Enhancing the DiffServ Architecture of a Simulation Environment

Christos Bourds’, Dimitrios Primpa$ Afrodite Sevasti?, Andreas Varnavas
'Research Academic Computer Technology Institute-RACTI, Kolokotroni 3, 26221 Patras, Greece
’Dept. of Computer Engineering and Informatics, University of Patras, 26500, Patras, Greece
{bouras, sevastia}@cti.gr

to a certain service or belonging to a specific aggregate
Abstract are marked with a distinctive value of the so-called
Simulation has always been a valuable tool for Differentiated Services CodePoint (DSCP), a single

experimentation and validation of models, architectures Packet header field, on which routers are based for
and mechanisms in the field of networking. In the case of Providing differentiated services. In this work we are
the DiffServ framework, simulation is even more valuable, Presenting a series of modules built on one of the most
due to the fact that an analytical approach of mechanisms Widely used simulation platforms, the implementation of
and services is infeasible because of the aggregation andWhich provides several tools for efficient simulation of
multiplexing of flows. In this work, we have extended the DiffServ. mechanisms and DiffServ-based services in
functionality of a widely used simulation environment exceptionally realistic conditions. o
towards the direction of realistic traffic generation and a The modules presented here have been built within
series of mechanisms defined by the DiffServ architecture. the environment of the ns-2 simulator ([12]) and comprise
The modules created are being presented and a caseSelf-contained components, each one of which prowd_es an
study of a simulation scenario that exploits the additional traffic generation or DiffServ. mechanism
functionality provided by them is described. functionality ([16]). There are a number of groups
working on the ns-2 simulation platform worldwide. The
DiffServ functionality supported b the current version of
ns-2 is described in [18]. In [1], a module for the

1 Introduction functionality of Weighted Fair Queuing (WFQ) in the ns-2

The importance of simulating environments to
research conducted in the area of computer and
telecommunication systems is undoubted. A series of
networking protocols and models have been studied on
and evaluated in simulation environments, before tested in
practice and delivered to production settings. In the past
years, a lot of research work on telecommunications and
more specifically in contemporary, transport or backbone
IP networks has focused on the introduction and
exploitation of the DiffServ framework towards the
direction of building advanced networking services as an
evolution to the traditional best-effort model.

The DiffServ framework ([17]) proposes the
provision of service differentiation to traffic in a scalable
manner, by suggesting the aggregation of individual
application flows with similar quality needs. It introduces
the definition of different service classes to which such
aggregates are appointed and the implementation of
mechanisms for differential treatment by network
elements of the packets belonging to each service class. |
compliance with the aggregation model, packets entitled

n

environment is provided. In [2], an implementation of
MPLS functionality is provided for the ns-2 platform.

In [3], in the framework of testing a proposed
measurement based admission control algorithm, a
number of realistic source models are implemented. The
authors anticipate for long-range dependence (LRD) of
network traffic. They present two types of LRD traffic
simulation models, one based on Pareto ON/OFF
processes, the superposition of which generates LRD
series, and another one based on the fractional
autoregressive integrated moving average process for the
calculation of the number of fixed-sized packets to be sent
back-to-back in each ON period of an ON/OFF source.
According to relevant bibliography, the superposition of
sources of the Ilatter model effectively simulates
aggregated VBR video traffic.

Our approach differs from this one, because it
anticipates for simulation of realistic aggregated
background traffic, while at the same time providing
modules for the generation of isolated flows in what we
call ‘foreground traffic’. Thus, we propose the use of

distinguishable traffic flows that need to be individually
monitored in a DiffServ environment, in order to observe
how DiffServ mechanisms affect the characteristics of
traffic and quality per application instead of per
aggregate. Aggregated traffic in our model is only
simulated to act in the background, in order to efficiently
reproduce a realistic DiffServ environment where best-
effort traffic co-exists with quality-demanding flows.

The ‘cross traffic’ model of inserting traffic in a
simulation topology is presented in [13]. The module for
realistic background traffic generation that we will present
in the sequel, can be used to produce ‘cross traffic’, taking

as input parameters two adjacent nodes of a topology and

generating a realistic traffic mix on the link between these
nodes.

In [4], two modules for the generation of self-similar
network traffic (behaviour observed in network traffic
according to which the autocorrelation between different
times is very large) are presented. From these two

approaches, we have chosen to adopt the superposition of

to be produced, the topology depicted in Figure 1 was
used.

The traffic sources depicted in Figure 1 are being
dynamically created on each node and the resulting
mixture of packets on the backbone link adheres to
relevant bibliography ([5]), as presented in Table 1.

access link

access link

Figure 1. Topology for background traffic generation

fractal renewal processes (SupFRP) methodology in order
to reproduce the self-similarity of HTTP traffic in our The mixture of traffic preserves a relation of a%-
traffic generation module. In [5] the authors present the (100-a)% between TCP and UDP packets. This relation is
characteristics of Internet traffic, from the perspective of configurable and is implemented by selecting the type of
the traffic mix on the links of backbone networks. Finally, traffic generated by each source created and attached to a
it must be noted that in [12], several modules on DiffServ Nnode through a uniform random variable.

functionality are provided as a contribution by several Table 1. Synthesis of background traffic

research teams worldwide. Traffic type Packets’ percentage
In this paper, we present a realistic background and FTP 32-34.4%

foreground traffic simulation module in section 2 while HTTP 21-22%

section 3 outlines a series of DiffServ mechanisms’ SMTP 13-18%

simulation modules. We also outline a case study for the TELNET 27-32%

exploitation of the simulation environment in section 4. The synthesis of packet sizes is implemented in such
The paper is concluded with our intended future work in 5 \ay that it resembles the mixed Internet traffic as

this area. defined in [7] (50 % of 40-byte packets, 33 % of 552-byte

packets and 9 % of larger packets, with maximum packet
size that is configurable), again by selecting the packet
size of traffic generated by each source created and
attached to a node through a uniform random variable.
TCP aggregated traffic was simulated with FTP data
transmissions ([8]), while the UDP aggregated traffic was

reproduced according to the distributions of [5], presented

by Table 2.
Table 2. Background traffic simulation of inter-packet
transmission times

2 Traffic generation

As part of our extensions to the ns-2 simulator, we
implemented modules for the simulation of:

« Background traffic, simulating the aggregated IP

traffic existing in the backbone links of a MAN/WAN.

» Foreground traffic, simulating individual flows or a
traffic mixture of bandwidth and delay critical IP
multimedia applications, the latter created by
multiplexing flows belonging to simulated VolP

S . . Traffic type Simulation of packet inter-
transmissions, streaming video and H.323 arrival times
conferencing. SMTP Pareto distribution
2.1 Background traffic FTP Pareto distribution
.] Telnet Pareto distribution
_S|mulated backgrognd traffic corresponds to the four ATTP Self-similar _(Superposition
basic types of traffic in a real network, SMTP, FTP, fractal processes-SupFRP)

TELNET and HTTP. In order for the background traffic The module works as follows: A configurable number

of peripheral nodes are created and connected on each of

the two backbone link nodes (Figure 1). On each attached and attaching the agent to a peripheral node of
peripheral node, a configurable number of agents (TCP or the topology. Finally, the traffic source is triggered to start

UDP) for every type of traffic (SMTP, FTP etc) and a generating packets towards an elected the sink. The input
source for every agent are attached. Sources are modellegparameters for each of these procedures are the pointers to

according to the ON/OFF model. the source and sink nodes as well as and the duration of
A number of input parameters are required for the simulation.

module’s operation. The major ones are the duration of Operation of sources is controlled by another family

the simulation (in seconds), the bandwidtbw] and of procedures, one for each traffic type, that are

propagation delay fd) attributes of the backbone responsible for defining the details of transmission for

(DW,cyoore PChcyenr) @ND aCCESS llnksbovaccess' pdaccess) as each traffic source. More specifically, they define the idle

and active state intervals for each source, according to the

well as the transmission rates of the TCP and UDP isyribytions of Table 3, as well as the packet inter-arrival
sources. In order for the load on the backbone link to be {jas when each source is active according to Table 2. It

adjustable according to the transmission rates of the TCPig here that the destination node or sink for each source’s

and UDP sources and not limited by the access links’ yansmission is randomly selected from the group of nodes
capacities, it is suggested that input parameters are suchy the other end of the backbone link to which the current
that:) source is attached. The selected sink differs between
DWackone < DWagcess: L consecutive active states of the source. These two groups
Based on the input parameters, the TCP window for of procedures presented are mainly responsible for traffic
all TCP agents created during the simulation time is set to: generation over the already described topology.
2% Phaepone™ PWhackbon Before concluding with the implementation of
8xTCPpktsizg,, background traffic, some differences in the simulation of
Thus, the TCP window of all TCP agents used is SMTP traffic are briefly mentioned. Since SMTP-based
configured to follow relative recommendations for traffic has different characteristics than the other types of
optimal performance ([9]). traffic (exchange of smaller data quantities of a 50KB
The selection of sink nodes for each source is made average size with -usually- more than one recipient) the
by a random number generator. When a source is ‘active’ implementation anticipates for shorter active state
or ‘ON’, it is scheduled to produce packets according to intervals for SMTP sources, equal to the time required to
one of the distributions for packet inter-arrival times of transmit a 50Kb mail message over a link with bandwidth
Table 2. The transmission duration and the intervals bW, @nd for multiple sinks for each SMTP traffic
between transmissions (‘OFF’ intervals) for all sources source.

are produced according to the distributions presented in The background traffic module is created so as to

round(

Table 3. function, as already explained, according to the ‘cross
Table 3. Background traffic simulation distributions traffic’ model. As such. the module can be used on a
Traffic type Transmission Interval between simulation topology by making a call:

duration transmissions : ;
SVTP 3 | =] generate-backgr-traffic <nodel> <node2>
0g-norma Xponental < d ><bw. ><pd ><Iink>
ETP Exponential Exponential \Nnackbone p backbone access p access -
TELNET Log-normal Exponential where. nodel, node2 are the .nOQes between wr_nch
TP Exponential Exponential cross-traffic has to be creat(_ad and link is the topology link
between the two nodes. This call can be used to fill each

These distributions are based on the implementation
of [6] with minor differences mainly in the log-normal
distribution implementation. A similar set of distributions’ 2.2 Foreground traffic
table is presented in [5], however in this work active state
intervals are calculated according to the log-normal
distribution for all types of traffic.

Focusing on the implementation, four procedures, one
for each type of traffic (SMTP, FTP, TELNET and
HTTP), have been implemented. Each one of them is
responsible for creating traffic sources for the
corresponding traffic type, defining the transport protocol
used (TCP or UDP) and the produced packets’ size,
creating the required agent to which the traffic source is

link of a simulation topology with background traffic.

The foreground traffic simulation module has been
created by the creation of flows belonging to isolated
VoIP transmissions, streaming video and H.323
conferencing traffic flows.

For the simulation of VolP data transmission an
exponential ON/OFF distribution was used, with an
average duration of ON periods equal to 1.004 sec,
average duration of OFF periods (idle-time) equal to
1.587 sec, packet size of 188 bhytes (8 byte UDP
header+20 byte IP header+160 byte voice data) and a

transmission rate during the ‘on’ period of 80Kbps. These scheduling processes take place. The critical point is to
values obey to the principles of [10]. For the realistic calculate the right delay time.
reproduction of aggregated VolP traffic multiple flows The existent implementation of ns-2 did not allow
with these characteristics can be created simultaneously. handling of packets when entering a router (edge or core)
For the simulation of streaming transmissions, a due to the fact that the implementation of the router itself
number of MPEG video traces as well as VBR sources lacks a receive function of its own and it inherits the
were used. The video traces were measured to have arreceive function from an ancestor class. So we overloaded
average transmission rate of 333Kbps, maximum burst the receive function so as to call the Leaky Bucket
time of 0.9895ms at the rate of 8.085 Mbps (1000 bytes) function if configured to do so by the simulation script. In
and packet size of 200 bytes. The VBR sources have beerthis way, the shaping functionality is inserted before the
based on the VBR traffic generator provided by the ns-2 routing process.
environment and configured with an average transmission The Leaky Bucket module requires the specification
rate of 448Kbps and variation of 0.25, an average burst of three input parameters, namely the DSCP of the
duration of 0.1 sec at a rate of 648 Kbps and average packets to shape, the rate to which traffic is shaped (in
number of rate changes during a burst equal to 10. bits/sec) and the depth of the Leaky Bucket used to
For the simulation of H.323 flows, traces with an accumulate packets during shaping (in bytes). The Leaky
average transmission rate of 321Kbps, maximum burst of Bucket module can be used by making the call:

4Kbytes and a distribution of packet sizes shown in Table <router_interface> Leaky-Bucket <DSCP>
4 (results from measurements of H.323 transactions made<shaping_rate> <bucket_depth>
within the scope of [11]), were used. where router_interface is the router port where the
Table 4. Synthesis of simulated H.323 traffic Leaky Bucket shaper is applied to all packets carrying the
Packet size | Percentage specified DSCP value.
64 <1% Focusing on the implementation, the LeakyBucket
65 - 127 <1% module can be addressed via a simulation script during
128-255 38 % topology generation. A series of variables are then
256-511 8% initialised so that entries for the DSCPs, the rate, the
512-1023 18 % maximum size and the current size of Leaky Bucket are
1024-1518 34 % created. Each packet arriving at an interface for which a

shaper is configured is examined with respect to its DSCP
value. If a shaping entry for the packet's DSCP exists, the
available buffer space of the shaper is examined. If the
, , packet cannot be accommodated in the buffer it is

where source and sink are the source and sink nodesyonned, otherwise the available buffer space and number
between which foreground traffic is generated. of packets in the buffer are updated.

The interval for which each packet must be delayed

For each module of the foreground traffic simulation,
a flow of a traffic type can be generated by making a call:
create<type of traffic> <source>< sink>

3 Implementation of DiffServ modules in order for the required shaping to be achieved is also
calculated. This calculation is based on the number of the
3.1 Leaky Bucket Shaping packets that are already delayed in the shaper’s buffer and

the time of the last packet's departure. Each packet is

Leaky Bucket is a shaping algorithm, introduced in o
[15], according to which packets arriving with random scheduled to be released towards the transmission queue
' 9 P 9 after the calculated period of time. At that time the

rate are shaped to a configurable constant rate. The Leaky . .
o X . . available buffer space and number of packets in the buffer

Bucket anticipates for a buffering capacity with constant are undated once acain

size. When packets arrive when the “bucket” is full, they X gain.

; The algorithm for the implementation of the Leaky
are Qroppeq. _We have |mplgmented the Leaky Buc;ket Bucket module is presented in Figure 2. A function that
algorithm within the ns-2 environment, so as to provide _ . h - f th K ket sh |
the shaping functionality for use within DiffServ prints the statistics of the Leaky Bucket shaper, namely
experiments the number of shaped and dropped packets has also been

The basic idea of our implementation is to delay each implemented and embedded in the Leaky Bucket module.

packet (if needed) for the appropriate time in order to 3.2 DiffServ-based tracing
shape traffic in a constant rate. The best way to do that is he original _ ¢ h Il .
to delay the packets immediately when they enter a !N the original version of ns when trace-all for tracing

network node (the router), before the routing and of all events in the entire simulated topology is enabled,
' all packets are traced unconditionally. This leads to very

large trace files, which demand a lot of time to be

processed. Especially in a realistic DiffServ simulation set_fid_to_trace<fidl> <fid2> ... <fidn>

environment, where the traffic generation modules that we A packet the flow_id or DSCP value of which has
have already presented are used, interest is focused omeen included in a command such as these is always
tracing only foreground traffic in order to observe the traced.

guantitative and qualitative characteristics of foreground])]

traffic for a variety of DiffServ mechanisms and 3.3 Scheduling at the ingress interface

t_opologies. Therefore, mpnitoring of background traffic is The purpose of the implementation of the module for
time and space consuming, as well as not necessary. INyacket scheduling at ingress interface queues is to create a
order to reduce the size of trace files, tracing only of 4eye mechanism at the routers, where the packets are put
packets that belong to a specific service class (accordingj, gifferent queues depending on the incoming link that
to their priority field or DSCP value) or to specific flows brought them there and are scheduled according to their
was implemented. In this way, classes of packets (such aspriority towards a transmission queue of an egress
background traffic) for which detailed tracing is not jnerface. Ingress scheduling is a functionality that a series
necessary, can be avoided. of Cisco Gigabit Switched Routers (GSRs) offer and has
been introduced to solve the head-of-line problem for

high-priority traffic in large speeds.

module The basic class of the module (Queue_input) is
a shaping entry exists fo
the packet's DSCP

derived from the original Queue class of the ns-2
architecture, inheriting all necessary functionality for a
router queue. Queue_input was augmented with a list of
queues (Queue_per_link objects) where the packets are
yes enqued depending on the incoming link that brought them
to the router. This is achieved by checking the field of IP
packet headers that denotes, when tracing is enabled, the
upstream node for each packet. Scheduling between the
‘Queue_per_link’ queues is performed in a round-robin

ere is free space in the
bucket for the packet

drop the packet 4-no

yes

v fashion.
update the bucket with new . - -
remaining space & Each Queue_per_link object is a Random Early
o Detect (RED) Queue of the original ns-2 DiffServ
architecture that simulates the queuing mechanism at an
@l the scheder o egress interface of a real router. Packets are enqued in
schedule gelaye elivery N . . . -
of packet at the shaper's different sub-queues depending on the priority field or
et DSCP value. For scheduling between the physical sub-
When ScRequler's dolay . S— queues of the Queue_per_link object, any of the supported
expires, release packet & recelve the packet in i I 1 I 1001 -
urats e ket ot mow [thetrgz:umelssmn scheduling algorithms inherited frqm the _or|g|nal ns 2_
| remaining space | RED Queue can be used. The architecture implemented is

shown in Figure 3.

Queue_input

Figure 2. Flow chart of Leaky bucket shaping implementation

In our implementation, the individual flow
identification numbers (flow-ids) and the value of the
priority fields (or DSCPs) of the flows and classes of
packets that we were interested in tracing are stored in
appropriate data structures. The receive function of
tracing objects has been updated so as to always consult s
the list of flow-ids and priority field values for which
tracing has been explicitly enabled and forward to the Figure 3. Architecture of the ingress interface scheduling
tracing process only matching packets. The remaining module
packets are forwarded directly to the next downstream In the example of Figure 4, a sample configuration
object of the ns topology, escaping the tracing process. for ingress interface scheduling at a router with two
Explicit definition of flow-ids and priority fields for which ~ upstream links and three outgoing links is presented.
tracing must be enabled can be performed by:
set_ DSCP_to_traceDSCP1><DSCP2>.. <DSCPn>

and/or

Queue_per_link

Queue_per_link

Queue_per_link

for each outgoing link i of a simulated router { In both modes the weights for each physical queue on
create a Queue_input(i) object a router interface can be set by calling:

set number of Queue_per_link of Queue_input(i) = 2 <router_interfacesaddQueueWeights<physical queue>
set size of each Queue_per_link of Queue_input(i) = 5000pkts <weight>

arrange so that pekets coming from upstreamode s(0) to go
to Q”e“e—per—r:'”ko i g 3.4.1 MDRR strict priority scheduling. In Strict
arrange so that pekets coming from upstreanode s(1) to pyjority mode, the LLQ is always served if packets are
go to Queue_per_link 1 d. Th i th tob d has to b
set number of physical queues of each Queue_per_link of qUeUed. 1hus, evgry Ime. € queue to e§erve as to be
Queue_input(i) = 3 elected, the LLQ is examlned..lf a packeF is r_eady (_at the
set scheduling algorithm between physical queues of eachhead of the LLQ) to be transmitted, then it is immediately

Queue_per_link of Queue_input(i) to be e.g. Round Robin placed on the simulated transmission medium. Otherwise,
for each Queue_per_link of Queue_input(i) { the round robin-fashion of serving the DRR queues picks
for all possible DSCP values of packets entering up from where it was interrupted, when a previous packet
Queue_per_link(j) { appeared at the head of the LLQ queue.
arrange the pzkets with DSCP= k to benqued to an
underlying physical queue, according to the local DiffServ The MDRR strict priority scheduling algorithm was
policy implemented so as to enhance the scheduling alternatives
} of the Random Early Detect (RED) Queue of the original
} ns-2 DiffServ architecture. It can be activated by defining

connect Queue_input(i) to the ns topology before the out-
going link(i) of the router
}
Figure 4. Sample configuration required in simulation
scripts for using the ingress interface scheduling module

the scheduling mode for each router’s interface during the
simulation topology set-up:
<router_interfacesetSchedularModeMDRR_STR

3.4.2 MDRR alternate priority scheduling. In

3.4 MDRR scheduling alternate priority mode, service alternates between the
LLQ and the other DRR queues. The LLQ now obtains its
own weight, quantum and deficit values, the latter of
which is updated every time an LLQ packet is served and
augmented by a value equal to the current queue’s
quantum at the end of each LLQ-DRR1-LLQ-DRR2-
...LLQ-DRRn round. Again, the MDRR alternate priority
scheduling was implemented as an additional module to
the scheduling alternatives of the Random Early Detect
(RED) Queue of the original ns-2 DiffServ architecture.

In the DiffServ module of ns-2 one can choose one of
the following algorithms for scheduling at the edge and
core routers: Weighted Round Robin (WRR), Weighted
Interleaved Round Robin (WIRR), Round Robin (RR),
and Priority (PRI). We implemented two more algorithms,
Modified Deficit Round Robin — Strict (MDRR_STR)
and Modified Deficit Round Robin — Alternate
(MDRR_ALT), that are used by Cisco GSRs ([14]).

In the MDRR scheduling algorithm, all the queues,
except for the low latency one (LLQ), are served in a Figure 5 presents the flowchart that was used for the
deficit round robin (DRR) fashion. Each one of DRR- implementation of the MDRR alternate priority
served queues can be configured with a weight, according scheduling module. MDRR alternate priority scheduling
to which an initialisation quantum (in bytes) defining the algorithm can be activated by defining the scheduling
maximum number of packets that can be uninterruptedly mode for each router’s interface during the simulation
served by the queue is calculated. A deficit (initially equal topology set-up:
to the corresponding quantum) is applied to each DRR <router_interfacesetSchedularModeMDRR_ALT
gueue and is decreased by the size of a packet, each time .
packet exits the queue. The scheduler moves on to the it st ot o o] st
next queue to be served when the current queue’s deficit
becomes zero or negative.

When all DRR queues have been served, completing
a round of service, all DRR queues’ deficits are
augmented by the corresponding quantum values,
depending on the configured queues’ weights.

As far as serving the LLQ is concerned, two
alternative modes exist:

» MDRR strict priority scheduling and

 MDRR alternate priority scheduling

Forall the queues (DRR and LLQ)
ot

-Transmit the packet
-deficit(LLQ) =
deficit(LLQ) - size of
packet

YES | deficit (LLQ) = deficit

is deficitof LLQ L) + e
Q)

negative?

Figure 5. Flowchart of MDRR-Alternate scheduling algorithm

4 A case-study The total throughput of foreground traffic is increased
))) in case 2, while it is obvious how the LLQ queue

In this section, a case-study demonstrating the use of (ytects’ VolIP traffic. VolP traffic is observed to reach

the modules already described is presented. Our aim Wasine maximum rate of 320Kbps at PoPO, which is
to eva_luate in a reah_stlc S|mula_1t|on enwr_onment, two equivalent to the accumulation of peaks (80Kbps) of the
scenarios for serving Quality-of-Service (QO0S)- foyr VoIP flows transmitted through the PoP. This
demanding traffic (VolP, MPEG video streaming and qpservation also holds for interfaces PoP1-S1 (2 VoIP

H.323 flows) according to the DiffServ principles. More fiows VoIP -165 Kbps maximum thughput) and PoP1-
specifically, we were interesting in testing two different g3

scenarios over a topology simulating the backbone link of Table 6. Throughput (in Kbps) of Gold traffic in case 2

a MAN that serves aggregated traffic from adjacent | Interface Portrate | Max | Mean | Min
domains. The topology and synthesis of foreground traffic| pgpo->total 20Mbps 1623] 1039| 661
used are depicted in Figure 6. >Voice traffic 320 | 135 0
High-priority traffic Pécke! ->Other fore- 1386 903 606
(byees) | ground traffic
©: | {oh rate: 80 Kbps per low) - PoP1-S1 0.8Mbps| 165| 71 0
C, |1 MPEG video flow ¢, | 200
333 Kbps) PoP1-S2 1.6Mbps| 912 436 154
C, |1 VBR flow (r,,: 448[1500&
Kbps) & 2 voice flows (ON| 188 PoP1-S3->total 3.2Mbps 750 532 42
rate: bps per flow
s e ->Voice 165 | 64 0
Figure 6. Topology and foreground traffic synthesis traffic
B_ackgr_oun(_j traffic was produced a‘s already’ >Other fore- 630 | 267 220
described in this paper and was inserted as ‘cross-traffic d traffi
on the backbone link of our topology. Three adjacent ground trafhic

domains with different access link capacities were Table 7 presents the quality metrics’ values for the
attached to the PoPO of our topology and equal sink tWO cases under examination (delay and jitter measured
domains were attached to PoP1. The table of Figure 6 from the egress interface of a domé&ih up to the ingress

presents the synthesis of foreground traffic as inserted t0yierface of a destination domain). One can observe how
PoPO by each adjacent domdih. the end-to-end delay perceived by VolP traffic is
Our interest focused on DiffServ mechanisms applied improved in case 2 for VolP transmitted between C3->S3,
for serving QoS-demanding, foreground traffic at Popo When compared to case 1 where VolP shared the LLQ
and PoP1 and how two different scenarios would affect With foreground traffic of another type at PoP1 (2nd line
the quality perceived by foreground traffic flows. ©Of both tables). Jitter, however, between these two specific
Comparison of the quality perceived by foreground traffic Cases of line 2 is increased. VolP traffic which does not

was made in two different scenarios where PoP0 and Share a transmission queue with another type of
PoP1 were configured with MDRR strict priority foreground traffic in case 1 demonstrates a slight decrease

scheduling so that: in the quality perceived in case2 (1st line of both tables).
. Case 1: The total of foreground traffic was served AS far as the other types of foreground traffic are
by the LLQ both in PoP0 and PoP1 concerned a slight decrease in the quality perceived is

noticed. This is due to the fact that this traffic is
transferred from the strict priority queue (LLQ) to a

regular queue of service.
Table 7. Quality metrics’ values

e Case 2: The VolP flows were served by the LLQ
gueue and the rest of foreground traffic was served by
a DRR queue with a high queue weight value (97),

ensuring access to 97% of the available bandwidth in (case 1) (case 2)
absence of VolP traffic. Background traffic was Traffic | max defay | max jiter Traffic T max defay | maxiter
served by another DRR queue with queue weight of 3. aaeac, —CoL -t | adwreqate | (ms) (ms)

! Vo?ce C1->S1, 74.05 10.19 (1.94)
Table 5 and Table 6 present the measured throughput Pecec3>S3 7085 25049 [voice C3->53] 6520 [4.2(1.07)

. i MPEG 67.04 4.9 (0.5 MPEG 71.964 9.07 (0.713
values measured in the two different cases. H.323 70.85 [25(0.49 H.323 74.83 6.15 (0.9)
Table 5. Throughput (in Kbps) of foreground traffic in case 1
Interface Portrate | Max | Mean | Min 5 Future work-conclusions
PoPO 20Mbps | 1570 1006 | 606 _ _
PoP1->S1 0.8Mbps | 161| 52 0 In this paper we have presented a series of modules

implemented so as to extend the DiffServ functionality of
the ns-2 simulator. We have also provided an example of
use for most of these modules and an indicative

PoP1->S2 1.6Mbps 912 436 156
PoP1->S3 3.2Mbps 761 518 420

experimental set-up for the evaluation of different [12]S. McCanne and S. Floyd, ‘ns Network Simulator’,
DiffServ mechanisms and scenarios. The importance of available at: http://www.isi.edu/nsnam/ns/

our work lies on the fact that the scale of operation in [13]C. Dovrolis, D. Stiliadis and P. Ramanathan, ‘Proportional
DiffServ environments does not allow for analytical Differentiated Services: Delay Differentiation and Packet
evaluation of models and mechanisms. Therefore, the use ~ Scheduling’, in proceedings of ACM SIGCOMM 99
of simulation is necessary and particularly useful as a first Conference, Boston, USA, 1999

step before implementation and testing in a real network [14]Cisco 12000 Series Internet Router: Frequently Asked
Questions, found at:

topology. http://www.cisco.com/warplblic/63/gsrfag_11085.shtml

Our_ future work on this area will concentrate on [15]ATM Forum, ‘Traffic Management Specification’, Version
developing and testing new DiffServ-based modules 4.0, af-tm-0056.00, April 1996

within the ns-2 environment. Such modules include tools [16]C. Bouras, D. Primpas, A. Sevasti and A. Varnavas,

for qualitative metrics’ measurements (e.g. measurement ‘DiffServ functionality patches developed for the ns-2

of packets’ delay between two user-configurable network simulator’, found at: http://ouranos.ceid.upatras.gr/

locations), mechanisms for packets’ metering and diffserv/nspatches/description.htm

classification, alternative scheduling algorithms and the [17]S. Blake et al, ‘An Architecture for Differentiated

implementation of integrated service management entities, ~_ Services’, RFC 2475, é&embed 998

such as bandwidth brokers. [18]K. Fall and K. Varadhan (editors), ‘The ns Manual-Chapter
9: Differentiated Services Module in ns’, 2001, available

6 References at: http://www.isi.edu/nsnam/ns/

[1] R. Wielicki, ‘ns-2 ad-ons page’, found at:
http://thenut.eti.pg.gda.pl/~rafalw/wfq/

[2] G. Ahn, ‘MPLS Network Simulator, found at:
http://flower.ce.cnu.ac.kr/~fogl/mns/index.htm

[3] S. Jamin, P. B. Danzig, S. Shenker, and L. Zhang,
‘Measurement-Based Admission Control for Integrated
Services Packet Networks’, in proceedings of ACM
SIGCOMM'95, pp. 2 — 13, Cambridge, USA, 1995

[4] M. Yuksel, ‘Traffic Generator for an On-Line Simulator’,
Master's Thesis, Department of Computer Science,
Rensselaer Polytechnic Institute, 1999

[5] M. Yuksel, B. Sikdar, K.S. Vastola, and B. Szymanski,
‘Workload generation for ns Simulations of Wide Area
Networks and the Internet’, in proceedings of CNDS
Conference, part of SCS Western Multiconference, San
Diego, USA, 2000

[6] S. Kalyanaraman, K. Vastola and B. Szymanski, ‘Traffic
generator’, result of project ‘Network Management and
Control Using On-line Collaborative Simulation’, funded
by DARPA-ITO, found at:
http://poisson.ecse.rpi.edu/~olsim/results/results.html

[7] K. Thompson, G.J. Miller, and R. Wilder, ‘Wide-Area
Internet Traffic Patterns and Characteristics’, in
IEEE/ACM Transactions on Networking, pp. 10-23, 1997

[8] H. Sawashima. Y. Hori, H. Sunahara and Y. Oie,
‘Performance Evaluation of UDP Traffic Affected by TCP
Flows’, in IEICE Trans. Commun., vol.E81-B, no.8,
pp.1616-1623

[9] Data Intensive Distributed Computing Group, ‘TCP
Tuning Guide for Distributed Application on Wide Area
Networks’, Lawrence Berkeley National Laboratory, found
at: http://mww-didc.lbl.gov/tcp-wan.html

[10]1TU-T, P.59, ‘Artificial conversational speech’, (03/93)

[11] SEQUIN: ‘Service Quality across Independently Managed
Networks’, IST Project 1ST-1999-20841, project web-site
found at: http:Ahww.dante.net/sequin/

