
Enhancing the DiffServ Architecture of a Simulation Environment

Christos Bouras1,2, Dimitrios Primpas2, Afrodite Sevasti1,2, Andreas Varnavas2

1Research Academic Computer Technology Institute-RACTI, Kolokotroni 3, 26221 Patras, Greece
2Dept. of Computer Engineering and Informatics, University of Patras, 26500, Patras, Greece

{bouras, sevastia}@cti.gr

Abstract

Simulation has always been a valuable tool for
experimentation and validation of models, architectures
and mechanisms in the field of networking. In the case of
the DiffServ framework, simulation is even more valuable,
due to the fact that an analytical approach of mechanisms
and services is infeasible because of the aggregation and
multiplexing of flows. In this work, we have extended the
functionality of a widely used simulation environment
towards the direction of realistic traffic generation and a
series of mechanisms defined by the DiffServ architecture.
The modules created are being presented and a case
study of a simulation scenario that exploits the
functionality provided by them is described.

1 Introduction

The importance of simulating environments to
research conducted in the area of computer and
telecommunication systems is undoubted. A series of
networking protocols and models have been studied on
and evaluated in simulation environments, before tested in
practice and delivered to production settings. In the past
years, a lot of research work on telecommunications and
more specifically in contemporary, transport or backbone
IP networks has focused on the introduction and
exploitation of the DiffServ framework towards the
direction of building advanced networking services as an
evolution to the traditional best-effort model.

The DiffServ framework ([17]) proposes the
provision of service differentiation to traffic in a scalable
manner, by suggesting the aggregation of individual
application flows with similar quality needs. It introduces
the definition of different service classes to which such
aggregates are appointed and the implementation of
mechanisms for differential treatment by network
elements of the packets belonging to each service class. In
compliance with the aggregation model, packets entitled

to a certain service or belonging to a specific aggregate
are marked with a distinctive value of the so-called
Differentiated Services CodePoint (DSCP), a single
packet header field, on which routers are based for
providing differentiated services. In this work we are
presenting a series of modules built on one of the most
widely used simulation platforms, the implementation of
which provides several tools for efficient simulation of
DiffServ mechanisms and DiffServ-based services in
exceptionally realistic conditions.

The modules presented here have been built within
the environment of the ns-2 simulator ([12]) and comprise
self-contained components, each one of which provides an
additional traffic generation or DiffServ mechanism
functionality ([16]). There are a number of groups
working on the ns-2 simulation platform worldwide. The
DiffServ functionality supported b the current version of
ns-2 is described in [18]. In [1], a module for the
functionality of Weighted Fair Queuing (WFQ) in the ns-2
environment is provided. In [2], an implementation of
MPLS functionality is provided for the ns-2 platform.

In [3], in the framework of testing a proposed
measurement based admission control algorithm, a
number of realistic source models are implemented. The
authors anticipate for long-range dependence (LRD) of
network traffic. They present two types of LRD traffic
simulation models, one based on Pareto ON/OFF
processes, the superposition of which generates LRD
series, and another one based on the fractional
autoregressive integrated moving average process for the
calculation of the number of fixed-sized packets to be sent
back-to-back in each ON period of an ON/OFF source.
According to relevant bibliography, the superposition of
sources of the latter model effectively simulates
aggregated VBR video traffic.

Our approach differs from this one, because it
anticipates for simulation of realistic aggregated
background traffic, while at the same time providing
modules for the generation of isolated flows in what we
call ‘foreground traffic’. Thus, we propose the use of

distinguishable traffic flows that need to be individually
monitored in a DiffServ environment, in order to observe
how DiffServ mechanisms affect the characteristics of
traffic and quality per application instead of per
aggregate. Aggregated traffic in our model is only
simulated to act in the background, in order to efficiently
reproduce a realistic DiffServ environment where best-
effort traffic co-exists with quality-demanding flows.

The ‘cross traffic’ model of inserting traffic in a
simulation topology is presented in [13]. The module for
realistic background traffic generation that we will present
in the sequel, can be used to produce ‘cross traffic’, taking
as input parameters two adjacent nodes of a topology and
generating a realistic traffic mix on the link between these
nodes.

In [4], two modules for the generation of self-similar
network traffic (behaviour observed in network traffic
according to which the autocorrelation between different
times is very large) are presented. From these two
approaches, we have chosen to adopt the superposition of
fractal renewal processes (SupFRP) methodology in order
to reproduce the self-similarity of HTTP traffic in our
traffic generation module. In [5] the authors present the
characteristics of Internet traffic, from the perspective of
the traffic mix on the links of backbone networks. Finally,
it must be noted that in [12], several modules on DiffServ
functionality are provided as a contribution by several
research teams worldwide.

In this paper, we present a realistic background and
foreground traffic simulation module in section 2 while
section 3 outlines a series of DiffServ mechanisms’
simulation modules. We also outline a case study for the
exploitation of the simulation environment in section 4.
The paper is concluded with our intended future work in
this area.

2 Traffic generation

As part of our extensions to the ns-2 simulator, we
implemented modules for the simulation of:

• Background traffic, simulating the aggregated IP
traffic existing in the backbone links of a MAN/WAN.

• Foreground traffic, simulating individual flows or a
traffic mixture of bandwidth and delay critical IP
multimedia applications, the latter created by
multiplexing flows belonging to simulated VoIP
transmissions, streaming video and H.323
conferencing.

2.1 Background traffic

Simulated background traffic corresponds to the four
basic types of traffic in a real network, SMTP, FTP,
TELNET and HTTP. In order for the background traffic

to be produced, the topology depicted in Figure 1 was
used.

The traffic sources depicted in Figure 1 are being
dynamically created on each node and the resulting
mixture of packets on the backbone link adheres to
relevant bibliography ([5]), as presented in Table 1.

� �EDFNERQH OLQN

�

�

�

��

��

DFFHVV OLQN

DFFHVV OLQN

�

�

�

�

�

DFFHVV OLQN

DFFHVV OLQN

VRXUFH

�

VRXUFH

�

VRXUFH

�

VRXUFH

�

VRXUFH

�
VRXUFH

�

VRXUFH

�

VRXUFH

�
VRXUFH

�

VRXUFH

�

Figure 1. Topology for background traffic generation
The mixture of traffic preserves a relation of a%-

(100-a)% between TCP and UDP packets. This relation is
configurable and is implemented by selecting the type of
traffic generated by each source created and attached to a
node through a uniform random variable.

Table 1. Synthesis of background traffic
Traffic type Packets’ percentage

FTP 32-34.4%

HTTP 21-22%

SMTP 13-18%

TELNET 27-32%

The synthesis of packet sizes is implemented in such
a way that it resembles the mixed Internet traffic as
defined in [7] (50 % of 40-byte packets, 33 % of 552-byte
packets and 9 % of larger packets, with maximum packet
size that is configurable), again by selecting the packet
size of traffic generated by each source created and
attached to a node through a uniform random variable.
TCP aggregated traffic was simulated with FTP data
transmissions ([8]), while the UDP aggregated traffic was
reproduced according to the distributions of [5], presented
by Table 2.

Table 2. Background traffic simulation of inter-packet
transmission times

Traffic type Simulation of packet inter-
arrival times

SMTP Pareto distribution

FTP Pareto distribution

Telnet Pareto distribution

HTTP Self-similar (Superposition of
fractal processes-SupFRP)

The module works as follows: A configurable number
of peripheral nodes are created and connected on each of

the two backbone link nodes (Figure 1). On each
peripheral node, a configurable number of agents (TCP or
UDP) for every type of traffic (SMTP, FTP etc) and a
source for every agent are attached. Sources are modelled
according to the ON/OFF model.

A number of input parameters are required for the
module’s operation. The major ones are the duration of
the simulation (in seconds), the bandwidth (bw) and
propagation delay (pd) attributes of the backbone

(
backbonebackbone pdbw ,) and access links (

ii accessaccess pdbw ,) as

well as the transmission rates of the TCP and UDP
sources. In order for the load on the backbone link to be
adjustable according to the transmission rates of the TCP
and UDP sources and not limited by the access links’
capacities, it is suggested that input parameters are such
that:

 ibwbw
iaccessbackbone ∀< ,

Based on the input parameters, the TCP window for
all TCP agents created during the simulation time is set to:

)
8

2
(

maxTCPpktsize

bwpd
round backbonebackbone

×
××

Thus, the TCP window of all TCP agents used is
configured to follow relative recommendations for
optimal performance ([9]).

The selection of sink nodes for each source is made
by a random number generator. When a source is ‘active’
or ‘ON’, it is scheduled to produce packets according to
one of the distributions for packet inter-arrival times of
Table 2. The transmission duration and the intervals
between transmissions (‘OFF’ intervals) for all sources
are produced according to the distributions presented in
Table 3.

Table 3. Background traffic simulation distributions
Traffic type Transmission

duration
Interval between
transmissions

SMTP Log-normal Exponential

FTP Exponential Exponential

TELNET Log-normal Exponential

HTTP Exponential Exponential

These distributions are based on the implementation
of [6] with minor differences mainly in the log-normal
distribution implementation. A similar set of distributions’
table is presented in [5], however in this work active state
intervals are calculated according to the log-normal
distribution for all types of traffic.

Focusing on the implementation, four procedures, one
for each type of traffic (SMTP, FTP, TELNET and
HTTP), have been implemented. Each one of them is
responsible for creating traffic sources for the
corresponding traffic type, defining the transport protocol
used (TCP or UDP) and the produced packets’ size,
creating the required agent to which the traffic source is

attached and attaching the agent to a peripheral node of
the topology. Finally, the traffic source is triggered to start
generating packets towards an elected the sink. The input
parameters for each of these procedures are the pointers to
the source and sink nodes as well as and the duration of
simulation.

Operation of sources is controlled by another family
of procedures, one for each traffic type, that are
responsible for defining the details of transmission for
each traffic source. More specifically, they define the idle
and active state intervals for each source, according to the
distributions of Table 3, as well as the packet inter-arrival
times when each source is active according to Table 2. It
is here that the destination node or sink for each source’s
transmission is randomly selected from the group of nodes
on the other end of the backbone link to which the current
source is attached. The selected sink differs between
consecutive active states of the source. These two groups
of procedures presented are mainly responsible for traffic
generation over the already described topology.

Before concluding with the implementation of
background traffic, some differences in the simulation of
SMTP traffic are briefly mentioned. Since SMTP-based
traffic has different characteristics than the other types of
traffic (exchange of smaller data quantities of a 50KB
average size with -usually- more than one recipient) the
implementation anticipates for shorter active state
intervals for SMTP sources, equal to the time required to
transmit a 50Kb mail message over a link with bandwidth

backbonebw , and for multiple sinks for each SMTP traffic

source.
The background traffic module is created so as to

function, as already explained, according to the ‘cross
traffic’ model. As such, the module can be used on a
simulation topology by making a call:
generate-backgr-traffic <node1> <node2>
<

backbonebw ><
backbonepd ><

iaccessbw ><
iaccesspd ><link>

where node1, node2 are the nodes between which
cross-traffic has to be created and link is the topology link
between the two nodes. This call can be used to fill each
link of a simulation topology with background traffic.

2.2 Foreground traffic

The foreground traffic simulation module has been
created by the creation of flows belonging to isolated
VoIP transmissions, streaming video and H.323
conferencing traffic flows.

For the simulation of VoIP data transmission an
exponential ON/OFF distribution was used, with an
average duration of ON periods equal to 1.004 sec,
average duration of OFF periods (idle-time) equal to
1.587 sec, packet size of 188 bytes (8 byte UDP
header+20 byte IP header+160 byte voice data) and a

transmission rate during the ‘on’ period of 80Kbps. These
values obey to the principles of [10]. For the realistic
reproduction of aggregated VoIP traffic multiple flows
with these characteristics can be created simultaneously.

For the simulation of streaming transmissions, a
number of MPEG video traces as well as VBR sources
were used. The video traces were measured to have an
average transmission rate of 333Kbps, maximum burst
time of 0.9895ms at the rate of 8.085 Mbps (1000 bytes)
and packet size of 200 bytes. The VBR sources have been
based on the VBR traffic generator provided by the ns-2
environment and configured with an average transmission
rate of 448Kbps and variation of 0.25, an average burst
duration of 0.1 sec at a rate of 648 Kbps and average
number of rate changes during a burst equal to 10.

For the simulation of H.323 flows, traces with an
average transmission rate of 321Kbps, maximum burst of
4Kbytes and a distribution of packet sizes shown in Table
4 (results from measurements of H.323 transactions made
within the scope of [11]), were used.

Table 4. Synthesis of simulated H.323 traffic
Packet size Percentage

64 < 1%

65 - 127 < 1%

128-255 38 %

256-511 8 %

512-1023 18 %

1024-1518 34 %

For each module of the foreground traffic simulation,
a flow of a traffic type can be generated by making a call:
create-<type of traffic> <source>< sink>

where source and sink are the source and sink nodes
between which foreground traffic is generated.

3 Implementation of DiffServ modules

3.1 Leaky Bucket Shaping

Leaky Bucket is a shaping algorithm, introduced in
[15], according to which packets arriving with random
rate are shaped to a configurable constant rate. The Leaky
Bucket anticipates for a buffering capacity with constant
size. When packets arrive when the “bucket” is full, they
are dropped. We have implemented the Leaky Bucket
algorithm within the ns-2 environment, so as to provide
the shaping functionality for use within DiffServ
experiments.

The basic idea of our implementation is to delay each
packet (if needed) for the appropriate time in order to
shape traffic in a constant rate. The best way to do that is
to delay the packets immediately when they enter a
network node (the router), before the routing and

scheduling processes take place. The critical point is to
calculate the right delay time.

The existent implementation of ns-2 did not allow
handling of packets when entering a router (edge or core)
due to the fact that the implementation of the router itself
lacks a receive function of its own and it inherits the
receive function from an ancestor class. So we overloaded
the receive function so as to call the Leaky Bucket
function if configured to do so by the simulation script. In
this way, the shaping functionality is inserted before the
routing process.

The Leaky Bucket module requires the specification
of three input parameters, namely the DSCP of the
packets to shape, the rate to which traffic is shaped (in
bits/sec) and the depth of the Leaky Bucket used to
accumulate packets during shaping (in bytes). The Leaky
Bucket module can be used by making the call:
<router_interface> Leaky-Bucket <DSCP>
<shaping_rate> <bucket_depth>

where router_interface is the router port where the
Leaky Bucket shaper is applied to all packets carrying the
specified DSCP value.

Focusing on the implementation, the LeakyBucket
module can be addressed via a simulation script during
topology generation. A series of variables are then
initialised so that entries for the DSCPs, the rate, the
maximum size and the current size of Leaky Bucket are
created. Each packet arriving at an interface for which a
shaper is configured is examined with respect to its DSCP
value. If a shaping entry for the packet’s DSCP exists, the
available buffer space of the shaper is examined. If the
packet cannot be accommodated in the buffer it is
dropped, otherwise the available buffer space and number
of packets in the buffer are updated.

The interval for which each packet must be delayed
in order for the required shaping to be achieved is also
calculated. This calculation is based on the number of the
packets that are already delayed in the shaper’s buffer and
the time of the last packet’s departure. Each packet is
scheduled to be released towards the transmission queue
after the calculated period of time. At that time the
available buffer space and number of packets in the buffer
are updated once again.

The algorithm for the implementation of the Leaky
Bucket module is presented in Figure 2. A function that
prints the statistics of the Leaky Bucket shaper, namely
the number of shaped and dropped packets has also been
implemented and embedded in the Leaky Bucket module.

3.2 DiffServ-based tracing

In the original version of ns when trace-all for tracing
of all events in the entire simulated topology is enabled,
all packets are traced unconditionally. This leads to very
large trace files, which demand a lot of time to be

processed. Especially in a realistic DiffServ simulation
environment, where the traffic generation modules that we
have already presented are used, interest is focused on
tracing only foreground traffic in order to observe the
quantitative and qualitative characteristics of foreground
traffic for a variety of DiffServ mechanisms and
topologies. Therefore, monitoring of background traffic is
time and space consuming, as well as not necessary. In
order to reduce the size of trace files, tracing only of
packets that belong to a specific service class (according
to their priority field or DSCP value) or to specific flows
was implemented. In this way, classes of packets (such as
background traffic) for which detailed tracing is not
necessary, can be avoided.

UHFHLYH SDFNHW LQ VKDSLQJ
PRGXOH

XSGDWH WKH EXFNHW ZLWK QHZ
UHPDLQLQJ VSDFH 	

FDOFXODWH WKH GHOD\ WLPH IRU

WKH SDFNHW

\HV

\HV

FDOO WKH VFKHGXOHU WR

VFKHGXOH GHOD\HG GHOLYHU\
RI SDFNHW DW WKH VKDSHU
V

H[LW

UHFHLYH WKH SDFNHW LQ
WKH WUDQVPLVVLRQ

TXHXH

GURS WKH SDFNHW QR

ZKHQ VFKHGXOHU
V GHOD\
H[SLUHV� UHOHDVH SDFNHW 	

XSGDWH WKH EXFNHW ZLWK QHZ

UHPDLQLQJ VSDFH

QR
D VKDSLQJ HQWU\ H[LVWV IRU

WKH SDFNHW
V '6&3

WKHUH LV IUHH VSDFH LQ WKH

EXFNHW IRU WKH SDFNHW

Figure 2. Flow chart of Leaky bucket shaping implementation
In our implementation, the individual flow

identification numbers (flow-ids) and the value of the
priority fields (or DSCPs) of the flows and classes of
packets that we were interested in tracing are stored in
appropriate data structures. The receive function of
tracing objects has been updated so as to always consult
the list of flow-ids and priority field values for which
tracing has been explicitly enabled and forward to the
tracing process only matching packets. The remaining
packets are forwarded directly to the next downstream
object of the ns topology, escaping the tracing process.
Explicit definition of flow-ids and priority fields for which
tracing must be enabled can be performed by:
set_DSCP_to_trace<DSCP1><DSCP2>.. <DSCPn>

and/or

set_fid_to_trace <fid1> <fid2> … <fidn>
A packet the flow_id or DSCP value of which has

been included in a command such as these is always
traced.

3.3 Scheduling at the ingress interface

The purpose of the implementation of the module for
packet scheduling at ingress interface queues is to create a
queue mechanism at the routers, where the packets are put
in different queues depending on the incoming link that
brought them there and are scheduled according to their
priority towards a transmission queue of an egress
interface. Ingress scheduling is a functionality that a series
of Cisco Gigabit Switched Routers (GSRs) offer and has
been introduced to solve the head-of-line problem for
high-priority traffic in large speeds.

The basic class of the module (Queue_input) is
derived from the original Queue class of the ns-2
architecture, inheriting all necessary functionality for a
router queue. Queue_input was augmented with a list of
queues (Queue_per_link objects) where the packets are
enqued depending on the incoming link that brought them
to the router. This is achieved by checking the field of IP
packet headers that denotes, when tracing is enabled, the
upstream node for each packet. Scheduling between the
‘Queue_per_link’ queues is performed in a round-robin
fashion.

Each Queue_per_link object is a Random Early
Detect (RED) Queue of the original ns-2 DiffServ
architecture that simulates the queuing mechanism at an
egress interface of a real router. Packets are enqued in
different sub-queues depending on the priority field or
DSCP value. For scheduling between the physical sub-
queues of the Queue_per_link object, any of the supported
scheduling algorithms inherited from the original ns-2
RED Queue can be used. The architecture implemented is
shown in Figure 3.

&KRRVH TXHXH EDVHG RQ

QRGH RI RULJLQ

�HDFK 4XHXHBLQSXW

FRQWDLQV SDFNHWV IURP WKH

VDPH XSVWUHDP OLQN�

&KRRVH TXHXH

EDVHG RQ

SULRULW\ ILHOG

3K\VLFDO TXHXH

3K\VLFDO TXHXH

3K\VLFDO TXHXH

'HTXHXH

XVLQJ DQ

H[LVWLQJ DOJRULWKP

RI QV�� 5('

4XHXH

4XHXHBSHUBOLQN

4XHXHBSHUBOLQN

4XHXHBSHUBOLQN

$OWHUQDWH

6FKHGXOLQJ

4XHXHBSHUBOLQN4XHXHBLQSXW

$V PDQ\ TXHXHV DV

WKH QXPEHU RI WKH

XSVWUHDP OLQNV

Figure 3. Architecture of the ingress interface scheduling
module

In the example of Figure 4, a sample configuration
for ingress interface scheduling at a router with two
upstream links and three outgoing links is presented.

for each outgoing link i of a simulated router {
 create a Queue_input(i) object
 set number of Queue_per_link of Queue_input(i) = 2
 set size of each Queue_per_link of Queue_input(i) = 5000pkts
 arrange so that packets coming from upstream node s(0) to go
to Queue_per_link 0
 arrange so that packets coming from upstream node s(1) to
go to Queue_per_link 1
 set number of physical queues of each Queue_per_link of
Queue_input(i) = 3
 set scheduling algorithm between physical queues of each
Queue_per_link of Queue_input(i) to be e.g. Round Robin
 for each Queue_per_link of Queue_input(i) {
 for all possible DSCP values of packets entering
Queue_per_link(j) {
 arrange the packets with DSCP= k to be enqued to an
underlying physical queue, according to the local DiffServ
policy
 }
 }
 connect Queue_input(i) to the ns topology before the out-
going link(i) of the router
}

Figure 4. Sample configuration required in simulation
scripts for using the ingress interface scheduling module

3.4 MDRR scheduling

In the DiffServ module of ns-2 one can choose one of
the following algorithms for scheduling at the edge and
core routers: Weighted Round Robin (WRR), Weighted
Interleaved Round Robin (WIRR), Round Robin (RR),
and Priority (PRI). We implemented two more algorithms,
Modified Deficit Round Robin – Strict (MDRR_STR)
and Modified Deficit Round Robin – Alternate
(MDRR_ALT), that are used by Cisco GSRs ([14]).

In the MDRR scheduling algorithm, all the queues,
except for the low latency one (LLQ), are served in a
deficit round robin (DRR) fashion. Each one of DRR-
served queues can be configured with a weight, according
to which an initialisation quantum (in bytes) defining the
maximum number of packets that can be uninterruptedly
served by the queue is calculated. A deficit (initially equal
to the corresponding quantum) is applied to each DRR
queue and is decreased by the size of a packet, each time a
packet exits the queue. The scheduler moves on to the
next queue to be served when the current queue’s deficit
becomes zero or negative.

When all DRR queues have been served, completing
a round of service, all DRR queues’ deficits are
augmented by the corresponding quantum values,
depending on the configured queues’ weights.

As far as serving the LLQ is concerned, two
alternative modes exist:

• MDRR strict priority scheduling and

• MDRR alternate priority scheduling

In both modes the weights for each physical queue on
a router interface can be set by calling:
<router_interface> addQueueWeights <physical queue>
<weight>

3.4.1 MDRR strict priority scheduling. In Strict
Priority mode, the LLQ is always served if packets are
queued. Thus, every time the queue to be served has to be
elected, the LLQ is examined. If a packet is ready (at the
head of the LLQ) to be transmitted, then it is immediately
placed on the simulated transmission medium. Otherwise,
the round robin-fashion of serving the DRR queues picks
up from where it was interrupted, when a previous packet
appeared at the head of the LLQ queue.

The MDRR strict priority scheduling algorithm was
implemented so as to enhance the scheduling alternatives
of the Random Early Detect (RED) Queue of the original
ns-2 DiffServ architecture. It can be activated by defining
the scheduling mode for each router’s interface during the
simulation topology set-up:
<router_interface> setSchedularMode MDRR_STR

3.4.2 MDRR alternate priority scheduling. In
alternate priority mode, service alternates between the
LLQ and the other DRR queues. The LLQ now obtains its
own weight, quantum and deficit values, the latter of
which is updated every time an LLQ packet is served and
augmented by a value equal to the current queue’s
quantum at the end of each LLQ-DRR1-LLQ-DRR2-
…LLQ-DRRn round. Again, the MDRR alternate priority
scheduling was implemented as an additional module to
the scheduling alternatives of the Random Early Detect
(RED) Queue of the original ns-2 DiffServ architecture.

Figure 5 presents the flowchart that was used for the
implementation of the MDRR alternate priority
scheduling module. MDRR alternate priority scheduling
algorithm can be activated by defining the scheduling
mode for each router’s interface during the simulation
topology set-up:
<router_interface> setSchedularMode MDRR_ALT

'RHV ORZ //4 KDYH D

SDFNHW"

�7UDQVPLW WKH SDFNHW
�GHILFLW�//4�

GHILFLW�//4� � VL]H RI

SDFNHW

LV GHILFLW RI //4

QHJDWLYH"

GHILFLW �//4� GHILFLW

�//4� � TXDQWXP

�//4�

VHW GHILFLW TXDQWXP IRU

WKH //4 TXHXH

7DNH WKH QH[W '55

TXHXH

)RU DOO WKH TXHXHV �'55 DQG //4�

LI GHILFLW LV � � VHW
GHILFLW GHILFLW�TXDQWXP

HOVH VHW GHILFLW TXDQWXP

,V WKLV WKH HQG RI WKH

'55 TXHXHV"

'RHV '55 TXHXH KDYH D

SDFNHW"

6HW

GHILFLW TXDQWXP

IRU WKH '55 TXHXH

*R WR WKH QH[W '55

TXHXH

7UDQVPLW WKH SDFNHW

6HW GHILFLW�'55�

GHILFLW�'55� � VL]H RI

SDFNHW

LV GHILFLW RI '55
QHJDWLYH"

GHILFLW �'55� GHILFLW

�'55� � TXDQWXP �'55�

<(6

12

12

<(6

<(6

12

12

<(6

<(6

12

67$57

Figure 5. Flowchart of MDRR-Alternate scheduling algorithm

4 A case-study

In this section, a case-study demonstrating the use of
the modules already described is presented. Our aim was
to evaluate in a realistic simulation environment, two
scenarios for serving Quality-of-Service (QoS)-
demanding traffic (VoIP, MPEG video streaming and
H.323 flows) according to the DiffServ principles. More
specifically, we were interesting in testing two different
scenarios over a topology simulating the backbone link of
a MAN that serves aggregated traffic from adjacent
domains. The topology and synthesis of foreground traffic
used are depicted in Figure 6.

&�

&�

&�

6�

6�

6�

���.ESV�

��PV

��� 0ESV�
��PV

��� 0ESV�

��PV ��� 0ESV�

��PV

��� 0ESV�

��PV

��� .ESV�

��PV

��0ESV

��PV

&URVV WUDIILF

WK
DYJ
 ��� ��� ��� 0ESV

3R3�
3R3�

 High-priority traffic Packet
sizes
(bytes)

1C 2 VoIP flows
(ON rate: 80 Kbps per flow)

188

2C 1 MPEG video flow (avgr :

333 Kbps)

200

3C 1 VBR flow (avgr : 448

Kbps) & 2 voice flows (ON
rate: 80 Kbps per flow)

1500 &
188

Figure 6. Topology and foreground traffic synthesis
Background traffic was produced as already

described in this paper and was inserted as ‘cross-traffic’
on the backbone link of our topology. Three adjacent
domains with different access link capacities were
attached to the PoP0 of our topology and equal sink
domains were attached to PoP1. The table of Figure 6
presents the synthesis of foreground traffic as inserted to

PoP0 by each adjacent domain iC .

Our interest focused on DiffServ mechanisms applied
for serving QoS-demanding, foreground traffic at PoP0
and PoP1 and how two different scenarios would affect
the quality perceived by foreground traffic flows.
Comparison of the quality perceived by foreground traffic
was made in two different scenarios where PoP0 and
PoP1 were configured with MDRR strict priority
scheduling so that:

• Case 1: The total of foreground traffic was served
by the LLQ both in PoP0 and PoP1

• Case 2: The VoIP flows were served by the LLQ
queue and the rest of foreground traffic was served by
a DRR queue with a high queue weight value (97),
ensuring access to 97% of the available bandwidth in
absence of VoIP traffic. Background traffic was
served by another DRR queue with queue weight of 3.
Table 5 and Table 6 present the measured throughput

values measured in the two different cases.
Table 5. Throughput (in Kbps) of foreground traffic in case 1

Interface Port rate Max Mean Min
PoP0 20Mbps 1570 1006 606

PoP1->S1 0.8Mbps 161 52 0

PoP1->S2 1.6Mbps 912 436 156

PoP1->S3 3.2Mbps 761 518 420

The total throughput of foreground traffic is increased
in case 2, while it is obvious how the LLQ queue
‘protects’ VoIP traffic. VoIP traffic is observed to reach
the maximum rate of 320Kbps at PoP0, which is
equivalent to the accumulation of peaks (80Kbps) of the
four VoIP flows transmitted through the PoP. This
observation also holds for interfaces PoP1-S1 (2 VoIP
flows VoIP -165 Kbps maximum throughput) and PoP1-
S3.

Table 6. Throughput (in Kbps) of Gold traffic in case 2
Interface Port rate Max Mean Min
PoP0->total 1623 1039 661

 ->Voice traffic 320 135 0

 ->Other fore-

 ground traffic

20Mbps

1386 903 606

PoP1-S1 0.8Mbps 165 71 0

PoP1-S2 1.6Mbps 912 436 156

PoP1-S3->total 3.2Mbps 750 532 420

 ->Voice

 traffic

165 64 0

 ->Other fore-

 ground traffic

630 467 420

Table 7 presents the quality metrics’ values for the
two cases under examination (delay and jitter measured

from the egress interface of a domain iC up to the ingress

interface of a destination domain). One can observe how
the end-to-end delay perceived by VoIP traffic is
improved in case 2 for VoIP transmitted between C3->S3,
when compared to case 1 where VoIP shared the LLQ
with foreground traffic of another type at PoP1 (2nd line
of both tables). Jitter, however, between these two specific
cases of line 2 is increased. VoIP traffic which does not
share a transmission queue with another type of
foreground traffic in case 1 demonstrates a slight decrease
in the quality perceived in case2 (1st line of both tables).
As far as the other types of foreground traffic are
concerned a slight decrease in the quality perceived is
noticed. This is due to the fact that this traffic is
transferred from the strict priority queue (LLQ) to a
regular queue of service.

Table 7. Quality metrics’ values
(case 1)

Traffic
aggregate

max delay
(ms)

max jitter
(ms)

Voice C1->S1 73.98 10.14 (1.9)
Voice C3->S3 70.85 2.5 (0.49)

MPEG 67.04 4.9 (0.5)
H.323 70.85 2.5 (0.49)

(case 2)
Traffic

aggregate
max delay

(ms)
max jitter

(ms)
Voice C1->S1 74.05 10.19 (1.94)
Voice C3->S3 65.29 4.2 (1.07)

MPEG 71.964 9.07 (0.713)
H.323 74.83 6.15 (0.9)

5 Future work-conclusions

In this paper we have presented a series of modules
implemented so as to extend the DiffServ functionality of
the ns-2 simulator. We have also provided an example of
use for most of these modules and an indicative

experimental set-up for the evaluation of different
DiffServ mechanisms and scenarios. The importance of
our work lies on the fact that the scale of operation in
DiffServ environments does not allow for analytical
evaluation of models and mechanisms. Therefore, the use
of simulation is necessary and particularly useful as a first
step before implementation and testing in a real network
topology.

Our future work on this area will concentrate on
developing and testing new DiffServ-based modules
within the ns-2 environment. Such modules include tools
for qualitative metrics’ measurements (e.g. measurement
of packets’ delay between two user-configurable network
locations), mechanisms for packets’ metering and
classification, alternative scheduling algorithms and the
implementation of integrated service management entities,
such as bandwidth brokers.

6 References

[1] R. Wielicki, ‘ns-2 ad-ons page’, found at:
http://thenut.eti.pg.gda.pl/~rafalw/wfq/

[2] G. Ahn, ‘MPLS Network Simulator’, found at:
http://flower.ce.cnu.ac.kr/~fog1/mns/index.htm

[3] S. Jamin, P. B. Danzig, S. Shenker, and L. Zhang,
‘Measurement-Based Admission Control for Integrated
Services Packet Networks’, in proceedings of ACM
SIGCOMM'95, pp. 2 – 13, Cambridge, USA, 1995

[4] M. Yuksel, ‘Traffic Generator for an On-Line Simulator’,
Master's Thesis, Department of Computer Science,
Rensselaer Polytechnic Institute, 1999

[5] M. Yuksel, B. Sikdar, K.S. Vastola, and B. Szymanski,
‘Workload generation for ns Simulations of Wide Area
Networks and the Internet’, in proceedings of CNDS
Conference, part of SCS Western Multiconference, San
Diego, USA, 2000

[6] S. Kalyanaraman, K. Vastola and B. Szymanski, ‘Traffic
generator’, result of project ‘Network Management and
Control Using On-line Collaborative Simulation’, funded
by DARPA-ITO, found at:
http://poisson.ecse.rpi.edu/~olsim/results/results.html

[7] K. Thompson, G.J. Miller, and R. Wilder, ‘Wide-Area
Internet Traffic Patterns and Characteristics’, in
IEEE/ACM Transactions on Networking, pp. 10-23, 1997

[8] H. Sawashima. Y. Hori, H. Sunahara and Y. Oie,
‘Performance Evaluation of UDP Traffic Affected by TCP
Flows’, in IEICE Trans. Commun., vol.E81-B, no.8,
pp.1616-1623

[9] Data Intensive Distributed Computing Group, ‘TCP
Tuning Guide for Distributed Application on Wide Area
Networks’, Lawrence Berkeley National Laboratory, found
at: http://www-didc.lbl.gov/tcp-wan.html

[10] ITU-T, P.59, ‘Artificial conversational speech’, (03/93)
[11] SEQUIN: ‘Service Quality across Independently Managed

Networks’, IST Project IST-1999-20841, project web-site
found at: http://www.dante.net/sequin/

[12] S. McCanne and S. Floyd, ‘ns Network Simulator’,
available at: http://www.isi.edu/nsnam/ns/

[13] C. Dovrolis, D. Stiliadis and P. Ramanathan, ‘Proportional
Differentiated Services: Delay Differentiation and Packet
Scheduling’, in proceedings of ACM SIGCOMM ’99
Conference, Boston, USA, 1999

[14] Cisco 12000 Series Internet Router: Frequently Asked
Questions, found at:
http://www.cisco.com/warp/public/63/gsrfaq_11085.shtml

[15] ATM Forum, ‘Traffic Management Specification’, Version
4.0, af-tm-0056.00, April 1996

[16] C. Bouras, D. Primpas, A. Sevasti and A. Varnavas,
‘DiffServ functionality patches developed for the ns-2
simulator’, found at: http://ouranos.ceid.upatras.gr/
diffserv/nspatches/description.htm

[17] S. Blake et al., ‘An Architecture for Differentiated
Services’, RFC 2475, December 1998

[18] K. Fall and K. Varadhan (editors), ‘The ns Manual-Chapter
9: Differentiated Services Module in ns’, 2001, available
at: http://www.isi.edu/nsnam/ns/

