [4], and
Livestream [5]) rely on a centralized architecture. However,
even when the streaming system is supported by a Content

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-016-0495-7&domain=pdf
http://orcid.org/0000-0001-6699-7331
mailto:rhamzaoui@dmu.ac.uk
mailto:shakeel.ahmad@solent.ac.uk
mailto:bouras@cti.gr
mailto:eliya.buyukkaya@khas.edu.tr
mailto:m.dawood@tees.ac.uk
mailto:kapoulas@cti.gr
mailto:papazois@ceid.upatras.gr
mailto:Gwendal.Simon@telecom-bretagne.eu

Peer-to-Peer Netw. Appl. (2018) 11:44–62 45

Fig. 1 Overview of the CNG
system

Delivery Network (CDN), this solution is not cost-effective.
Indeed, the popularity distribution of user-generated video
poses a major challenge to large-scale streaming systems.
On one hand, a large proportion of users are likely to act
as sources, so there are many live streams to deal with. On
the other hand, each stream is typically watched by a small
population consisting of a few friends. Moreover, although
the unit price of delivering data over the Internet has signif-
icantly decreased, the amount of bandwidth consumed by a
single user has grown at a faster rate because of the higher
requirements in terms of bitrate, frame rate, and resolution
[6].

To reduce the bandwidth and maintenance costs for the
service provider, a peer-to-peer (P2P) system can be used
instead. While many P2P live video systems have been pro-
posed, none of them was designed to simultaneously fulfill
the following requirements:

– The video source can be a casual gamer with limited
upload bandwidth. It is therefore critical to minimize
the transmission rate at the source.

– The start-up delay and playback lag should be as small
as possible to enable interaction between gamers.

– The system should be resilient against packet loss and
peer churn.

– Live video streaming should not consume the upload
and download bandwidth required for the smooth oper-
ation of the MMOG (MMOG client-server game traf-
fic).

– Peers should be arranged in levels so that video is deliv-
ered at the same time to all peers in the same level.
Moreover, peers in a higher level should be able to
watch the video before those in a lower level. A level
can be a priority class in a tiered or freemium service
(two popular business models where users are charged
according to the quality of service received).

– Users should be able to watch several videos simultane-
ously for, for example, intra-group coordination.

In the CNG project, we developed a multi-level multi-
overlay hybrid P2P system that addresses the above require-
ments. Figure 1 shows a high-level overview of the archi-
tecture. The main components are the clients (peers), a P2P
server, and MMOG servers. The P2P server has persistent
communication with the peers and is responsible for build-
ing and updating the P2P overlays (one overlay for each
video source). The MMOG servers are independent of the
P2P server and deliver the game content according to a
standard client-server model.

Figure 2 shows peers in one P2P overlay. Height-
bounded multicast trees in multiple levels are used for fast
delivery of video data. Rateless codes [7, 8] are used to pro-
vide resilience against packet loss and peer churn. Rateless
codes are ideally suited as they (1) have very low computa-
tional cost, (2) minimize delivery redundancy when a peer

Fig. 2 Video diffusion within and across levels via multicast trees.
Five trees are used: two in level 1 (higher level) rooted at r1 and r2 and
three in level 2 (lower level) rooted at r3, r4, and r5. Here, two packets
should be received in order to decode the video (K = 2). A packet
cannot be forwarded more than three times in a tree (H = 3)

46 Peer-to-Peer Netw. Appl. (2018) 11:44–62

receives data concurrently from multiple peers, (3) can eas-
ily be adapted to varying network conditions since one can
generate on the fly as many encoded symbols as needed.

Our main contribution are novel algorithms to build and
manage the multicast trees in a dynamic environment where
peers may join and leave. Our algorithms allow us to effi-
ciently schedule the rateless encoded packets within and
across levels. We aim at minimizing the transmission rate
for the source while maximizing the number of served
peers and guaranteeing on-time delivery and reliability at
the peers. We run extensive ns-2 simulations to test our
system with respect to scalability, bandwidth heterogeneity,
packet loss, and peer churn. Unlike previous work, we pro-
vide results for a wide range of metrics, including start-up
delay, playback lag, continuity index, peak signal to noise
ratio (PSNR), used bandwidth, rejection rate, and impact on
the gaming experience. Moreover, we provide results from
real measurements over the Internet.

The remainder of the paper is as follows. In Section
2, we discuss related work. In Section 3, we describe our
video transmission strategy. In Section 4, we present our
overlay construction algorithms. In Section 5, we report
our simulation results. In Section 6, we present results
from real measurements on the Internet. Finally, we give
our conclusions and discuss challenges for future work in
Section 7.

2 Related work

In this section, we review previous work that used rateless
coding for P2P video streaming.

The first P2P system based on rateless codes was pro-
posed by Wu and Li [9]. As soon as a receiving peer
successfully decodes a source block, it becomes a source
and applies rateless coding on the decoded source block to
generate encoded symbols for other peers. However, this
approach delays video delivery because packets are not
forwarded to other peers before the decoding is complete.

Grangetto, Gaeta, and Sereno [10] improved this semi-
nal work by introducing a method called Relay and Encode,
where a receiving peer immediately forwards the received
encoded symbols to other peers. The authors show that
Relay and Encode results in a smaller playback lag. In [11],
peers that successfully decode a source block inform the
source so that it stops sending them symbols. However,
these works focus on the transmission aspects of the P2P
system and do not address important issues such as over-
lay construction, peer churn, packet loss, and bandwidth
fluctuation.

The idea of Relay and Encode was later implemented in
a real P2P live streaming application (ToroVerde Stream-
ing (TVS) [12]) and the system was tested on PlanetLab.

However, TVS assumes that the source is a powerful video
server with huge upload bandwidth.

Oh, Wu, and Song [13] use rateless codes in a P2P video
on demand streaming system. The goal is to provide a stable
service of high quality with low computational complex-
ity and a short start-up delay. However, the system was
designed for a video on demand application and may not
be easily adapted to live video streaming. Moreover, the
paper does not deal with overlay management, scalability,
and peer discovery, and the results are given for a small
emulated network of four peers.

Eittenberger [14] discusses the feasibility of using rate-
less codes to increase the upload throughput of mobile
devices for P2P applications in cellular networks. In [15],
trade-offs between different rateless code parameters in P2P
streaming applications are studied. However, both works
([14, 15]) do not propose a complete P2P live video system.

A demo of the proposed system was presented at the
2012 IEEE International Conference on Peer-to-Peer Com-
puting [16]. A simplified version of the system that targets
static scenarios in which all peers join before the start of
the video session and remain subscribed until the end of the
session was described in a conference paper [17]. Simula-
tions showed that the system can sustain high performance
as long as the number of peers that leave the system is
moderate. In contrast to this paper, our new work does not
impose any restriction on peer activity and proposes algo-
rithms that build the overlay dynamically as peers join and
leave. This fundamental change in overlay design and man-
agement offers a substantively novel contribution and leads
to a completely different set of experimental results.

3 Video transmission

In this section, we introduce the different actors in the P2P
system and describe their interactions. Details about overlay
construction and management are left to the next section.

3.1 Initialization

A peer wishing to broadcast its video asks the P2P server to
advertise it. This peer is called a source. If another peer is
interested in the advertised video, it sends a request to the
P2P server. Like a tracker (a server of peerlists in traditional
P2P systems), the P2P server is in charge of updating the
overlay information and informing the participating peers.
The overlay information consists of peer assignments to lev-
els and sets of multicast trees for each level (see Section 4).
The overall overlay is denoted by G(V, E) where V is the
set of peers and E is the set of links. A link between u

and v is denoted by (u, v). The connection between the P2P
server and the peers is checked through regular keep alive

Peer-to-Peer Netw. Appl. (2018) 11:44–62 47

Fig. 3 Video coding and
streaming. Node s denotes the
source. Packet 1 is sent over a
multicast tree to peers 1, 2, and
3. Packet 2 is sent to peers 2, 1,
3, and 4

messages. Failure of the connection triggers removal of the
peer.

3.2 Video and channel coding

As soon as the source peer receives the overlay information
from the P2P server, it captures the video and compresses
it with the H.264 video coder [18]. The resulting bitstream
is partitioned into source blocks, where each source block
corresponds to one GOP (Group of Pictures) and is an
independent unit of fixed playback duration �.

Then the source peer applies rateless coding on each
source block and sends the resulting encoded symbols in
successive UDP packets. Packets are transmitted in an inter-
val of duration � with a uniform inter-departure time, and
one packet is sent on each multicast tree (Fig. 3).

3.3 Inter-level communication

A root of a level 1 multicast tree (r1 and r2 in Fig. 2) imme-
diately forwards packets directly received from the source to
the level 2 multicast trees associated to it (one tree for r1 and
two trees for r2 in Fig. 2). Moreover, as soon as it success-
fully decodes a source block, it sends an acknowledgment to
the source, so that the source stops sending it packets, and it
creates new encoded packets by applying rateless coding on
the decoded source block. Then it sends these new encoded
packets to level 2 peers over the multicast trees associated
to it (ignoring those already used). To reduce the probabil-
ity that a level 2 peer receives duplicate packets, level 1 root
peers use randomly chosen rateless code seeds when they
encode a source block. The value of the seed is sent as part
of the packet header. The number of packets sent by a level

1 root peer to level 2 is set not to exceed the number of level
2 multicast trees associated to this root peer. The procedure
described above for two levels is repeated for the next levels.

3.4 Level-aware video delivery.

To ensure that all peers in the same level have the same
playback lag, and peers in a higher level have a shorter play-
back lag than those in a lower one, the following procedure

Fig. 4 Transmission strategy. The source builds the source block cor-
responding to the first GOP over a period of length �. After rateless
coding, it transmits the source block over the next period of length �

48 Peer-to-Peer Netw. Appl. (2018) 11:44–62

is followed. All peers are synchronized in time. This can be
achieved, for example with the Network Time Protocol [19].
A time stamp is inserted in each UDP packet to indicate the
start time of the current source block.

All level 1 peers play back the first GOP at time 2� +
Dmax. Here Dmax = (H + 1) × lmax, where H is the max-
imum height of a multicast tree and lmax is an estimation
of the maximum latency between two nodes in the overlay.
Thus 2� + Dmax is the latest possible arrival time for any
packet from the first source block (Fig. 4).

When a level 1 root peer completes the decoding of the
first source block, it enters the re-encoding phase up to time
2� + Dmax + �. Here, � gives sufficient time to send re-
encoded packets in case the decoding of the source block
is delayed. As the packet loss rate increases, the decoding
completion time shifts towards 2� + Dmax and more time
is needed for sending re-encoded packets. We used � =
pmax� where pmax is an estimation of the maximum packet
loss rate between two nodes in the overlay (Fig. 5).

All level 2 peers play back the first GOP at time 2� +
2Dmax + �, which is the latest possible arrival time of any
packet for the first source block.

More generally, all peers at level L play back the kth
GOP at time (k + 1)� + LDmax + (L − 1)�.

4 Overlay construction and management

In Section 4.1, we formulate the problem of constructing
an optimal forest for the diffusion of source blocks in one
level. In Section 4.2, we explain the inter-level interactions
in a multi-level overlay. We detail our forest construction
algorithm in Section 4.3.

4.1 Intra-level multicast trees

For simplicity, we first describe the problem for one level
only. The main idea is to use multicast trees for video dif-
fusion. Each multicast tree is a rooted tree used to transmit
one packet of encoded symbols from the source s to a num-
ber of peers. The root of the tree receives the packet directly
from the source.

To recover the source block, a peer must receive at least
K packets of encoded symbols. In other words, a peer
should belong to at least K trees.

Every peer v has an upload capacity, denoted by cv ,
which is the number of packets the node v can transmit. This
capacity constraint limits the number of children a node can
have. In addition, to guarantee on-time delivery and reliabil-
ity at the peers, the end-to-end delay and the packet loss rate
on the path from the source to each peer should be bounded.
This requirement imposes a bound on the height of each
tree.

Our objective is to minimize the transmission rate at the
source while guaranteeing recovery of the source block.
The more trees are used to ensure that all peers receive at
least K packets, the higher is the source transmission rate.
Thus, minimizing the source transmission rate is equiva-
lent to minimizing the number of trees. In light of this,
we formulate the video diffusion problem in the overlay as
a Height-Bounded Spanning Forest problem with Capacity
constraint (HBSFC). The goal of HBSFC is to find a set of
trees (a forest) F with minimum cardinality such that

– the number of trees is limited by the source capacity cs .
– for each node v, the sum of its out-degrees in all trees

of the forest is not greater than its capacity cv .

Fig. 5 Playback
synchronization. Peers at level L
start playing back the first GOP
at time 2�+LDmax + (L− 1)�

Peer-to-Peer Netw. Appl. (2018) 11:44–62 49

– each node is in at least K trees. A node that cannot be
inserted in K trees, is rejected from the overlay.

– the height of each tree is limited by a bound H .

4.2 Multi-level overlay management

When the number of levels is greater than one, we have to
make sure that the video can be relayed from one level to
the next. We create inter-level connections for that purpose.

To simplify the management of the whole system, root
peers in a level are in charge of transmitting data to the
next level. To this effect, a root peer immediately forwards
a packet it received directly from the previous level to a root
peer in the next level. Therefore, a root peer in level l acts as
a source for some root peers in level l + 1. This strategy has
three advantages: (i) there is no delay between the recep-
tion of a packet and its transmission to the next level, (ii)

the inter-level connections are well distributed over peers
because root peers are well distributed over the population,
and (iii) the management of inter-level connections is easy
for the P2P server: it only has to inform the root peers of
every level about the trees in the next level.

We denote by Rl the set of level l root peers. If there is
no capacity issue, each root peer in level l becomes a source

of
⌊ |Rl+1|

|Rl |
⌋
trees in level l + 1. The remaining trees are

randomly allocated to the root peers.
Figure 2 gives an example of a two-level overlay. Each

peer in a level is spanned in two different trees, with height
no more than three. Peers r1 and r2 are the root peers in
level 1, while r3, r4 and r5 are the root peers in level 2,
i.e., R1 = {r1, r2}, R2 = {r3, r4, r5}. Therefore, |R1| is
equal to 2, while |R2| is equal to 3. Peers r1 and r2 are
the sources for trees in level 2. Peers r3 and r4 are con-
nected to r1 and r2, respectively. The tree for r5 is randomly
allocated to r2.

The management of peer capacity is a critical issue for
the inter-level links. We explain how we solve this issue
hereafter.

For any peer v, we distinguish the upload capacity ccur
v

that can be used to serve peers in the same level from the
upload capacity cnext

v that is secured to serve peers in the
next level. Clearly, ccur

v + cnext
v ≤ cv for any peer v, and

cnext
v = 0 if v is not a root peer or is a root peer at the lowest
level.

A root peer should reserve some upload capacity to serve
some peers in the next level. The number of trees that are
constructed in a level l depends on the amount of resources
that have been secured by the root peers in the previous
level. If we denote by Fl and Vl , the forest and the set of
peers in level l, respectively, then the number of trees in Fl

is |Fl | = ∑
v∈Vl−1

cnext
v .

Once the joining request of a peer is received, we
should both update the trees and determine the amount
of resources that must be secured for the next level. On
the one hand, we aim to maximize the number of peers
that are covered in level l, i.e., the number of peers that
are spanned in at least K trees of Fl . This objective calls
for a high

∑
v∈Vl

ccur
v . On the other hand, we have to

reserve enough resources for the next level. This objective
calls for a high Cnext

l = ∑
v∈Vl

cnext
v . The two objec-

tives conflict. Algorithm 1 and Algorithm 2 use heuristics
to find a compromise between these two objectives when
the overlay structure is updated following peer insertion or
removal.

4.2.1 Overlay construction - Insertion

In Algorithm 1, we propose a heuristic to insert into the
overlay a peer that sends a join request. The algorithm tries
to insert the peer into the nearest level to the source (lines
1-3). The peer is inserted into K trees of the forest in a level
with Algorithm 4 (line 2). If the peer cannot be inserted into
any level, one of the following occurs:

– A new level is added to the overlay and the peer is
inserted into the new level if the overlay can have an

50 Peer-to-Peer Netw. Appl. (2018) 11:44–62

additional level, i.e., if the number of levels has not
reached the maximum number of levels the overlay
can have and the peers in the last level have enough
resources to serve the new level (lines 5-6).

– If the peer has more capacity than the peer u having the
minimum capacity in the overlay, the peer replaces u in
all trees containing u (lines 7-9).

– The peer is rejected (line 11).

4.2.2 Overlay construction - Removal

In Algorithm 2, we propose a heuristic to remove a peer
from the overlay. The peer sending the request is removed
from the level in which the peer is residing with Algorithm

5 (line 1). The peer removal from a level may result in the
creation of new trees in the level. If the peers residing in the
previous level cannot gather enough resources to serve all
trees in the level, the algorithm tries to decrease the num-
ber of trees by removing some trees from the level (lines
2-16). The algorithm first removes trees having the smallest
number of nodes (lines 3-4). The removal of a tree is based
on the insertion of tree nodes into other trees not contain-
ing the nodes. The removal process starts from the leaves of
the tree and stops if a leaf cannot be inserted into any other
tree (lines 5-7). If a leaf can be inserted into another tree,
it is removed from the current tree (lines 8-11). The tree
is removed from the forest in the level if it does not con-
tain any node (lines 13-15). After the tree removal process,
if the peers in the previous still cannot support the level,
the peer with minimum capacity is removed from the level
(lines 17-20).

Peer-to-Peer Netw. Appl. (2018) 11:44–62 51

4.3 Resource-aware multicast trees

This section explains the algorithms for the construction
of one intra-level overlay forest in case of peer insertion
and peer removal. These algorithms consider the constraints
described in Section 4.1 (about the trees) and Section 4.2
(about the sharing of physical resources).

In Section 4.3.1, we describe our tree construction algo-
rithm in case of peer insertion. In Sections 4.3.2 and 4.3.3,
we detail our forest construction algorithm in case of peer
insertion and peer removal, respectively.

4.3.1 Tree construction - Insertion

Algorithm 3 is a key routine called by Algorithm 2 in line 9
and by Algorithm 4 in lines 10 and 20. The algorithm either
fails, if the peer cannot be inserted into the tree, or succeeds
by returning the tree containing the peer.

The algorithm aims to insert the peer as close as possible
to the tree root. To do so, we traverse the tree nodes from top
to bottom except for the leaves with maximum depth (lines
3-4). During the tree traversal, one of the following occurs:

– If there exists a node with spare capacity, the peer is
inserted into the tree as a child of this node (lines 5-8).

– If there exists a node such that the peer can support the
node and all its children, the peer replaces the node and the
node is attached to the peer as its child. The peer thus be-
comes the parent of the node and its children (lines 9-12).

– If a deepest leaf u with maximum spare capacity in the
tree with maximum height (line 2) exists and this leaf u

52 Peer-to-Peer Netw. Appl. (2018) 11:44–62

can support an inner node and its children, then the peer
replaces u, u replaces the inner node, and the inner node
is attached to u as its child (lines 13-18).

The algorithm fails if the peer cannot be inserted into the
tree (line 20).

4.3.2 Forest construction - Insertion

Algorithm 4 constructs a forest in one level in case of peer
insertion. The algorithm is a key routine called by Algo-
rithm 1 in lines 2 and 6. It returns a forest containing the
required number of trees such that all nodes are spanned in
K trees. The algorithm is based on the following three steps:

– Creation of new trees: Depending on the amount of
resources secured for level l by the peers residing in the
previous level (l − 1), we first create new trees at level
l rooted at the peer v sending the join request. We link
the root peers in levels l −1 to v and secure capacity for
the next level (l + 1) (lines 2-7).

– Insertion into existing trees: If the peer has not been
spanned in K trees, it is inserted into existing trees in
the level according to Algorithm 3 (lines 8-11). The
peer is first inserted into trees having the smallest num-
ber of nodes in order to minimize peer connection
changes in trees as a result of peer insertion. This also
simplifies the completion of the peer’s trees by leaves
in other trees in the third step of the algorithm.

– Replacing leaves in other trees after inserting them into
the peer’s trees: If the peer still has not been spanned in
K trees, we use Algorithm 3 to insert leaves with max-
imum spare capacity into the peer’s trees with smallest
size. These leaves are taken from trees with maximum
size that do not contain the peer (lines 13-20). The
leaves are then replaced by the peer (line 21).

Finally, if the peer has not been inserted into K different
trees, the initial state of the forest is kept (lines 27-29).

4.3.3 Forest construction - Removal

Algorithm 5 constructs a forest in one level in case of peer
removal. The algorithm is a key routine called by Algorithm
2 in line 1. It returns a forest containing the required number
of trees such that all nodes excluding the peer (and maybe
some other peers due to capacity constraints) are spanned in
K trees.

If the peer sending a removal request is a leaf, we simply
delete it (lines 3-4). We delete the tree from the forest if the
tree does not contain any node (lines 5-7).

On the other hand, if the peer has children, the child u

with maximum height replaces the peer in the tree (lines
9-10). In addition to its own children, u now becomes the
parent of the children of the peer. If u does not have enough
capacity to support all its children, u’s children with max-
imum height are transformed into new trees in the forest
(lines 11-13).

5 Simulation results

We used the ns-2 network simulator to test our system with
respect to scalability, bandwidth heterogeneity, packet loss,
and peer churn. The simulations were run on a PC with an
Intel Core i7-2600K 3.4 GHz processor and 16 GB RAM.

We modeled the MMOG traffic as constant bit rate
(CBR) over TCP because most popular MMOGs, e.g.,
World of Warcraft, use TCP as the transport protocol [20].
We followed measurements in [20] and set the peer upload
and download MMOG traffic to 5 kbps and 14 kbps, respec-
tively. A low-rate CBR background traffic (10 kbps) over
TCP was added to consider additional user online activities
such as Web browsing.

The simulation environment consisted of three main
components: P2P server, peers, and MMOG server. Each
system component was connected to the Internet via its
access link. This configuration leads to a large-scale star
topology (Fig. 6). Each peer, represented by a node in ns-2,
has oneMMOG client, one P2P source agent, up to four P2P

Fig. 6 Network topology of the simulation environment

Peer-to-Peer Netw. Appl. (2018) 11:44–62 53

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350 400 450 500

N
um

be
r o

f p
ee

rs

Time (s)

500 peers
1000 peers
1500 peers

Fig. 7 Number of peers in the system as a function of time. The num-
ber of peers changes according to a churn model determined by the
ratio of peers initially in the system (0.05), the playing length distribu-
tion (Weibull model), and peer arrival (Poisson process). Three curves
are shown, each of which corresponds to a different maximum number
of peers (500, 1000, and 1500)

sink agents depending on how many videos it is receiving
simultaneously, and one TCP background traffic agent.

The peer download capacity was set to 10 Mbps for all
peers. For the peer upload capacity, we followed [21] and
used a log-normal distribution. In the simulations where a
peer was included in only one overlay (Section 5.2), the
mean upload capacity was set to 1024 kbps, and the second
parameter of the distribution, σ , was set to 0.385, giving
upload capacities ranging from 256 kbps to 4.5 Mbps. In the
simulations where a peer was included in up to four over-
lays (Section 5.3), the mean upload capacity was increased
to 4096 kbps while σ was not changed. To avoid that a
source peer gets a smaller upload capacity than the video bit
rate, all source peers were assigned an upload capacity of
1024 kbps and were allowed to use up to 512 kbps for video
streaming.

The video sharing service was constrained to exploit only
half the upload bandwidth of a peer. This provided a safety
margin against bandwidth fluctuations of up to 50 % and
ensured that video sharing is not affected as long as the

 0

 5

 10

 15

 20

 25

 30

 35

 0 200 400 600 800 1000 1200 1400 1600

S
ta

rt
up

 d
el

ay
 (

s)

Number of peers

Min
Max

Average

Fig. 8 Start-up delay vs. maximum number of peers. The error bars
represent one standard deviation on each side of the average delay

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 200 400 600 800 1000 1200 1400 1600

P
la

yb
ac

k
la

g
(s

)

Number of peers

Min
Max

Average

Fig. 9 Playback lag vs. maximum number of peers. The error bars
represent one standard deviation on each side of the average playback
lag

available upload bandwidth does not fall by more than 45 %.
This takes into account the MMOG bandwidth requirement
which is 0.3 % to 5 % of the peer upload capacity (256 kbps
to 4.5 Mbps).

For the link latencies, we followed measurements in [22]
and used a log-normal distribution with mean 17.19 ms and
variance 0.0029.

Peer churn was modeled with the following parameters:

– ratio of peers initially in the system to the maximum
number of peers. We set the ratio to 0.05.

– peer playing session length distribution. Measurements
in [23] and [24] show that the player session length in
MMOGs has a heavy tail characteristic. We followed
the measurements in [24] and modeled the playing
session length with a Weibull distribution. We used
scale = 50 and shape = 0.5 to have a mean session
duration of 100 s. The minimum session duration was
set to 20 s.

– peer arrival. Peers join the system according to a Pois-
son process with rate λ = 1.3n

T
, where n is the number

-2

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000 1200 1400 1600

R
ej

ec
tio

n
R

at
e

(%
)

Number of peers

Min
Max

Average

Fig. 10 Rejection rate vs. maximum number of peers. The error bars
represent one standard deviation on each side of the average rejection
rate

54 Peer-to-Peer Netw. Appl. (2018) 11:44–62

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000 1200 1400 1600

C
on

tin
ui

ty
 In

de
x

Number of peers

Min
Max

Average

Fig. 11 Continuity index vs. maximum number of peers. The error
bars represent one standard deviation on each side of the average
continuity index

of peers that want to join the system and T is the
simulation duration.

We used the CIF Foreman video sequence and encoded
it with the H.264 encoder at 30 frames per second (fps) and
320 kbps. Each GOP had one I frame followed by 29 P

frames. The playback duration of each source block was
� = 1 s. We exploited the accurate Raptor code model pro-
posed in [25] to simulate rateless coding. With this model,
a redundancy of 5 % gives a high probability of successful
decoding [25]. However, to take the effect of peer churn into
account, redundancy was set to 50 %. For the Raptor code,
the symbol size was 1 byte and there were 938 symbols in
each UDP packet. The maximum tree height in the overlay
was H = 3. The maximum latency between two nodes in
the overlay, lmax, was set to the maximum link latency of the
log-normal distribution, and the maximum packet loss rate
between two nodes, pmax, was set to the input packet loss
rate.

5.1 Metrics

To evaluate our system, we used the following metrics:

 30

 31

 32

 33

 34

 35

 36

 37

 0 200 400 600 800 1000 1200 1400 1600

P
S

N
R

 (
d
B

)

Number of peers

Min

Max

Average

Fig. 12 PSNR vs. maximum number of peers. The error bars represent
one standard deviation on each side of the average PSNR

 356

 358

 360

 362

 364

 366

 368

 370

 372

 0 200 400 600 800 1000 1200 1400 1600

U
se

d
ba

nd
w

id
th

 (k
bp

s)

Number of peers

Upload
Download

Fig. 13 Average used bandwidth vs. maximum number of peers

– Start-up delay: interval between the time a user joins a
P2P system and the time it starts playing back the video.

– Playback lag: difference between the playback time of
the source peer and that of the receiving peer.

– Rejection rate: probability that a user is rejected when
it tries to join the system.

– Continuity index [26]: ratio of the number of source
blocks that were available at their due playback time
to the number of source blocks that should have been
played back by that time. This is a measure of in-time
delivery of video content.

– PSNR: measure of the objective quality of the recon-
structed video with respect to the original one. For an
original video frame f1 and a reconstructed one f2, each
containing N × N pixels with values in {0, . . . , 255},
the PSNR is computed as

PSNR(f1, f2) = 10 log10

[
2552 × N2

∑N
i=1

∑N
j=1(f

i,j

1 − f
i,j

2)2

]

where f
i,j

1 and f
i,j

2 are the pixel values at row i

and column j in the original and reconstructed frame,
respectively.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 200 400 600 800 1000 1200 1400 1600

D
at

a
re

ce
iv

ed
 fr

om
 P

2P
 S

er
ve

r (
kb

ps
)

Number of peers

Fig. 14 Control information vs. maximum number of peers

Peer-to-Peer Netw. Appl. (2018) 11:44–62 55

– Average upload and download bandwidth.
– Delay penalty: percentage increase in the round trip

time (from a gamer’s machine to the MMOG server)
caused by video streaming.

– Bandwidth penalty: percentage reduction in the avail-
able bandwidth for MMOG traffic caused by video
streaming.

The delay and bandwidth penalties are used to
measure whether video streaming affects the gaming
experience.

5.2 Single Overlay

In the first experiment, we used a single video source and
studied the scalability of the system with respect to the max-
imum number of peers in the overlay (from 100 to 1500,
with an increment of 100). For each value of the maximum
number of peers, we repeated the simulations 50 times as
this number was sufficient to obtain stable results. The sim-
ulations were run independently, with a duration of 500 s
each.

Figure 7 shows the average number of active peers as a
function of time for three selected values of the maximum
number of peers (500,1000,1500).

Figures 8 and 9 show the start-up delay and playback
lag, respectively, for each value of the maximum number of
peers. Most of the peers experienced a start-up delay of less
than 2 s and a playback lag of less than 2.4 s. Moreover, the
average values were very close to the minimum values. In
very rare cases, the start-up delay was high. This happened
when, repeatedly, sending peers left the overlay before the
receiving peer decoded the first source block successfully.

Figure 10 shows the rejection rate. A peer requesting
to view the video could be rejected by the P2P Server
if its inclusion causes under-provisioning, i.e., the total
required download bandwidth becomes higher than the
total upload capacity. When the maximum number of peers

-6

-4

-2

 0

 2

 4

 6

 0 200 400 600 800 1000 1200 1400 1600

D
el

ay
 p

en
al

ty
 (

%
)

Number of peers

Min
Max

Average

Fig. 15 Delay penalty vs. maximum number of peers. The error bars
represent one standard deviation on each side of the average delay
penalty

-6

-4

-2

0

2

4

6

 0 200 400 600 800 1000 1200 1400 1600

B
an

dw
id

th
 p

en
al

ty
 (

%
)

Number of peers

Min
Max

Average

Fig. 16 Bandwidth penalty vs. maximum number of peers. The error
bars represent one standard deviation on each side of the average
bandwidth penalty

was increased, the probability of finding peers to upload
the video to a new peer increased and the rejection rate
decreased.

Figure 11 shows that the average continuity index of
peers was very close to 1. Figure 12 shows that the average
received PSNR remained close to the average PSNR of the
transmitted video (35.07 dB). Note that a few peers had a
PSNR above 35.07 dB. This is because a peer can be active
for only a few seconds and receive that part of the video that
has higher PSNR than the average. The rare cases of peers
with poor PSNR were due to peer churn (peers present in
the P2P system only when the video PSNR was low or peers
receiving video from peers that left and were replaced by
peers that left immediately).

Figure 13 shows the average used upload and down-
load bandwidth for video sharing. The average used upload
bandwidth was slightly lower than the average used down-
load bandwidth because the source peer is contributing its
upload bandwidth which reduces the burden on peers. The
difference between the average used upload and download
bandwidth is larger when the number of peers is small.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10

S
ta

rt
up

 d
el

ay
 (

s)

Packet loss rate (%)

Min
Max

Average

Fig. 17 Startup delay vs. packet loss rate. The error bars represent one
standard deviation on each side of the average start-up delay

56 Peer-to-Peer Netw. Appl. (2018) 11:44–62

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10

P
la

yb
ac

k
la

g
(s

)

Packet loss rate (%)

Min
Max

Average

Fig. 18 Playback lag vs. packet loss rate. The error bars represent one
standard deviation on each side of the average playback lag

Whenever a peer leaves or joins, the P2P server sends
overlay update messages to the affected peers. As shown in
Fig. 14, this overhead was negligible compared to the video
bit rate. By increasing the maximum number of peers, the
average degree of the overlay (i.e., the average number of
peers associated to a peer) increased and therefore the over-
head also increased. However, beyond a certain threshold
(900 in this experiment), the average degree saturated as
new peers were placed in lower levels. By further increasing
the number of peers, the overhead decreased because of the
increase in the number of leaves.

Figures 15 and 16 show that the P2P traffic had a negli-
gible effect on the MMOG operation: the average response
time from the MMOG server increased by only 0.04 %
and the average bandwidth available to the MMOG was not
reduced.

We now evaluate the effect of packet loss on the received
video quality. The maximum number of peers was 800. To
simulate packet loss, we used an independent and identi-
cally distributed (iid) packet loss model where packets are
lost with a given packet loss probability in the physical

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10

P
S

N
R

 (
dB

)

Packet loss rate (%)

Min
Max

Average

Fig. 19 PSNR vs. packet loss rate. The error bars represent one
standard deviation on each side of the average PSNR

 320

 340

 360

 380

 400

 420

 0 2 4 6 8 10

U
se

d
ba

nd
w

id
th

 (k
bp

s)

Packet loss rate (%)

Upload
Download

Fig. 20 Average used bandwidth vs. packet loss rate

links. Figures 17 and 18 show that the average start-up delay
and playback lag increased slightly when the packet loss rate
was increased. This is because a peer has to wait slightly
longer before it receives enough packets for successful
decoding.

Figure 19 shows that the average PSNR of the system
stayed almost constant for packet loss rates below 4 %. This
was because the rateless code was able to recover almost
all losses. However, the PSNR dropped significantly beyond
that value because the redundancy used for the rateless code
is not enough to cope with such a high packet loss rate. Note
that due to the existence of multiple hops between the source
and the receiver, the end to end packet loss rate may be much
higher than the physical link loss rate.

At 0 % loss rate, both the average used upload and
download bandwidths are approximately the same. As the
packet loss rate increased, peers received fewer packets
and hence forwarded fewer packets as well, which resulted
in a decrease in the used upload and download bandwidth
(Fig. 20).

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700 800

St
ar

tu
p

de
la

y
(s

)

Number of sources

Min
Max

Average

Fig. 21 Startup delay vs. number of video sources. The error bars
represent one standard deviation on each side of the average startup
delay

Peer-to-Peer Netw. Appl. (2018) 11:44–62 57

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800

P
la

yb
ac

k
la

g
(s

)

Number of sources

Min
Max

Average

Fig. 22 Playback lag vs. number of video sources. The error bars rep-
resent one standard deviation on each side of the average playback
lag

5.3 Multiple overlays

This experiment was designed to study the scalability of the
system with respect to the number of live videos. The max-
imum number of users was 500 and the number of video
sources was varied. Each user was allowed to watch up
to four videos such that the number of peers watching a
particular video follows a Zipf distribution. When a peer
participated in more than one P2P overlay, its resource was
equally allocated among the overlays.

Figures 21 and 22 show that the average start-up delay
and playback lag remained almost stable with increasing
number of sources.

Figure 23 shows that the rejection rate did not change
significantly by increasing the number of sources.

The average PSNR remained constant and close to the
maximum PSNRwhen the number of sources was increased
(Fig. 24). Moreover, more than 99.27 % of peers had a
PSNR higher than 34.6 dB, and more than 92.74 % of peers
had a PSNR higher than 35 dB.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 100 200 300 400 500 600 700 800

R
ej

ec
tio

n
R

at
e

(%
)

Number of sources

Min
Max

Average

Fig. 23 Rejection rate vs. number of video sources. The error bars
represent one standard deviation on each side of the average rejection
rate

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600 700 800

PS
N

R
 (d

B)

Number of sources

Min
Max

Average

Fig. 24 PSNR vs. number of video sources. The error bars represent
one standard deviation on each side of the average PSNR

Figure 25 shows the average used upload and download
bandwidth as a function of the number of sources. Since
a source adds its upload capacity to the overlay without
consuming the download capacity, increasing the number
of sources reduces the upload contribution requirement on
peers. This explains why the average used upload band-
width was lower than the average used download bandwidth
and the difference between them increased when the num-
ber of sources was increased. Similarly, when the number
of sources was increased, the average overlay population
(i.e., the number of peers per overlay) became smaller. In a
smaller overlay, a peer depends on relatively fewer sending
peers, thus peer churn may reduce the number of pack-
ets received by a peer. This explains the slight decrease in
the average download bandwidth. However, peers can still
get maximum PSNR because of redundancy. When a peer
receives fewer packets, it forwards fewer packets as well,
which reduces the average used upload bandwidth.

6 Online tests

This section presents the results of online testing. Video
from TheMissing InkMMOG [27] was captured in real time

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800

U
se

d
ba

nd
w

id
th

 (k
bp

s)

Number of sources

Upload
Download

Fig. 25 Average used bandwidth vs. number of video sources

58 Peer-to-Peer Netw. Appl. (2018) 11:44–62

Table 1 Results from First
Online Test Metric Average Minimum Maximum

Start-up delay (s) 28.63 18.17 34.85

Playback lag (s) 1.92 0.87 3.42

Continuity index 0.991 0.972 1

and encoded at a constant bit rate of 128 kbps. A frame rate
of 25 fps and a resolution of 320x240 were used. Before
a test, each user synchronized its PC clock with an Inter-
net time server. This was necessary to measure the playback
lag. The default upload and download bandwidths were
set to 900 kbps and 1800 kbps, respectively. Users were
asked to estimate their upload and download bandwidths
with the SpeedTest tool [28]. If the measured upload band-
width (respectively download bandwidth) was smaller than
1100 kbps (respectively 2000 kbps), the default value was
replaced by the measured value minus 200 kbps (to cater for
the MMOG and other background traffic).

When a user joined a session, the P2P Client process
created log files for start-up delay, playback lag and conti-
nuity index. Each log file was uniquely identifiable by the
user name and video ID. At the end of the session, each
tester uploaded the generated log files to an FTP server.
Then a program was run to process all log files and provide
the average, minimum and maximum values of all metrics.
Nine users participated in the first test: three were located in
Leicester (UK), two in Patras (Greece), three in Petah-Tikva
(Israel), and one in Tel Aviv (Israel). Each user advertised
its video between 15 to 25 min. At the same time, and in
successive slots, this user selected an advertised video and
watched it for at least 5 min. Table 1 shows the results of the
measurements.

The start-up delay was higher than that of the ns-2 simu-
lations. This is due to the time needed for Network Address
Translation (NAT) traversal. The NAT traversal module used
in our implementation took between 10 to 20 s to establish
a single connection. Moreover, when a peer needed to com-
municate with multiple peers, the NAT module established
the connections successively, aggregating the delay. The
playback lag was small. Its fluctuation is due to the variation
in the network propagation delay, forwarding delay, as well
as lack of precision in the synchronization with the Internet
time server. The average continuity index was 0.991, mean-
ing that on average a user failed to decode fewer than 1 %
of the source blocks.

In a second test, a similar procedure was followed with
the difference that each user was allowed to watch up to
three videos simultaneously. Eight users participated in the
test. Four were located in Leicester (UK), one in London
(UK), and three in Patras (Greece). Each user advertised its
video for 30 min. Each user watched simultaneously up to
three videos selected randomly. Each of the selected videos
was watched for at least 5 min before switching to another
video. The results are summarized in Table 2.

Because in this test a peer watched up to three videos
simultaneously, more connections needed to be established
between this peer and the other peers. Since the NAT traver-
sal module establishes connections one by one, the start-up
delay increased. The slower NAT traversal process also
explains why the continuity index decreased.

A comparison between the performance of our P2P live
streaming system with that of state of the art systems is not
straightforward. This is because an implementation of those
systems is not readily available to allow testing under iden-
tical conditions. Therefore, our comparison is based on per-
formance measurements reported in the literature. Table 3
shows statistics on start-up delay and playback lag for pop-
ular P2P live streaming systems. Although this comparison
is not done under identical conditions, it provides useful
information.

Previous systems have a higher playback lag because
they use a pull-based overlay construction mechanism.
Peers store segments (of up to a few minutes of video) in
their buffer. These segments may be fetched by other peers
minutes after they were stored. In contrast, our system is
push-based with peers sending packets on trees as soon as
they receive them.

The start-up delay is mainly due to two factors: (1) over-
lay construction, i.e., time spent in finding a suitable set of
sending peers and (2) NAT traversal. When a peer joins our
system, the P2P server updates the overlay and informs all
relevant peers who start using the new overlay within one
second. This helps reducing the start-up delay. In other sys-
tems, usually a joining peer contacts peers chosen randomly

Table 2 Results from Second
Online Test Metric Average Minimum Maximum

Start-up delay (s) 34.45 11.404 81.21

Playback lag (s) 3.265 0.97 5.51

Continuity index 0.88 0.41 1

Peer-to-Peer Netw. Appl. (2018) 11:44–62 59

Table 3 Performance of popular P2P systems

Playback Start-up Experimental NAT

lag (s) delay (s) Setup Traversal

TVS [12] − 25 (avg) PlanetLab No

PPLive [29] 150 (max) 20 to 120 Internet Yes

Coolstreaming [26] − 21 to 25 Trace driven simulation Weak support

Anysee [30] 20 to 30 20 Trace driven simulation No

SopCast [30] 60 (avg) 60 to 300 PlanetLab −
CLive [31] 25 (avg) − Simulation No

NAPA-WINE [32] 6 (min) − Controlled Lab Network No

VUD [33] 5 to 20 5 to 18 Simulation (PlanetLab) No

MATIN [34] 6 to 10 10 OMNET++ No

Transit [35] − 5 to 50 Trace driven simulation No

from a list of peers to request video segments. The effect of
NAT traversal can be seen in Table 3 by observing that the
start-up delay of systems not supporting NAT traversal is
much lower than that of systems supporting it. Our system
supports full NAT traversal and still achieves a competitive
start-up delay.

7 Conclusion

We presented a multi-overlay multi-level hybrid P2P live
video streaming system for MMOGs. The system uses mul-
tiple trees and rateless codes to stream screen-captured
video of the game. A P2P server is responsible for the over-
lay construction and dynamically adapts trees to peer arrival
and departure. The main problem addressed by the paper
is how to construct trees such that the transmission rate
at the source is minimized, the number of served peers is
maximized, and all peers receive enough encoded symbols
to decode the video on time. We proposed algorithms to
dynamically build such trees and provided extensive exper-
imental results with the ns-2 network simulator to study the
performance of our system with respect to scalability, band-
width heterogeneity, packet loss, and peer churn. The results
showed that the system has a small start-up delay, short
playback lag, low rejection rate, and provides high video
quality to most peers. We also presented results from real
measurements over the Internet, which confirmed that our
system is competitive compared to existing state of the art
systems.

In the remainder of this section, we highlight challenges
for future work.

Our implementation relies on an LT code [7] for channel
coding. The performance can be improved by replacing this
code with RaptorQ [36], a rateless code with better coding
efficiency than LT codes.

A peer which does not contribute the upload bandwidth
requested by the P2P server can affect the Quality of Expe-
rience (QoE) of other peers. This may happen if the peer
advertises an upload capacity that is higher than the actual
one or the ISP limits the upload bandwidth. To deal with this
situation, the P2P client could send periodic reports to the
P2P server. These reports should contain the packet deliv-
ery status from different senders and enable the P2P server
to infer the actual contribution of each peer.

The system asks users to measure the available band-
width and report it to the P2P server. A wrong estimation
of bandwidth may lead to inefficient overlay construction.
This issue could be addressed by implementing a mecha-
nism to provide a more accurate estimation of the available
bandwidth without involving user interaction.

When a peer joins or leaves the system, the P2P server
sends update overlay information to all peers. This com-
munication overhead could be reduced by sending update
messages to affected peers only. Also, the P2P server reacts
to each new event (join request or departure of a peer) inde-
pendently by updating the overlay and sending updates to
each peer. A better solution would be to group all events
produced within a certain time frame (e.g., one second) and
process them simultaneously to generate a single update
message for all events generated in this time frame. This will
reduce the computational load as well as the communication
overhead of the P2P server.

References

1. Ferrari E, Lessiter J, Freeman J (2011) Users and uses of mul-
tiplayer games and community activities. In: Proceedings NEM
Summit, Turin

2. Online. http://www.cng-project.eu/. Last accessed 29 Feb. 2016
3. Online. http://www.twitch.tv/. Last accessed 29 Feb. 2016
4. Online. http://www.ustream.tv. Last accessed 29 Feb. 2016

http://www.cng-project.eu/
http://www.twitch.tv/
http://www.ustream.tv

60 Peer-to-Peer Netw. Appl. (2018) 11:44–62

5. Online. http://www.livestream.com/. Last accessed 29 Feb. 2016
6. Online. http://themittani.com/news/own3dtv-shuts-down. Last

accessed 29 Feb. 2016
7. Luby M (2002) LT codes. In: Proceedings 43rd Annual IEEE

Symposium on Foundations of Computer Science. Vancouver,
pp 271–280

8. Shokrollahi A (2006) Raptor codes. IEEE Trans Inf Theory
52(6):2551–2567

9. Wu C, Li B (2008) rstream: Resilient and optimal peer-to-peer
streaming with rateless codes. IEEE Trans Parallel Distrib Syst
19(1):77–92

10. Grangetto M, Gaeta R, Sereno M (2009) Rateless codes net-
work coding for simple and efficient P2P video streaming.
In: Proceedings IEEE ICME 2009, New York, pp 1500–
1503

11. Grangetto M, Gaeta R, Sereno M (2009) Reducing content
distribution time in P2P based multicast using rateless codes.
In: Proceedings Italian Networking Workshop, Bologna, pp 1–
12

12. Magnetto A, Gaeta R, Grangetto M, Sereno M (2010) P2P stream-
ing with LT codes: A prototype experimentation. In: Proceedings
ACM Workshop on Advanced Video Streaming Techniques for
Peer-to-Peer Networks and Social Networking, Florence, pp 7–
12

13. Oh HR, Wu DO, Song H (2011) An effective mesh-pull-based
P2P video streaming system using Fountain codes with variable
symbol sizes. Comput Netw 55(12):2746–2759

14. Eittenberger PM (2012) RaptorStream: boosting mobile peer-to-
peer streaming with Raptor codes. In: Proceedings ACM SIG-
COMM 2012, Helsenki, pp 291–292

15. Eittenberger PM, Mladenov T, Krieger UR (2012) Rap-
tor codes for P2P streaming. In: Proceedings 20th IEEE
Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), Garching, pp 327–
332

16. Ahmad S, Bouras C, Buyukkaya E, Hamzaoui R, Papazois A,
Shani A, Simon G, Zhou F (2012) Peer-to-peer live streaming for
massively multiplayer online games. In: Proceedings IEEE 12th
International Conference on Peer-to-Peer Computing, Tarragona,
pp 67–68

17. Buyukkaya E, Ahmad S, Dawood M, Liu J, Zhou F, Hamzaoui
R, Simon G (2012) Level-based peer-to-peer live streaming with
rateless codes. In: Proceedings IEEE International Symposium on
Multimedia, Irvine, pp 249–254

18. Wiegand T, Sullivan G, Bjontegaard G, Luthra A (2003) Overview
of the H.264/AVC video coding standard. IEEE Trans Circ Syst
Video Technol 13(7):560–576

19. Mills D Network Time Protocol (Version 3) Specification, Imple-
mentation and Analysis, Request for Comments 1305. Inter-
net Engineering Task Force, 1992. http://www.rfc-editor.org/rfc/
rfc1305.txt

20. Svoboda P, Karner W, Rupp M (2007) Traffic analysis and mod-
elling for World of Warcraft. In: Proceedings IEEE ICC, Glasgow,
pp 1612–1617

21. Bharambe A, Douceur JR, Lorch JR, Moscibroda T, Pang J,
Seshan S, Zhuang X (2008) Donnybrook: Enabling large-scale,
high-speed, peer-to-peer games. In: Proceedings SIGCOMM,
Seattle, pp 389–400

22. Hernandez A, Magana E (2007) One-way delay measurement
and characterization. In: Proceedings ICNS’07 Third International
Conference on Networking and Services, Athens

23. Chen K-T, Huang P, Lei C-L (2006) Game traffic analy-
sis: An MMORPG perspective. Comput Netw 50(16):3002–
3023

24. Feng W-C, Brandt D, Saha D (2007) A long-term study of
a popular MMORPG. In: Proceedings NetGames, Melbourne,
pp 19–24

25. Luby M, Gasiba T, Stockhammer T, Watson M (2007) Reli-
able multimedia download delivery in cellular broadcast networks.
IEEE Trans Broadcast 53(1):235–246

26. Li B, Xie S, Qu Y, Keung GY, Lin C, Liu J, Zhang X (2008)
Inside the new coolstreaming: principles, measurements and per-
formance implications. In: Proceedings INFOCOM’08, Phoenix

27. Online. http://www.redbedlam.com/missing-ink-mmorpg/. Last
accessed 29 Feb. 2016

28. Online. http://www.speedtest.net/. Last accessed 29 Feb. 2016
29. Hei X, Liang C, Liang J, Liu Y, Ross KW (2007) A measurement

study of a large-scale P2P IPTV system. IEEE Trans Multimed
9(8):1672–1687

30. Sentinelli A, Marfia G, Gerla M, Kleinrock L, Tewari S (2007)
Will IPTV ride the peer-to-peer stream. IEEE Commun Mag
45(6):86–92

31. Payberah AH, Kavalionak H, Kumaresan V, Montresor A, Haridi
S (2012) CLive: Cloud-assisted P2P live streaming. In: Pro-
ceedings IEEE 12th International Conference on Peer-to-Peer
Computing, Tarragona, pp 79–90

32. Traverso S, Abeni L, Birke R, Kiraly C, Leonardi E, Lo Cigno R,
Mellia M (2012) Experimental comparison of neighborhood fil-
tering strategies in unstructured P2P-TV systems. In: Proceedings
IEEE 12th International Conference on Peer-to-Peer Computing,
Tarragona, pp 13–24

33. Wu D, Liang C, Liu Y, Ross KW (2010) Redesigning multi-
channel P2P live video systems with View-Upload Decoupling.
Comput Netw 54(12):2007–2018

34. Barekatain B, Khezrimotlagh D, Maarof MA, Ghaeini HR, Salleh
S, Quintana AA, Akbari B, Cabrera AT (2013) MATIN: A random
network coding based framework for high quality peer-to-peer live
video streaming. PloS ONE 8(8)

35. Wichtlhuber M, Richerzhagen B, Rückert J., Hausheer D (2014)
TRANSIT: Supporting transitions in Peer-to-Peer live video
streaming. In: Proceedings IFIP Networking Conference, Trond-
heim, pp 1–9

36. Luby M, Shokrollahi A, Watson M, Stockhammer T, Minder L
(2011) Forward Error Correction Scheme for Object Delivery.
Internet Engineering Task Force (IETF) Request for Comments:
6330

Shakeel Ahmad received the
PhD (Dr.-Ing) degree from the
University of Konstanz, Ger-
many, in 2008, the MSc degree
in Information and Commu-
nication Systems from Ham-
burg University of Technol-
ogy, Germany, in 2005 and the
BSc (Hons) degree in Elec-
tronics and Communication
Engineering from the Univer-
sity of Engineering and Tech-
nology, Lahore, Pakistan, in
2000. From 2008 to 2015, he
was a Senior Research Fel-
low at DeMontfort University,

UK. He is currently a Senior Lecturer in the School of Media Arts
and Technology at Southampton Solent University, UK. His research
interests include video coding and streaming, channel coding, P2P
networks, and MANETs.

http://www.livestream.com/
http://themittani.com/news/own3dtv-shuts-down
http://www.rfc-editor.org/ rfc/rfc1305.txt
http://www.rfc-editor.org/ rfc/rfc1305.txt
http://www.redbedlam.com/missing-ink-mmorpg/
http://www.speedtest.net/

Peer-to-Peer Netw. Appl. (2018) 11:44–62 61

Christos Bouras is Professor
at the University of Patras,
Department of Computer
Engineering and Informat-
ics. Also he is a scientific
advisor of Research Unit 6 in
Computer Technology Insti-
tute & Press “Diophantus”,
Patras, Greece. His research
interests include analysis of
performance of networking
and computer systems, com-
puter networks and protocols,
mobile and wireless commu-
nications, telematics and new
services, QoS and pricing for

networks and services, e-learning, networked virtual environments
and WWW issues.

Eliya Buyukkaya received a
BS. degree in Computer Engi-
neering from Middle East
Technical University, Ankara,
in 2003, and MS. and PhD
degrees in Computer Science
from University Paris 6 in
2006 and 2011, respectively.
She worked as a postdoc-
toral research fellow at Tele-
com Bretagne, Brest, as a
research and teaching fellow
at ENSSAT (Lannion), Uni-
versity Rennes 1, and as a
research fellow in Myriads
teams at IRISA, University

Rennes 1. Since August 2014, she has been an Assistant Professor at
Kadir Has University, Turkey.

Muneeb Dawood received
the PhD degree from De
Montfort University, Leices-
ter, UK, in 2011, the MSc
degree in Telecommunica-
tions and Computer Networks
Engineering from London
South Bank University, Lon-
don, UK, in 2007 and the BSc
(Hons) degree in Electronics
and Communication Engi-
neering from the University of
Engineering and Technology,
Lahore, Pakistan, in 2003. He
worked as a Research Assis-
tant at de Montfort University

from 2011 to 2012. Since 2013, he has been a Research Assistant
in the School of Science & Engineering at Teesside University, UK.
His research interests include video coding and streaming, channel
coding, communication protocols, 3G Cellular networks, and control
and monitoring infrastructure for smart grids.

Raouf Hamzaoui received the
MSc degree in mathematics
from the University of Mon-
treal, Canada, in 1993, the
Dr.rer.nat. degree from the
University of Freiburg, Ger-
many, in 1997 and the Habili-
tation degree in computer sci-
ence from the University of
Konstanz, Germany, in 2004.
He was an Assistant Professor
with the Department of Com-
puter Science of the University
of Leipzig, Germany and with
the Department of Computer
and Information Science of the

University of Konstanz. In September 2006, he joined De Montfort
University where he is a Professor in Media Technology and Head of
Research and Innovation for the Faculty of Technology. His research
interests include image and video coding, multimedia communication
systems, channel coding, and error control systems.

Vaggelis Kapoulas obtained
his Computer Engineering
diploma from the Computer
Science and Engineering
Department, School of Engi-
neering, University of Patras,
Greece. He obtained his PhD
from the same department. He
is currently an R&D engineer
and Head of Research Unit 6:
Networks Telematics and New
Services, Computer Technolo-
gy Institute & Press “Diophan-
tus”, Greece. His research
interests include networks,
telematics and algorithms for
distributed systems.

Andreas Papazois obtained
his diploma, MSc and PhD
from Computer Engineering
and Informatics Dept., Uni-
versity of Patras, Greece. He
is currently an R&D engineer
at Research Unit 6: Networks
Telematics and New Services,
Computer Technology Insti-
tute & Press “Diophantus”. He
has also worked as Telecom-
munication Systems Engineer
at Intracom Telecom S.A. His
research interests include Web
services, mobile telecommu-
nication networks, error con-

trol techniques, Quality of Service and multicast transmission.

62 Peer-to-Peer Netw. Appl. (2018) 11:44–62

Gwendal Simon received
his Master Degree in Com-
puter Science in 2000 and
his PhD degree in Computer
Science in December 2004
from University of Rennes 1
(France). From 2001 to 2006
he was a researcher at Orange
Labs, where he worked on
peer-to-peer networks and
social media innovations.
Since 2006, he has been an
Associate Professor at Tele-
com Bretagne, a graduate
engineering school within the
Institut Mines-Telecom. He

was a visiting researcher at University of Waterloo from September
2011 to September 2012. His research interests include large-scale
networks, optimization problems and video delivery systems.

	Peer-to-peer live video streaming with rateless codes for massively multiplayer online games
	Abstract
	Introduction
	Related work
	Video transmission
	Initialization
	Video and channel coding
	Inter-level communication
	Level-aware video delivery.

	Overlay construction and management
	Intra-level multicast trees
	Multi-level overlay management
	Overlay construction - Insertion
	Overlay construction - Removal

	Resource-aware multicast trees
	Tree construction - Insertion
	Forest construction - Insertion
	Forest construction - Removal

	Simulation results
	Metrics
	Single Overlay
	Multiple overlays

	Online tests
	Conclusion
	References

