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In this paper, we propose a novel architecture for the admission control module of a
Bandwidth Broker entity that aims at achieving a satisfactory balance between maximiz-
ing the resource utilization for the managed network and minimizing the overhead of the
module. We also describe, analyze and evaluate mechanisms which aim at solving the
additional problems of fairly prioritizing resubmitted requests and efficiently handling
requests which do not specify ending times. We use the well known network simulator
ns-2, as well as a custom simulation environment in order to study the performance
characteristics of the proposed mechanisms and compare them with various alternatives
for the admission control module of a Bandwidth Broker. We provide the results of the
experimental evaluations and the conclusions they lead us to for the relative importance
of the proposed solution and the various alternatives, their advantages and drawbacks,
and the environments for which each one is best suited.

KEY WORDS: Bandwidth broker; admission control; DiffServ; adaptive; SLA.

1. INTRODUCTION

Bandwidth Brokers are entities proposed in the framework of the DiffServ archi-
tecture for Quality of Service (QoS) provision in the Internet. In order to offer
better scalability than other architectures such as IntServ, the DiffServ architecture
[1] only deals with individual flows at the edges of a domain, allowing the core
elements of the network to only handle classes of service. Within this framework, a
Bandwidth Broker [2] is an entity responsible for providing QoS within a network
domain. The Bandwidth Broker manages the resources within the specific domain
by controlling the network load and by accepting or rejecting bandwidth requests.
Every user (service operator) who is willing to use an amount of the network
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resources, between its node and a destination, sends a request to the Bandwidth
Broker. The choice of the Bandwidth Broker to either accept or reject a request
is based on the network load and on the Service Level Agreement (SLA). For re-
quests that span multiple domains (inter-domain requests), the Bandwidth Broker
will have to communicate with Bandwidth Brokers in the adjacent domains that
are traversed by the requested flow. Bandwidth Brokers only need to establish
relationships of limited trust with their peers in adjacent domains, unlike schemes
that require the setting of flow specifications in routers throughout an end-to-end
path. Therefore, the Bandwidth Broker architecture makes it possible to keep state
on an administrative domain basis, rather than at every router and the DiffServ
architecture makes it possible to confine per flow state to just the leaf routers.

A Bandwidth Broker contains several modules which are necessary for its
transparent and efficient operation (Fig. 1). These modules include an inter-domain
interface for communication with adjacent Bandwidth Brokers in neighboring do-
mains, an intra-domain interface for communication with the service components
that are located inside the domain controlled by the Bandwidth Broker, a routing
table interface which is used so that the Bandwidth Broker is aware of the network
topology and the routing paths, a user/application interface, a policy manager in-
terface for implementation of complex policy management or admission control,
and a network management interface for coordination of network provisioning
and monitoring. A diagram that displays the above modules and their interfacing
within the Bandwidth Broker is shown in Fig. 1
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Fig. 1. Bandwidth Broker diagram.
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Bandwidth Brokers are an intensely studied field, and a number of architec-
tures have been proposed for the various aspects of its operation ([3], [4], [5], [6]).
Admission control means that the Bandwidth Broker has to define whether the
incoming resource reservation requests will be accepted or not. Once a request
has been accepted, the Bandwidth Broker has to make sure that it will be met by
the network. Admission control is a very important part of the Bandwidth Broker
operation, because it determines the fairness between the requests and the degree
of network utilization that the Bandwidth Broker will achieve for the managed
domain. There are various definitions of fairness, which depend on the context
used. In this case, we use a loose general definition of fairness as the unnecessary
downgrading of the admission control service for the users. An improperly de-
signed admission control module can lead to low network utilization, unfairness
and therefore frustration to the users that request resources or it can also impose an
unacceptable overhead to the Bandwidth Broker’s operation. However, since the
operating circumstances can vary widely from one case to another, it is improb-
able that a single solution will fit all operating requirements. Our approach tries
to tackle this problem by incorporating an adaptive mechanism with the intent to
converge to the suitable level for each deployment scenario.

In general, we can separate the types of reservation requests depending on
the actual time period for which they request resources.

1.1. Immediate Requests

When an immediate request is accepted, it is immediately effective, which
means that the requested resources are reserved right away. This type of request
leaves little room to the Bandwidth Broker for implementing a strategy that max-
imizes the network utilization.

1.2. Book-Ahead (Or Advance) Requests

A book-ahead request specifies the resources that will be needed at some
later point in time, which has to be specifically defined. The authors in [7] give a
thorough presentation of the concept of book-ahead reservations, while a detailed
discussion on the benefits and potential problems with book-ahead requests can
be found in [8]. In general, book-ahead requests provide a richer functionality to
the service and allow for better solutions to the admission control problem. There
are a lot of actual cases in the real world where a book-ahead request meets the
requirements of an application, like for example pre-arranged video conferences.

The main problem we deal with in this paper is how to better examine and ad-
mit incoming requests in a DiffServ-enabled domain that is automatically managed
by a Bandwidth Broker or similar entity. The variety of environments, require-
ments and network conditions that affect such a mechanism make the research
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for an efficient solution to this problem important and useful. There are emerg-
ing types of networks, such as wireless networks, where the demand for quality
of service is strong, and where sophisticated solutions are applicable because of
the nature of the wireless environment: smaller capacity links compared to wired
networks, frequent and more unpredictable entry of new users for the existing
resources. Other research teams have already taken over the work presented in this
paper in order to apply it to wireless environments.

In the next sections of this paper, we examine an adaptive admission control
module for Bandwidth Brokers and the improvements in the architecture’s effi-
ciency that it can lead to. We also examine how the admission control module
could take advantage of, or handle, special conditions such as the resubmission
of previously rejected requests. We also use simulations in order to make sev-
eral observations on the behaviour of the algorithm, and compare it with several
variations of admission control algorithms.

The rest of the paper is organized as follows: Section 2 presents related work
on the issue of admission control in Bandwidth Brokers, while section 3 discusses
the adaptive admission control algorithm and section 3.1 presents some ideas on the
possible improvements to it. The enhanced algorithm is described and analyzed in
section 3.2, while section 3.3 discusses further related issues. Initial performance
evaluations of the algorithm are presented in section 4, while section 4.3 presents
in detail the implementation and simulations of the described mechanisms in the
popular ns-2 simulator. Finally, section 5 summarizes our conclusions and our
future work in this area.

2. RELATED WORK

Researchers have dealt with both types of admission requests. An approach
that deals with both types of incoming requests is the resource partitioning pro-
posed in [9], which separates the admission decision for immediate and book-
ahead requests. Immediate requests that were rejected can be reconsidered for a
book-ahead reservation. In order to avoid wasting of resources because of frag-
mentation, the authors propose a moving boundary between the two partitions.
The most common mechanism for admitting book-ahead requests is to divide time
in intervals (slots) of equal size, and calculate the resources requested by a new
reservation for the time slots that it overlaps [9], [10].

For both immediate and book-ahead requests, it may be possible to either
specifically declare the ending time of the reservation, or not. An intermediate case
is when a reservation request has to provide both its starting and ending times, but
can make new additional requests that extend its initial reservation period. In [11],
the authors present a Bandwidth Management Point (BMP) that uses centralized
network state maintenance and pipe-based intra-domain resource management
schemes in order to reduce the admission control time and the scalability problems.
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Another approach is used by [12], where SLA requests are converted by the
border routers in messages of the COPS (Common Open Policy Service) protocol
and refined before they are sent to the Bandwidth Broker, which makes simple
decisions based on the refined requests.

The intra-domain admission control that admits or rejects new flow requests
based on the knowledge of available resources within the domain and flow re-
quirements has been studied in [13], [14] and [15]. Reference [16] presents an
inter-domain approach to the admission control.

In some cases, a book-ahead request may have a flexibility of allowing the
Bandwidth Broker to answer the request by either accepting it or rejecting it not
immediately, but after a period of time (which can be specified). Our algorithm
takes advantage of this flexibility, in order to calculate more efficient admission
decisions that try to achieve better network utilization and therefore better profit for
the network provider than simpler techniques. The provider may choose to allow
requests that demand an immediate answer, balancing perhaps this capability with
additional cost.

Most related work for Bandwidth Brokers examines a request as soon as it
arrives and accepts it if the reservation does not exceed the unreserved link capacity
[17]. This approach has benefits in terms of speed and efficiency, but it can lead
to low network utilization. In [18], the authors show how the general admission
control problem can be formulated as an optimization problem, with the goal
of maximizing the net revenue. The network utilization can improve drastically
if we allow the Bandwidth Broker’s admission control to gather a number of
requests and compute a better allocation of resources. This is the approach we
have taken in this paper. Also [19] deals with price-based admission control,
studying both online (when answers to requests have to be issued immediately)
and offline (when requests can be gathered and evaluated) versions of the problem
are discussed. Our work combines the above approaches with an adaptive scheme
that attempts to achieve a preferable balance between optimal utilization of the
network and minimal overhead for the Bandwidth Broker operation. By optimal
utilization, we define the admission of such a set of requests that is feasible
(i.e. maximum allocated bandwidth for the service is not exceeded at any time),
and there is maximum utilization of network resources (expressed in transferred
bytes). A more formal definition is provided in section 3. By minimal overhead,
we define the computational overhead for simply checking whether an incoming
request is feasible, by comparing the remaining resources allocated for the service
(after subtracting the request reservation) to zero. This approach is described in
more detail in section 4.3, upon discussing the Simple Admission Control (SAC)
algorithm. An adaptive scheme designed for the scheduling of popular video
on demand that also uses delayed notification is presented in [20]. In [21], the
admission control approach taken by the TEQUILA project is presented, which is
based on a feedback model that can be tuned by operational policies and strategies.
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Its main characteristic is that it is based on the ability of the network to provide QoS
using functions that dimension the network on the basis of anticipated demand,
and on the actual status of the network using measurements. A thorough overview
and classification of network admission control techniques is provided in [22]. In
the issue of routing bandwidth guaranteed paths in MPLS networks, the authors
in [23] introduce a dynamic online algorithm that tries to optimize and balance
traffic load in the network.

The TISPAN standardization body of the European Telecommunications
Standards Institute (ETSI) [24] has produced the Resource and Admission Control
Sub-system (RACS) specification identified in the overall TISPAN Next Genera-
tion Networking (NGN) architecture. RACS [25] is the TISPAN NGN subsystem,
responsible for elements of policing control including resource reservation and
admission control in the access and aggregation networks. Specifically, RACS
defines a number of functional elements such as the Service Policy Decision
Function (SPDF), which is a logical policy decision element for Service-Based
Policy control (SBP) and the Access-Resource and Admission Control Function
(A-RACF), which main functions are the admission control and the assembly of
network policy. Although therefore the proposed architecture in this paper is struc-
tured around the IETF Bandwidth Broker recommendations [2] and the proposals
by Qbone [3], it fits into this model by studying the admission control function
(part of the A-RACF), as well as the service policy decision function of the SPDF.
More specifically, the mechanisms described in this paper may be plugged within
a RACS framework in order to implement the functionalities defined by A-RACF
and SPDF. SPDF is more closely mapped to the higher level policy function-
alities while the A-RACF module can be mapped to lower level functionalities
responsible for the admission control.

In the specific area of providing end to end QoS requirements for a PSTN
grade voice and multi-media service, the MultiService Forum (MSF) has pro-
posed a QoS solution [26] and considered how it might best be supported over a
packet network infrastructure. This solution has a number of components, among
which is the Bandwidth Manager [27], and has chosen to adopt the DiffServ PIB
(Policy Information Base) for the interface between the Bandwidth Manager and
the edge routers of a domain. It covers hierarchical organization of Bandwidth
Manager components, and reservations between managers in adjacent domains.
This Bandwidth Manager has the basic characteristics of the Bandwidth Broker
component discussed in this paper, and the proposed mechanisms can potentially
be integrated in the Bandwidth Manager structure.

Additionally, an end to end QoS solution has also been defined by 3GPP
[28], and it incorporates a Policy Decision Function that approximates part of
the Bandwidth Broker functionality discussed here. The 3GPP proposal is mainly
specialized on 3G mobile networks and defines its own PIB for interfacing to the
Policy Decision Function.
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Fig. 2. Request states.

3. ADAPTIVE ADMISSION CONTROL ALGORITHM

We define standby requests as requests that have not yet received an answer
(either confirmation or rejection). Confirmed is a book-ahead request that has
received an affirmative answer but waits to be activated. These states are shown
in Fig. 2.

For a DiffServ domain, it is not efficient to keep per-flow status in the core
routing devices, and therefore an aggregated approach is used at the core routers.
Admission control is performed by the Bandwidth Broker at the domain scale,
using the hose model [29] that has been proposed for VPN provisioning. Its
basic idea is that bandwidth management is simplified by assigning a limit at the
bandwidth that each edge router is allowed to accept in the domain. Its operation
assumes that proper dimensioning of the network has taken place in order to be able
to support the hoses definition and that part of the available bandwidth for the links
has been assigned to the management of the Bandwidth Broker for the DiffServ
service. We have to note here, that this does not mean that all or most of the
reservation requests will be necessarily accepted, but that the network design will
guarantee that there will be enough resources in order to service the reservation
requests that have been accepted. The hose model has the benefit of offering
the flexibility to the edge device of sending traffic to a set of endpoints without
having to specify the detailed traffic matrix and can also reduce the required size
of access links through multiplexing gains because of the aggregation of flows
between endpoints. Various methods of implementing the hose service model are
given in [29].
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An important problem for admission control and dimensioning of network
resources is how to take into account the burstiness and self-similar behavior of
network traffic. The problem can be simplified by defining a unifying parameter
for the characteristics of network resources that accurately captures their effect on
resource usage. Various researchers ([30], [31], [32]) have dealt with the concept
of effective bandwidth, which can be computed based on traffic parameters such
as mean rate or maximum burst size. It is an additive amount of bandwidth that is
large enough in order to guarantee that the QoS requirements of all flows are met.

Our approach also decouples the admission control decision from the routing
issues within the domain. This means that core routers are not involved in the
process of admission control and signalling. Furthermore, while combining routing
decisions with admission control can be beneficial, it is not always possible, or
desirable for scalability reasons. Packets of a specific flow can be routed using
different paths, without affecting the admission control process.

We suppose a new request has the form of

r(tstart, tend, b,w) (1)

where tstart and tend are the starting and finishing times for the reservation, b is the
requested bandwidth and w is the period for which the request can wait until it
receives either a confirmation or a rejection of the reservation. Our model is based
the peak rate allocation, so that each request specifies its maximum transmission
rate and the admission control module has to make sure that the sum of all peak
rate does not exceed the allocated service capacity. Bandwidth is defined at Layer
3, as the maximum amount of bits/second of IP traffic, including the IP header
that an end point may insert to the network. The Bandwidth Broker’s admission
control module keeps a list of unanswered requests, which we call waiting queue
Wq, sorted by their waiting time w.

As soon as the first item, say r1 (with the closest w to the current time) is
about to expire, the admission control module calculates the answers that it will
provide to this and a number of other requests, essentially by solving an offline
scheduling problem:

Suppose n is the cardinality of Wq. We define

R = {r1, r2, · · · , rm} ⊆ Wq (2)

and we want to find a subset Rc ⊆ R such that
∑

ri∈Rc
bi ≤ B at any time point

where B is the total available bandwidth for the service and try to maximize∑
ri∈Rc

bi throughout the period from the earliest tstart to the latest tend in the R
set. Rc is the set of requests that will be accepted by the algorithm, while requests
in the set R-Rc will be rejected.

This problem is NP-complete [33] and therefore it is proposed to use an
approximation algorithm to solve the following linear programming relaxation in
polynomial time [19] and then make the solution discrete regarding the variables
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xi, which represent whether ri is accepted or not:

max �i∈R bi(tend − tstart)Xi

�i∈R(t) bixi ≤ B, for all t ∈ (earliest tstart, latest tend)in R

0 ≤ xi ≤ 1, i ∈ R

In order to avoid approximation of the solution, this problem can be solved using
integer linear programming, which however becomes very costly computationally
as the problem instance increases (which happens for a high rate of incoming
requests). A mechanism monitoring the instance size and carefully adapting it
is needed in this case. The important point is how to select the R set. A simple
approach would be to simply set R = Wq . This solution however can become
computationally costly, and it can furthermore lead to low network utilization,
because requests that have been made very far in advance will probably have little
competition, and will therefore be most likely accepted. In the example in Fig. 3,
this can be demonstrated by request r6. If r6 is included in the R set as soon as r1,
it will certainly be accepted, since there it has no other competition. It would be
better though to delay the decision for r6, since by that time other requests (more
profitable than r6) could have arrived.

Including in R only requests that overlap with tend for r1 may also not be
an attractive solution, because it might require the algorithm to be invoked too
frequently, and that could introduce an unacceptable overhead. In Fig. 3, the
algorithm will have to separately be invoked for r1, r3, r5 and r6. As our algorithm
does not provide for overbookings, we have also drawn a line that shows the
maximum bandwidth that can be allocated to the requests.

In order to combine the benefits of both these extremes and reduce their
shortcomings, our solution is to have an adaptive parameter for the size of R,
which will increase if the number of requests in Wq increases or if the algorithm
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was very time-consuming, and decrease otherwise, according to:

if(Ck−1 − T > T)

Rsize(k) = 1

elseif(Ck−1 − T > 0)

Rsize(k) = (1 − (Ck−1 − T)/T)Rsize(k − 1)

else

Rsize(k) = Rsize(k − 1) + (Wq − Rsize(k − 1))∗a

Ck−1 is the duration of the previous computation of the requests to be accepted,
a is a parameter that determines the increase rate of Rsize and T is a threshold
value of the maximum allowable time for a computation. Configuring parameter
a determines how close to Wq we want the size of the R set to become after an
increase, so a is essentially the adaptation factor of the algorithm’s operation. The
above pseudocode guarantees that if the algorithm lasts more than an accepted
threshold, it will be simplified to admission control for a single request, which
is the simplest computation possible and we can reasonably expect to reduce the
computational overhead to very low levels, from which the algorithm can slowly
progress to more complex computations according to the adaptation parameter a.
In general, an adaptive scheme can have problems of oscillation between extreme
values, so we have considered the above scheme that does not sharply increase
or decrease the size of the R set, except for the case that for some reason the
computation time far exceeds the acceptable threshold.

As an example, if the last computation lasted more than twice the predefined
threshold, then the size of the subset R that will be examined for the current
computation is reduced to 1, and therefore the computation is simplified to examine
whether accepting the next request violates the resource restrictions or not. The
assumption is that in that case the computation of an optimal solution is adding a
large overhead to the Bandwidth Broker’s operation, and we therefore simplify the
computation as much as possible. In the case that the computation time exceeds
the threshold but not twice its value, we assume that the overhead is significant and
must be reduced (but is not unacceptable as in the previous case). We reduce it by
a factor of 1-(Ck−1-T)/T, so that the reduction becomes more aggressive as Ck−1

becomes larger. Finally, if the computation time is still below the threshold, we
assume that there is space for increasing the computation overhead by increasing
the size of the subset R, and this is done using a factor a ∈ (0,1). The closest to 1
this factor is chosen, the more aggressive the increase is, with the obvious limit of
the size of the whole Wq.

In general, finding an optimal solution to the problem of optimally scheduling
the requests is NP-complete, since the Knapsack problem, which is known to be
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NP-complete [33], is equivalent to a simpler version of our scheduling problem
where all tstart and tend times are equal. Because however it is not critical to have
the optimal solution, we can either use an approximation scheme that runs in poly-
nomial time and approximates the optimal solution with the desired accuracy, or
try to limit the instance size of the problem in order to be within the computational
capabilities of the underlying equipment.

Following is a summary of the algorithm for calculating the accepted requests
at an ingress point of the domain:

while (Wq not empty) 
  while (next request has not expired) 
    forall i where (bi > B) 
      xi = 0    // reject overbooking requests 
    Solve LP maximization: 
    max    Σ i∈Rbi(tend-tstart)xi

i∈R(t)bixi ≤ B, forall t ∈ (earliest tstart, latest tend) in R 
    xi ∈ {0,1}, i∈R
    exit loop 
  end while 
  if ((C-T)>=T) 
    Rsize = 1 
  else if ((C-T)>0) 
    Rsize = (1-(C-T)/T)* Rsize

  else 
    Rsize = Rsize + (Wq-Rsize)*a
end while 

Σ

If the current computation takes too long and w1 is about to expire, the
computation is ignored and a simpler fall-back mechanism is used which will
individually examine r1 and then restart the computation for R-{r1}.

Because of the way the algorithm is constructed, it is not generally optimal
on network utilization. As we have mentioned, we make this trade-off in order
to reduce the computation overhead for the Bandwidth Broker module. A very
fast processing module (or conversely a low rate of admission requests) lead the
algorithm to quickly converge to the best approximation of the optimal solution.

Thus, assuming that the computation time does not reach or exceed the
threshold, we have that

Rsize(t) = Rsize(t − 1) + (Wq − Rsize(t − 1))∗a

Solving the recursive function gives

Rsize(t) = (1 − a)t−1Rsizeinit + (1 + (1 − a) + . . . + (1 − a)t−2)Wq∗a

and therefore

Rsize(t) = (1 − a)t−1Rsizeinit + (1 + (1 − a)
1 − (1 − a)t−2

a
)Wq∗a (3)

where Rsizeinit is the initial size of R.
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Therefore, Rsize converges to the size of Wq as quickly as (1 − a)t converges
to near-zero values, which happens quite rapidly, especially if a has been chosen
close to 1, which means a very high adaptation capability.

The algorithm is also not “fair” with respect to maintaining a First Come-First
Served order (since an earlier request might be rejected in favour of a later request
that will better utilize the network), but it achieves “fairness” with respect to the
response to requests (it assures that all requests will be answered on time, either
positively or negatively) and it respects each request’s maximum waiting time w.

Finally, it has to be noted that there is the assumption that a client will submit
requests to the service in a well-behaved way. This may be a valid assumption
in small or research environments, but it may not be valid in a larger scale, or
in an environment with serious security considerations. A possible solution is to
restrict access to the submission service only to trusted / authorized users, using for
example an Access List. Also more sophisticated architectures may be necessary
([34], [35], [36]).

3.1. Increasing the Adaptive Admission Control Module Versatility

The algorithm described in the previous paragraph can be improved in several
aspects, depending on the implementation environment and the specific request
behavior.

• Request resubmission: Requests that have been rejected are notified of
a later time when they will have better success chances. Moreover, they
are given a chance of reducing their reservation requests, in hope that a
satisfactory compromise can be found that will cover the user’s needs.
This can be achieved by keeping a tentative list of the total bandwidth
requested at any time, for both admitted and pending requests.

• Open requests: Some requests may not specify their ending time. The
Bandwidth Broker algorithm can be extended to take into account such
requests, which we call “open” requests. In order to determine the duration
of the reservation, one option for the Bandwidth Broker is to make the
conservative assumption that the requested bandwidth will be reserved
indefinitely (which means that the bandwidth will only be released upon
notification by the party that initiated the request that it no longer needs it).
This flexibility however is very costly and the network utilization can be
decreased significantly, and therefore can only be offered at a significantly
higher cost. A better option is for the Bandwidth Broker to observe the
distribution of the existing requests and the durations they request. It can
then service open requests with the assumption that their ending time is
such that it exceeds the duration of the largest percentage of the non-open
requests, thereby reducing the ratio of prematurely interrupted reservations
to a minimal percentage
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Despite extensive literature in the area of admission control for Bandwidth
Brokers, the issue of resubmission of rejected requests has not been as thoroughly
investigated. Most researchers implicitly assume that the end user will decide
whether a rejected request will be resubmitted as a new request (without the
admission control module recognizing that there is a relationship with one or more
previously rejected requests). However, identifying such requests and handling
them in a special way bears a number of advantages for the overall performance,
as we show in later sections of this paper.

3.2. Algorithm Enhancements

For resubmissions of previously rejected requests, there is no change in the
user client’s request format, which means that by examining just the request, a
resubmitted request can not be differentiated from a newly generated one. It is
proposed however, that for purposes of avoiding excessive unnecessary overhead,
the clients will obey a specified protocol of behaviour regarding resubmission of
rejected requests. The protocol should not have a decisive effect on the architec-
ture’s performance (since the Bandwidth Broker can not a priori assume that the
clients will follow the instructions laid out by the protocol anyway), and therefore
it is kept relatively simple, as can be seen in the pseudocode below. The basic
idea is that the client will resubmit the request only if the Bandwidth Broker has
indicated that the request should indeed be resubmitted, and in addition if the user
is willing to compromise for a possibly delayed reservation.

n = 1 
while (request is active and request not accepted) 
  n = n + 1 
  if (BB proposed this request to be resubmitted) 
    if (user wants to resubmit request) 
      wait for tresubmit * n time 
      resubmit request 
    else 
      reject request (set to inactive) 
  else 
    reject request (set to inactive) 
End while 

In order for the Bandwidth Broker to utilize resubmitted requests, it needs
to keep a list L of the standby requests. Moreover, it will actively prioritize such
requests in expense of newly received requests, and the prioritization will depend
on the duration that a specific user has been waiting and resubmitting a request.
This is achieved by the adaptation of the main algorithm presented in Fig. 4.

We have to note here that in terms of computational complexity, it might
be preferable to have the clients mark whether their requests are a resubmission
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or not, using for example a relevant flag. However, putting such trust at the side
of a client might allow misbehaved clients to unfairly prioritize their requests
by falsely setting the resubmission flag, thereby compromising the scalability of
the concept. Furthermore, the fact that the Bandwidth Broker can keep this list
sorted means that it can perform the search queries very quickly and minimize the
computational overhead.

The addition to the main algorithm is that special care is taken so that the
R set contains as many elements from the L list as possible. Furthermore, the
elements in L are sorted so that the oldest request is the first element in the list.
This means that whenever a request arrives at the Bandwidth Broker module, it
is first calculated how much time the respective client has been at the standby
state (by keeping the moment that the request initially arrived at the Bandwidth
Broker), and is then accordingly placed at the L list.

For a request that has been resubmitted n times, this means that the total time
tw that has elapsed since the initial request will approximately be

tw =
n∑

i=1

i · t resubmit + nCavg (4)

where Cavg is the average computation time for the admission control module.
Therefore

tw = tresubmit
n(n + 1)

2
+ nCavg

while (Wq not empty) 
  while (next request has not expired) 
    forall i where (bi > B) 
      xi = 0    // reject overbooking requests 
    Solve LP maximization for all links: 
    max Σ

Σ
i∈Rbi(tend-tstart)xi

i∈R(t)bixi ≤ B, forall t ∈ (earliest tstart, latest tend) in R 
    xi ∈ {0,1}, i∈R
    exit loop 
  end while 
  if ((C-T)>=T) 
    Rsize = 1 
  else if ((C-T)>0) 
    Rsize = (1-(C-T)/T)* Rsize

  else 
    Rsize = Rsize + (Wq-Rsize)*a
  if Lsize > Rsize

    R = Rsize first elements of L 
  else
    R = L∪(Rsize–Lsize) elements of R 
end while 

Fig. 4. Adaptive admission control algorithm with special resubmission handling.
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which can be simplified to

tw = tresubmit
n2

2
(5)

if we assume Cavg < < tresubmit for a reasonably computationally capable admission
control module. This shows that the waiting time is increased quite rapidly as the
number of times that the request is rejected increases. This is a necessary feature
of the algorithm in order to avoid constant resubmission of rejected requests in
situations were the resources that are available to be allocated are significantly
below the requested resources. The mechanism for prioritizing the resubmitted
requests however balances this effect and allows rejected requests to be accepted
at consequent attempts without overcoming the limiting window for which the
resources are useful for the end user.

3.3. Other Issues

For many practical applications, specifying the end time of a request is a valid
and reasonable assumption. Examples include prearranged videoconferences, con-
tent streaming of known duration, online gaming or banking and business appli-
cations. There are however also cases when it is not practical or possible for the
user to determine the end time of a request. Since we are also considering these
open requests, an additional simple calculation has to be performed in order to
determine the tend that will be estimated for an open request, as is shown in the
algorithm below:

set Wq’={non open requests in Wq}
sort Wq’ by di=tend-tstart i∈Wq’
index = p* Wq’size

forall open requests in Wq

  tend = tstart + dindex 

Assuming the duration of open requests will be on average close to the
duration of non-open requests (an assumption which might or might not hold
depending on the actual environment), parameter p can be for example set to
values around or over 98% in order to make sure that reservations for open
requests will only be rarely prematurely interrupted, as will be explained below.

A reasonable assumption we can make is that the durations of both the open
and non-open requests will follow a normal distribution, based on the large number
of requests and their independence regarding durations. Therefore, a value of 98%
for parameter p covers all non-open requests within range of twice the standard
deviation from the mean of non-open requests (Fig. 5 [37]). According to the
normal distribution cumulative distribution function, the probability that an open
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Fig. 5. Normal distribution and standard deviation.

request will exceed its assigned duration is

1

σo

√
2π

µc+2σc∫

−∞
e

−(u−µo )2

2σ2
o du (6)

where µo, σ o and µno, σ no are the mean and standard deviation for open and
non-open requests, respectively. It is clear that if the nature of the open requests
distribution is close to the non-open one, our mechanism will operate satisfacto-
rily in almost every case. A consideration at this point has to be, that for some
environments the final duration of open requests might differ significantly on av-
erage from the duration of non-open requests and equation (6) might not produce
satisfactory results. Such a case can be avoided by observing the percentage of
prematurely interrupted reservations and accordingly raising the cut-off limit for
open reservations. This functionality however requires that the request party com-
municates to the admission module the actual moment when it no longer needs
the reservation.

An important issue that is introduced by resubmitted requests, is to make
sure that the mechanism for prioritizing resubmitted requests is not misused by
non-authorized users. Therefore, the mechanism has to be accompanied by a
security architecture that will guarantee the fairness with regard to all valid users
in the domain. Fairness in this context is defined as the insurance that submitted
requests correspond to actual user needs and comply with the resubmission model
described above.

4. EXPERIMENTAL EVALUATION THROUGH SIMULATION

4.1. Evaluation Setup

In order to evaluate the mechanisms proposed in the previous sections, we
have used two separate simulation environments. One was a custom simulated
system developed for this purpose and the other was based on the popular ns-2
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network simulator [38]. The combination of the usage of both these simulated
environments allowed us to experiment both in large scenarios and at a high level
of detail.

The custom simulated system accepted random requests (requests that did not
follow a specific pattern in terms of their arrival time or reservation requests), in
order to study the performance of the algorithm and the effect of the computation
time threshold and adaptation parameter a on the behavior of the algorithm. Our
simulated system was running on an Intel-based PC with 512 MB of memory run-
ning Windows 2000. The simulations examined a high-level view of the network,
without taking into account details at the packet level since our main focus is on
examining the relative performances of the algorithms and isolating these from
impact by external or low-level parameters.

The parameters for each request were randomly produced [39] within suitable
boundaries (regarding the total duration of each simulation, the total available
bandwidth, the minimum and maximum reservation requests) for each situation
that we wanted to simulate, and each set of requests designated a specific ingress
point at the network (so all requests competed for the same resource limit at
the ingress point of the simulated network). In the simulations described in [40],
we examined the adaptive properties of the basic algorithm and its behaviour
according to the tuning of the configurable parameters.

In order to conduct more realistic simulations at the packet level and obtain
more detailed results, we also implemented the algorithms in the popular ns-2
network simulator [38], running on an Intel-based Linux PC with 288 MB of
main RAM memory available and a Pentium III Coppermine with 256 KB cache
memory on the processor chip, which operated at the frequency of 700 MHz. The
parameters for each request were randomly produced within suitable boundaries
(regarding the total duration of each simulation, the total available bandwidth, the
minimum and maximum reservation requests) for each situation that we wanted
to simulate, and each set of requests designated a specific ingress point at the
network (so all requests competed for the same resource limit at the ingress point
of the simulated network). We simulated a scenario where every request had to
specify a steady amount of bandwidth for a specific duration with specific time
bounds (there was no possibility for a request to specify a variable bandwidth
rate). Randomness was obtained by using the ns-2 RNG class. This class contains
an implementation of the combined multiple recursive generator MRG32k3a [41].
The MRG32k3a generator provides 1.8 × 1019 independent streams of random
numbers, each of which consists of 2.3 × 1015 substreams. Each substream has
a period (i.e., the number of random numbers before overlap) of 7.6 × 1022.
The period of the entire generator is 3.1 × 1057. More specifically, the random
generator was independently generating numbers that were then assigned to each
of the attributes for a new request. If the random combination of attributes was
invalid (for example the start time of the reservation was after the stop time of
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the reservation etc.) the request was discarded as if it had never been generated.
Otherwise, it was generated by the node and sent to the Bandwidth Broker for
examination. In order to see how each algorithm could scale, we experimented
with generating up to 1000 requests in a 50 second interval. Listings of the random
requests generated, as well as the source code for replicating our results in ns-2 can
be found in [42]. The topology defined at the simulator was a star network, with
the Bandwidth Broker module being located in the centre and requests originating
from one leaf node towards another leaf node of the network. The links of the
simulation represented the provisioning of hoses as defined in [29]. The reason for
our choice of the star topology is that once the bandwidth reservation in an actual
(not necessarily star) network has taken place according to the hose model, the
network can be emulated by a star topology for the purposes of admission control.
Any set of feasible connections in the actual network that has made bandwidth
reservations according to the hose-model is also feasible in the star topology
network, and vice versa.

In order to correctly implement the simulated architecture, it was necessary
to make several changes and additions to the ns-2 structure and source code. An
agent in ns-2 represents an endpoint where packets are consumed and constructed,
using a specific protocol. The Bandwidth Broker that was implemented is based
on two new agents, the Edge Bandwidth Broker and the Base Bandwidth Broker.
More specifically, the classes BBedgeAgent and BbbaseAgent were derived from
class Agent that implements the Edge Bandwidth Broker and the Base Bandwidth
Broker. The total bandwidth that the BB manages on each link is determined by the
new tcl instruction “set bndw.” A BBedgeAgent, which represents a client (user /
application), can send a Resource Allocation Request (RAR) message requesting
guaranteed bandwidth between the node where it is running and another node with
node-id node id using the new tcl instruction “sendto.” The BBedgeAgent that
exists on every node simulates a situation where a BB client is connected to a router
on a real network. This agent operates as client that makes the communication
with the base BB and updates its local router with the configuration modifications
according to new admissions.

4.2. The Effect of Resubmissions

For the first set of evaluations, we examined the percentage of requests that
were rejected by the admission control module and how this affected the percentage
of requests that the Bandwidth Broker “totally” rejected, meaning that it signaled
to the end user that the request should not be resubmitted. In order to get a whole
range of values for the rejection rate, we used our custom simulated system to run
a large number of simulated experiments with an increasing rate of submissions
for the same resources, thus simulating an increase at the rejection rate due to
heavy demand for the service. Figure 6 presents the percentage of requests that
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Fig. 6. Percentage of conclusively rejected requests when all rejected requests are resubmitted.

were conclusively rejected when all rejected requests were resubmitted (which
means that the end users were constantly trying to get their requests accepted.
As can be seen in the figure, the admission control module is tuned in such a
way that the Bandwidth Broker signals rejected request for non-resubmission
only when the rate of rejections getting higher. Towards the right-hand side of
the figure (also when rejections come close to almost all requests submitted), the
admission control module chooses to aggressively discourage the end users from
resubmitting their requests, in hope that this will enable the request load to lower
and hopefully more requests to be accepted in subsequent decisions. Figure 7
presents a slightly different scenario, where we assumed that 50% of the users
resubmitted their rejected requests. The Bandwidth Broker again displays similar
behaviour, but this time it signals fewer rejected requests to be resubmitted, since
resubmissions by the users are fewer. In both scenarios there is a point when about
50% of submissions are rejected, which prompts the admission control module to
try more aggressively to discourage resubmissions by end users.
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Fig. 7. Percentage of conclusively rejected requests when half of the rejected requests are resubmitted.
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Table I. Comparison of Acceptance Rates with/Without Resubmissions

Number of
independent requests

Number of
requests submitted
to the admission
control module

Acceptance rate
(% accepted out of
total independent
requests)

Experiment 1
(without
resubmissions)

50 50 30.0%

Experiment 2 (with
resubmissions)

50 75 58.0%

For our second set of experiments we intended to compare the acceptance
rates and patterns when the resubmission mechanism is active and when it is not.
For both experiments in this case we used an input scenario of 50 randomly gen-
erated independent requests throughout a time frame of 50 time slots, contesting
for available bandwidth of 100 Mbps. Rejected requests were either completely
rejected in the first case (no resubmissions), or resubmitted according to the admis-
sion control module’s suggestion in the second case (resubmissions supported).

The results from the ns-2 simulations (Table I) show a 28% improvement
in the acceptance rate with the addition of resubmissions. We have intentionally
chosen a scenario where requests are quite densely temporally distributed, in order
to make the comparisons between the two cases more valid (if the requests were
sparsely distributed the resubmission model would achieve even better acceptance
rate). In our scenario therefore, 10 out of 35 originally rejected requests were never
resubmitted (because the utilization of the network was already very high and the
admission control module decided against resubmitting the rejected requests).

4.3. Comparative Evaluations Using Ns-2

After studying the properties of the adaptive algorithm with and without
resubmissions in a more abstract setting and examining the effect of tweaking the
adaptation parameter a and the threshold, the next step was to study the operation
of the adaptive admission control algorithm (from now on called AAC) and its
variation that allows resubmissions (from now on called AACR) at a more realistic
setting and compare their performance with other alternatives. In particular, the
alternatives we studied are the Simple Admission Control (from now on called
SAC), which examines each request on its own and accepts it if there are enough
resources to satisfy it, and the Price-Based Admission Control algorithm (from
now on called PBAC), which makes a decision on which requests will be accepted
trying to optimize the network utilization by gathering and evaluating a group of
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requests. In order to solve the NP-complete problem that arises, an approximation
algorithm is used which can approximate the optimal solution within a specified
range. This type of admission control is similar to the offline version of the
algorithm presented in [19]. We have selected the above algorithms for evaluation,
because their comparison can provide a good insight in the characteristics we are
interested in studying. SAC is the simplest algorithm and by far the most widely
used algorithm in related environments. It can therefore be considered as the
benchmark algorithm. PBAC lacks adaptive capabilities, allowing us to identify the
effect they have on the simulated environment, and finally AAC and AACR differ
regarding the support of resubmissions, and therefore their comparative evaluation
can reveal the effect of resubmissions on the overall system performance.

The main metrics that we are interested in, in order to compare the perfor-
mance of the algorithms and evaluate the relative advantages and weaknesses of
each, are:

• The acceptance rate, which shows the percentage of requests accepted out
of the total number of submitted requests. In case that a flat pricing model
is followed (where there is a standard profit per reservation) this metric
also corresponds to the network provider’s revenue.

• The generated profit for the provider, which is calculated as the product
of the bandwidth consumption of each reservation times its duration. This
is of course a convention since the pricing model can vary depending
on the specific circumstances. We believe though that such a metric is
one of the most representative ones, since it can be understood as the
amount of resources that is consumed by a reservation and the sum for all
reservations shows the network utilization that each algorithm achieves.
We are also interested in the average profit achieved per request, which can
be in several environments an additional indicator of the effectiveness of
the algorithm. In an environment for example when there is an additional
overhead to the provider for signaling and allocating a new reservation,
it would be beneficial to achieve better network utilization per individual
request.

• The delay of being able to deliver either positive or negative answers to
the submitted requests.

• The average size of the set of requests examined together, which is a mea-
sure of the complexity of the optimization problem solved, and therefore
of the overhead to the system.

Our final set of experiments was performed using ns-2 Bandwidth Broker
functionality in order to compare the performance of the adaptive algorithm with
and without resubmissions throughout a range of request arrival rates. Maximum
available bandwidth for the service was set at 100 Mbps, while the duration of each
simulation was set at 50 time slots. For algorithms AAC and AACR, the results
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Table II. Summary of Results

Averages per
algorithm

Acceptance
rate

Average delay
(time slots)

Average network
utilization (transmission
rate x time slots)

SAC 29.60% 0 3920014
PBAC 21.79% 7.08 5243307
AAC thr = 5 25.72% 5.44 4532672
AAC thr = 10 24.77% 5.48 4780385
AACR 42.56 5.58 5594577

were obtained setting the adaptation parameter a at a value of 0.2 (moderate
adaptation) and a computational threshold of 5 time slots for AACR and both 5
and 10 time slots for AAC.

For each experiment we have measured the percentage of accepted requests,
the delay that was required before the Bandwidth Broker would reply to a request
and the percentage of network utilization achieved by each algorithm. These results
are summarized in Table II.

The following figures display in more detail the behaviour of the algorithms
under different experiments with different request frequencies, and they help reveal
the features of each algorithm, its relative weaknesses and strengths.

As Fig. 8 demonstrates, the acceptance ratio of all algorithms except AACR
remains fairly similar throughout the experiments. SAC is the algorithm that
slightly achieves the highest acceptance rate, while PBAC is the one with the low-
est, with AAC variations covering the middle. This is not a surprising result, since
SAC will always accept a request if there are enough resources available, while
PBAC is more oriented towards generating the maximum amount of resource
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Fig. 9. Network utilization.

utilization, rather than treating all requests alike. Because of the resubmission
capability, AACR displays clearly better performance with regard to this metric.
This result leads us to the conclusion that in environments where the most sig-
nificant factor is the satisfaction of the maximum amount of users regardless of
their relative weight, the good performance of the SAC algorithm combined with
its simplicity make it the most suitable choice. If resubmissions are desirable and
can be supported, AACR can then be used for its advantages.

In most cases however, all users will not generate the same revenue for the
network provider and a cost scheme will most probably have to take into account
both the relative weight of each request, and the effort to maximize the efficiency
and utilization of currently available resources. We have tried to cover this aspect
with Fig. 9 and Fig. 10, which display the total absolute profit generated for each
experiment and the profit per request respectively. We have chosen to measure
the provider’s profit by calculating the product of a request’s duration (in time
slots used by the ns-2 simulator) times the resource allocation that a reservation
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requires. This metric essentially describes how well the network links are filled
with actual traffic, assuming that all simulated users take advantage of the allocated
network resources.

We have to mention that in Fig. 9 AACR results are not displayed because they
are far larger than all other results, in order to have better distinguishing capability
for the rest of the algorithms. These results demonstrate the relative strengths of
the price-based approaches, since PBAC is the most efficient algorithm in this
regard, followed by AAC, with SAC displaying the worst performance. AAC
even surpasses the PBAC performance in several cases when the request arrival
ratio increases. The most plausible explanation for this result is that the increased
arrival rate of new requests makes the larger size of the set examined by the PBAC
algorithm unnecessary. Increasing the threshold for the AAC algorithm seems to
have a positive effect on its performance, but comparison with PBAC shows that a
restrained increase in the threshold value is enough for obtaining equal or superior
results. Therefore, the recommendation for fine-tuning the AAC algorithm is that
it is beneficial to increase the threshold value as soon as the arrival rate of request
increases. As expected, AACR again displays the best overall performance, which
on the case of total profit exceeds several times the results of other algorithms
(over twice as much in average).

Figure 10 also implies another characteristic of the algorithms. Starvation
of demanding requests by less demanding ones is a valid concern according to
the way the adaptive algorithms are structured. However, starvation of demanding
requests can be avoided with the resubmission prioritizing mechanism, since a
rejected request has better chances of being subsequently considered for admis-
sion. Furthermore, Fig. 9 shows that the proposed adaptive algorithms are able to
achieve similar or better average size of accepted reservations compared to the
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simple benchmarking algorithm SAC, which suggests that larger requests are not
in general starved.

In most real environments it is expected that a relatively quick response to a
request will be essential. As Fig. 11 demonstrates, SAC is extremely responsive
as expected. This also means that there is room for a trade-off that can be used
to improve performance in other areas such as the utilization of the network
resources. PBAC is not efficient in that regard, as it demands the most time in
order to respond to the reservation requests, a situation that in many real-world
scenarios is unattainable. The adaptive variations prove to be attractive trade-offs,
since for most of the experiments the additional delay they incur is minimal, while
at the same time they manage to improve the utilization of the provider’s resources,
as demonstrated above.

5. CONCLUSIONS

In this paper we have proposed and evaluated an enhanced adaptive admission
control algorithm for Bandwidth Brokers. Our proposed algorithm improves on
the common admission control modules of Bandwidth Brokers on a number of
aspects. It offers better utilization of the network resources, while keeping a
balance between simplicity and functionality. It automatically falls back to a
simpler model without trying to optimize the network utilization, if its operating
environment indicates that the algorithm is too complex for the circumstances.
Because resubmitted requests wait for an ever-increasing time period, they do not
obstruct the rest of the requests, while each resubmission significantly increases
their possibility of being accepted.

Moreover, the admission control module of the Bandwidth Broker tries to
prevent unnecessary resubmissions by aggressively discouraging end users from
resubmitting requests if it notices that the rejection rate becomes exceedingly high.

A main advantage of our solution is that the admission control module is
equipped with the capability of recognizing resubmissions of previously rejected
requests and can thus prioritize them. This behaviour results at a smoother variation
of the acceptance rate between different types of requests, while the end user also
gets a better picture of the domain’s load and the success chances of a request.

We believe that the results presented in this paper offer a strong case for
the adaptive algorithms (AAC and AACR) in cases where more efficiency in the
utilization of the network resources is required, since their adaptive nature incurs
minimal overhead and very small delays to the request responses. In that sense,
they offer useful alternatives for real world situations by combining the benefits of
the simple SAC and the more complicated PBAC algorithm, without introducing
any significant drawback of their own.

However, the nature of the studied environments and the multiplicity of fac-
tors that affect the outcome of the experiments encourages us to investigate further
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into more scenarios that simulate several discrete actual cases and circumstances.
Our plans for future work also include the examination and comparative evaluation
of the advantages of distributed designs, as well as their impact and overhead for
the network.

6. FUTURE WORK

Our future work will focus on further enhancement of the admission control
algorithm according to the conclusions from the simulations. An important factor
and a point that we intent to further thoroughly investigate regarding resubmis-
sions is the effect that the temporal difference between tstart and the moment that
the request is submitted has on the overall performance of the admission control
module. We also intend to evaluate the basic proposed algorithm and its variations
using a real world environment in the framework of a complete implementation of
the Bandwidth Broker. Furthermore, we intend to investigate in a real environment
the effect of other parameters and practical issues at the operation of a Bandwidth
Broker module and the inter-domain Bandwidth Broker operation, such as the
necessary level of security, the integration of technological solutions across differ-
ent administrative and technological domains and the distribution of functionality
within a domain and across domains. We also plan to compare the results from
actual implementations and from our simulations, in order to evaluate the level of
accuracy and realism of the simulator and our extensions to the simulator for the
implementations of the algorithms.
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